Replica Placement for High

Availability in Distributed

Stream Processing Systems

Thomas Repantis

Vana Kalogeraki

Department of Computer Science & Engineering
University of California, Riverside
Riverside, CA 92521
{trep,vana}@cs.ucr.edu

ABSTRACT

A significant number of emerging on-line data analysis ajapions
require the processing of data streams, large amounts aftliat
get updated continuously, to generate outputs of interdstiden-
tify meaningful events. Example domains include netwog-tr
fic management, stock price monitoring, customized e-comene
websites, and analysis of sensor data. In this paper we loitlea
problem of high availability in such a distributed streanoqess-
ing system. By taking into account the particular charasties of
stream processing applications we first identify designgipies
for a replica placement algorithm for high availability. \WWeor-
porate these principles in a decentralized replica placepmto-
col that aims to maximize availability, while respectingaarce
constraints, and making performance-aware placemensidasi
We have integrated our replica placement protocol in Synengy
distributed stream processing middleware. Our experiaieoim-
parison over PlanetLab with the current state of the arbbanates
our claims that our techniques maximize availability wisilestain-
ing good performance.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms, Design, Experimentation, Reliability

Keywords

Distributed Stream Processing, High Availability, RepliPlace-
ment

1. INTRODUCTION

Over the past few years there is an increasing number of-event
based systems that deal with large volume and high rate eleds f
In such systems data streams are processed in or neamnedioti

© ACM, 2008. This is the author’s version of the work. It is pkhere
by permission of ACM for your personal use. Not for redisitibn. The
definitive version was published in 978-1-60558-090-81G8DEBS 2008.
http://doi.acm.org/10.1145/1385989.1386012

a variety of purposes, such as monitoring or on-line degcisiak-
ing. Application domains include network traffic manageméin
nancial trades surveillance, customized e-commerce Ggtjgins,
and analysis of sensor data.

To facilitate the performance and scalability requirersefithese
applications, a number of distributed stream processirsesys
have been proposed (e.g., [1,3,23,26,37]). These havedeeen
signed to provide low-latency and high-throughput proecessf
data streams and to adapt to rapid changes in load and resourc
needs. Another important requirement is the availabilftyhese
systems, which is crucial for their correct and continuopsra-
tion. To provide high availability, replication of the stma process-
ing components is required. The basic idea behind highahiil
ity is that by replicating components and distributing thaeonoss
different nodes, the failure of a replica will not interrupe exe-
cution of the applications, since other replicas can coetito pro-
vide the service. While previous research has shown how cemp
nent placement affects the performance of distributedstrpro-
cessing applications [3, 23], in this paper we demonstrate i
also affects application availability. We focus on the plaent of
replicated components to maximize application availghitom-
plementing existing research in the area of high availgtfitir dis-
tributed stream processing systems. Existing work in trés as
focused on tolerating failures during application exemutilespite
the continuous arrival of data and on fast recovery deshéesig-
nificant state maintenance overhead. In this context regonech-
anisms [15], failure masking [32], consistency trade-§ffs and
scheduling of checkpoints [10, 16] have been investigated.

We use a simple stream processing application example frem t
Stream Query Repositdryo illustrate the availability requirements
of distributed stream processing applications. In ourasirgpro-
cessing application example we assume a packet captunincede
installed in a network, used by a system administrator thshes
to monitor the source-destination pairs in the top 5 peileet
terms of total traffic in the past 20 minutes over a backbonle li
Figure 1 shows the components that are involved in procgsbm
packet input over 20-minute windows, to generate the manigo
output.

Despite its simplicity this example illustrates several Ebarac-
teristics of distributed stream processing applicatiorsch deter-
mine the intricacies in their availability requirementsEirst of all,

a distributed stream processing application is composeae\adral
components, as shown in the directed acyclic graph of theplea
of Figure 1. We call such applicatiowsmposite. ii) More impor-
tantly, a distributed stream processing application swctha one
of Figure 1 cannot tolerate availability of a subset of thenpo-

*http://mww-db.stanford.edu/stream/sqr/netmon.html

filter }———)l sort l—)l project |—>|aggregat

compare

Figure 1. Stream processing application example.

nents. Even if incomplete results can be produced in thenabse
of certain components, correct execution requires all eifrtho be
available. Therefore, we call such applicatistsct. iii) More-
over, each component may be shared by multiple applications
currently. For example, the aggregator of Figure 1 may bé par
of more than one monitoring applications. A failure in a suar
component has to be masked from all the applications thatuare
rently using it. iv) Furthermore, streaming data typicallyive in
large volumes and at high rates, like the traffic in a busy ogtw
for the example of Figure 1. Failure recovery has to be fast, f
the execution to be able to continue with minimal loss. Y&ttes
maintenance between replicas requires a non-trivial atmfidata
transfer. v) Finally, even though this is not demonstratéd this
simple example, a distributed stream processing appicatiay
consist of large numbers of components, distributed ovdevairea
networks.

Replication for high availability and fault tolerance haseh
studied from different perspectives in a variety of domainslud-
ing distributed databases [13, 22, 24, 34], distributecectbpys-
tems [11, 12, 14, 18, 21, 25, 36], and web services [6, 20]. |&Vhi
many aspects of replication have been studied extensaetl/so-
lutions such as active [31] and passive [9] replication aigely
accepted, in this work we focus on repligacement for maximiz-
ing the availability of distributed stream processing >lons.
Our placement mechanisms cater to the composite and s#ict n
ture of these applications. Ensuring the availability obanposite
application differs from guaranteeing the availabilityiodividual
objects, such as files in distributed storage systems [Z,3(01, or
databases [13, 22, 24, 34]. Furthermore, the scale of llitrdl
stream processing applications, both in terms of data welanmd
rate, as well as in terms of nhumbers of components, affegts si
nificantly the placement decisions. For example, not athary

component placement to maximize the performance of dis-
tributed stream processing applications has been inadstig
before [3,23], to the best of our knowledge this is the first pa
per to discuss component replica placement to maximize the
availability of such applications.

e \We propose a practical and fully distributed componenticapl
placement protocol to implement our design principles. Our
protocol collocates components to maximize applicatiailav
ability, respects the processing power and bandwidth -avail
ability, and minimizes the communication latency to maxi-

mize application performance.

We incorporate our replica placement protocol for highlavai
ability in Synergy [26], our distributed stream processing
middleware. We evaluate the performance of our prototype
on the PlanetLab [7] wide-area network testbed. To assess
the availability gains of our protocol, we compare it to the
current state of the art for replica placement for high avail
ability of multi-object operations in general distributegs-
tems [39]. Additionally, we compare our protocol to an opti-
mal and to a random replica placement. Finally, we compare
the application performance we achieve to the performance
attained by a placement protocol that focuses only on appli-
cation performance, such as the existing placement pristoco
for distributed stream processing systems [3,23]. Ouidtesu
show that our protocol achieves availability close to opfim
outperforming its competitors, while sustaining perfonoa
close to that of a performance-oriented placement.

MIDDLEWARE OVERVIEW

We have implemented our replica placement protocol in the Sy

replicas can be hosted by the same server, as might be the cas€'9Y distributed stream processing middleware [26]. Werbbg

with object-, component-, or service-based architecfusash as
CORBA [11, 12, 14, 21], Enterprise JavaBeans [36], or ntigti-
architectures [13, 22]. Our placement mechanisms howerebe
applied to such systems, if their scale requires the primgpicas

of a composite application’s components to be distributetisag-
nificant amounts of data transferred between them make [tte/ee
placement of components important.

This paper addresses the problem of component replica-place

ment to maximize the availability of distributed streamgassing
applications, by making the following contributions:

e We reason and illustrate how the fact that distributed sirea
processing applications are composite and strict affégs t
availability of different component replica placementse W
then show how the practical constraints in replica placeémen
that arise from the limited processing and network resaurce

presenting an overview of the middleware. Figure 2 showsthe
chitecture of Synergy, built on a peer-to-peer overlay. friddle-
ware’s goal is to support the execution of distributed strgmo-
cessing applications with QoS constraints, while effidienan-
aging the system’s resources.

As illustrated in Figure 2, each node of the middleware cinsi
of the following main modules: i) Aliscovery module that is re-
sponsible for locating existing data streams and compsné&yin-
ergy leverages the structure of the underlying overlay asgtvor
registering and discovering available components andsisein
a decentralized manner. In our current prototype we impigrae
keyword-based discovery service, on top of the Pastryiligtd
hash table (DHT) [29]. This allows us to register and discaoen-
ponents by hashing keywords instead of the component 1Ds-the
selves, and thus decouple component placement from tlseiowi
ery. ii) A routing module that routes protocol messages and data

available in the system determine the number of nodes to be streams between nodes. iii) onitoring module that is respon-

used for replica placement. Finally, among placements that
are equivalent in terms of availability we show how to se-
lect the one that improves application performance. While

sible for maintaining resource utilization informatiorr the node
and the virtual links connected to it. In the current implenagion,
the monitoring module keeps track of the CPU load, the ndtwor

Distributed =& also included ir¢. Bandwidth requirements are calculated accord-

Stream Processing®. ing to the user-requested stream rate, while processing tén
Application T quirements are calculated according to the data rate andnes
e profiling results for the operators [26]. Processing andiladth
p ‘ intartace || AFERSEOR H‘ requirements can represent average or worst-case loaehdieg
. LWHEEJ :ﬂMH on the robustness required from the application instaatiat
—— ‘ ore H The query plan is dynamically instantiated into aplication
Middleware Schecer e component graph, denoted by\, depending on the particular com-
E ey || G ﬂ ponents that are being used by the application. The vertitan
= application component graph represent the componentg li@in
&S (><] voked at a set of nodes to accomplish the application exaguti
P = while the edges represent virtual network links betweenctire-
ponents, each one of which may span multiple physical nd&twor
IP Network o links. An edge connects two componentsandc;, if the output of

component; is the input for componenty.

We assume a primary/backup, passive replication scherb2][9,
Each component has a primary and a number of backup replicas.
The primary component replicas are the vertices of the egiptin
component graph. With each streamflowing between primary
components:; andc, we associate a required bandwi(bUJ, and
with the corresponding virtual network link; we associate a la-
tencyl.,. For each of the primary component replicas there exist
one or morebackup component replicas. The backup component
replicas are passive replicas in the sense that they do noegs
data streams, but they asynchronously replicate the oufpilite
primary replicas to be able to take over in case their princagn-
terparts fail. This enables faster recovery compared tairisiting
components after a failure occurs. State transfer betweepri-
mary and backup replicas is not the focus of this paper arddiegi
solutions for consistency, checkpointing, failure magkiand re-

- ' X covery for distributed stream processing systems [5, 15a32vell
to control and monitor the execution of the middleware anthef as solutions based on view-synchronous communicationcisj,

applications. ix) Finally, we have extended Synergy witlefica be integrated in our architecture. Ligt be the bandwidth needed
placement module, that we describe in this paper, that determines 1, 4o a state transfer of a primary componento its zth backup

on which nodes to place the component replicas of a composite rgpjica and let;, be the communication latency of the correspond-
application to maximize application availability. ing virtual network link between the two replicas. Since im o
implementation the state transferred from a primary replaits

3. SYSTEM MODEL backup replicas,is the primary’s output, essentiblly= b, for all

We now define our system model. Table 1 summarizes our nota- of a components backup re.pllcas. Thg primary and packup com
tion. Each node; is characterized by its current processor Ipad Egﬂfgiggf"ﬁiﬁﬁ; tcr;?nvgrr]té::]?srof ﬂ ﬂ:ﬁg?gg%ed’ggg?}:é
and its residual processing capacity,,, which are inferred from . i P grapn, - a9
the CPU idle time as measured from ther oc interface. The of this graph represent the replication of the output of themary

residual available bandwidthb.,; on a virtual linke; betweenv; component replicas to their backup counterparts.

and a remote node is calculated using a bandwidth measwahg t thggn;‘?g:qenung;ﬁstg entcr):lgee(: ?f/ :jéfflei(rzzr;t Q?ge§o(nrqnag11g:§sthe
(e-g., Iperf). We also uste ; to denote the amount of current band- Y ; P P

width consumed or;. Finally, the communication latency of a ?gnagg?e\?vtegdeg:g{a:\?vr;ﬁgter?;eﬁu%qbirlsofd e:;gg: '2;: %%Fg:ﬁargoﬂ_
virtual link e; betweerv; and a remote node is measured using di- q y R P Y ponent rep
. . cas needed by a composite distributed stream processitigaapp
rect pings, even though more elaborate latency calculatiethods : . . . oo
can be integrated [35]. tion, which corresponds to the number of vertices in theiagpbn
A data streamns; consists of a sequence of continuous data tu- component graph. We denote wihthe number of component

- . : - replicas belonging to a particular application that aregdiosted
ples. A stream processing componefis defined as a self-contained by a single node. Essentially, represents the number of compo-
processing element that implements an atomic stream @ioges y Y ’ nuially,rep . . P

. . nent replicas of an application that are collocated in alsingde.
operatoro; on a set of input streans, is; and produces a set of 5\ (4T iable with probability, or fails with probabili
output streams os;. Stream processing components can have 1_ which we define aF; its failu%é robabili P include)s/
more than one inputs (e.g., a join operator) and outputs, @plit l(aoth to;1)e' failure probability of the nodeﬁtself antg. o?thewmk
operator). Each atomic operator can be provided by multipfe- links connectin pit to othe); nodes. Not having any histdrfad-
ponent instances, . . ., cx, which we callcomponent replicas. Y - Nothaving any . i

. - . ure data, we assume that all nodes fail with the same pratyail
A stream processing request (query) is described plan, We only consider independent, fail-stop failures, and cncede
denoted by. The query plan is represented by a directed acyclic has faiI)(led we reqard apII the co'm onenF;s hosteél by it anchall t
graph (DAG) specifying the required operatossand the streams 9 P y i,

« amon e, Figur 1 shas an exampeof aquey pian. he 2P0LCTS 1900 Tese conporers, s pemmeniyiahe
CPU processing time requirements of the operaporsvo; € & P f

and the bandwidth requirements of the stredm)sVs, € ¢ are network partitions are handled by redundancy in the routibies

Figure2: Middlewarearchitecture.

bandwidth, and latencies to other nodes. ivicheduling module
that implements various algorithms to schedule the exacutf
the stream processing applications running on a node.ooyoo-
sition module that composes stream processing applications from
already deployed components. The middleware adopts adaly
centralized architecture, where any node can composeribdisd
stream processing application [26]. vi)l8ad balancing module
that proactively alleviates hot-spots relying on decdizied migra-
tion decisions [27,28]. vii) Arapplication module that implements
the logic of the various stream processing applicationsnti:
dleware can offer. We have currently implemented netwaKitr
monitoring and stream encryption. viii) Aser interface module

[Notation] Meaning [[Notation | Meaning]

3 Query Plan A Application Component Graph
p Replication Component Graph) Replication Degree
n Number of Components in Application k Number of Components on a Node
A Availability of Application F Failure Probability of Application
a; Availability of Component fi Failure Probability of Component
« Availability of Node ¢ Failure Probability of Node
v; Node ej Virtual Network Link
0; Operator S Stream
ci Component le]. Latency of Virtual Linke

Do, Processing Time Required for Operatgr b, Bandwidth Required for Streamy

Do, Processor Load on Node bej Network Load on Virtual Linke ;

TPy, Residual Processing Capacity on Nade rbej Residual Network Bandwidth on Virtual Link;

Table 1: Notations.

of the DHT substrate, or by some other mechanism that guaran-
tees eventual consistency [5, 19]. We define the availghilitof

a component;, as the probability that at least one of its replicas
is available (executing correctly and reachable over theor).

The probability(1 — a;) we define as unavailability or failure prob-
ability f; of a component;.

When an application request arrives, our goal is to placepoem
nent replicas in a way that maximizes the availability of tipgli-
cation to be instantiated. For placement decisions thaequeé/-
alent in terms of availability we also seek to maximize theliap
cation’s performance. We define the availabilidyof a composite
application as the probability that all its components alable
(executing correctly and reachable over the network). Tbheap
bility (1 — A) we call unavailability or failure probability” of the
composite application. In other words, we seek to maximiiee t
percentage of successful requests for composite applisati

4. DESIGNING REPLICA PLACEMENT FOR
HIGH AVAILABILITY

We now describe the design principles of our high availgbili
placement algorithm, focusing on the three aspects int@diin
section 1, namely: i) Determining a placement of componepii-+
cas that maximizes availability (section 4.1). ii) Deteming the
number of nodes to use for placing the component replicazradec
ing to the system’s resource availability (section 4.2)) Dieter-
mining where to place the component replicas across nodeaxe
imize application performance (section 4.3).

4.1 Maximizing Application Availability

We first look at the problem of determining a placement of com-
ponent replicas that maximizes the availability of a dstted stream
processing application. We look at the two important charée:
tics of distributed stream processing applications, ngrtied fact
that they are composite and strict, to understand theiledibiy
requirements that differentiate them from other distrioLeipplica-
tions, and to guide our placement decisions. In many digtib
applications such as distributed storage [2,4,17, 30]ienttkerver
computing [6, 12, 14, 18, 20, 25, 36] that focus on the avditgb
of individual objects, such as files or processes, an inergathe
number of replicas usually implies a similar increase indtail-
ability of the application. While we expect that increasihg num-
ber of component replicas will also increase the availahil a dis-
tributed stream processing application composed of theerfind
that this increase greatly depends on the relative placeaighe
individual component replicas. Moreover, unlike applicas that
can tolerate missing objects, such as ones based on majotiitg
or erasure coding, a distributed stream processing apiplicee-

Distributed Stream Processing Application Availability

0.95

0.9

0.85

Application Availability

0.8

0.75 ! ! ! ! !
5 10 15 20 25

Number of Nodes Hosting Component Replicas

30

Figure 3: Availability decreaseswith larger application compo-
nent graphs and increases as components are concentrated in
fewer nodes.

quires all of its components for correct execution. In shootv the
individual component replicas are placed on nodes affebtther
all components will be available for the application exémut

To gain a better understanding of how component placement af
fects application availability we conduct a simple simigiat We
place components with replication degrge= 2 on a subset of 30
nodes. We then calculate using recursion all possible auatibins
of 5 failed nodes and determine the average applicationaditi
ity from all failure combinations. We simulate applicatsowith
n = 3,5,10 components. Figure 3 summarizes the results and
helps us reach the following conclusions: The relative gaent
of the individual components affects the availability oé tbom-
posite application. More specifically, concentrating tbenponent
replicas in a smaller tham- n subset of nodes increases application
availability. The reason lies in the fact that the compoajpeli-
cation is strict. Please note that spreading the compoentss
more nodes would have the opposite effect for an applicatluere
even a subset instead of all the components being availahié&w
suffice. Finally, we observe that as the sizef the application
component graph increases, application availabilityeleses. This
is because more nodes need to be employed for hosting all com-
ponent replicas (since no replicas of the same componenb&an
hosted by the same node), while all of the components need to b
available for the application to be available. Similar dasons
are drawn with larger replication degrees as well.

From the above discussion we reach the conclusion thatettlo
ing as many component replicas as possible in the smallegeu
of nodes, in other words maximizing the numlieof components

hosted by a node, maximizes the availability of a distridugigeam
processing application. The larger thehe larger the availability

A achieved. Thus, taking into account that replicas of theesam wv; needs:p,, < 7py,, bs,

component should be placed on different nodes, an optirpitee
placement algorithm for a distributed stream processingicp

source profiling results for the operators, as describeddtian 3.
Thus, to be able to host a primary component replicanode

< rbe;,Vs; € Y isi, andbs; <

rbe;,Vs; €) os;, for all virtual links e; connecting primary to

primary and primary to backup component replicas. To be able

tion would place all primary component replicas on a node& an to host a backup component replieg nodew; needs:bs; <
use anothep — 1 nodes to place the backup component replicas, rb;,Vs; € > os;, for the virtual linke; connecting the backup
placingn backup replicas on each node. In practice however such areplica to its primary counterpart. For example, in Figure&de

placement is infeasible due to the distributed nature o&fiica-
tions and also the resource constraints imposed by the ndeées
we show in the experimental evaluation in section 6 that tlad-a
ability achieved by our replica placement algorithm, tladess into
account the system’s resource constraints, is comparaliat of
this optimal placement.

Existing research efforts on component placement foritligid
stream processing systems [3, 23] place components to mattes
performance optimization in mind and ignore how componargs
placed relative to each other. This results to a randomivelabm-
ponent placement. However, [39], which is the only studyhef t
availability of multi-object operations in distributed systems we

v21 can host primary replicaz: only if po, < Tpuy,, bsy, <
Tbey; 41, @NAbs, < Tbey, 5, NOdewia can host backup replica
c12 only if bsa + bs3z < Tbe]l_lz.

Thus, we collocate replicas on nodes as much as their reourc
permit it. Therefore, the nodes’ processing capacity amdvth
tual links’ network bandwidth ultimately determine the mium
number of nodes that can be used for placing replicas inipeact

4.3 Maximizing Application Performance
While application availability is only affected by the nuertof

nodes that are used for placing component replicas, apiplicaer-

formance is also affected by the particular nodes used frepl

are aware of, has shown that random placement offers thet wors ment. Moreover, both availability and performance are ciéfé

availability for multi-object operations that cannot t@te missing
objects. Furthermore, [39] has shown that for multi-obj@oer-
ations that cannot tolerate missing objects the highestaaility

is provided by increasing inter-object correlation. In euork
we maximize inter-object correlation by placing all repkcin the
smallest possible group of nodes, as long as the nodes’ reesou
allow us to do so. We show in the experimental evaluation @ se
tion 6 that placing components ad-hoc, per applicationestjal-
lows us to achieve higher availability than a placement ritigm
that partitions nodes to groups and statically pre-assigpigcas to
these groups, which is the one that performs best for stridtim
object operations in [39]. The fact that the applicatiorf@@nance
also needs to be taken into account in placement decisisnis, a
is affected by inter-component communication, furthefedénti-
ates our replica placement for distributed stream proogssppli-
cations from replica placement for other distributed ailons
such as those presented in [39] (e.g., storage).

4.2 Respecting Resource Availability

While our investigation so far suggests that applicaticailail-
ity would be maximized by placing alt components of an appli-

by the relative placement of the component replicas amoxgsio
For placement decisions that are equivalent in terms ofailify
we seek to maximize the application’s performance. To dater
which nodes to use for placing the component replicas andevhe
to place the component replicas across these nodes to nzaxami
plication performance we look at the two types of commuiicat
that affect it: i)Inter-operator communication: The primary com-
ponent replicas that participate in a distributed streaotgssing
application exchange data in the form of input and outpatastrs.
i) Intra-operator communication: The primary component repli-
cas asynchronously replicate their output streams to taakup
component replicas. In the application component grapmeia
of Figure 4 component replicas; andci2 offer operatoros, c21
and coo Offer o2, c31 andcso offer oz, andcs1 and cyo Offer os.
Thus, as Figure 5 shows, inter-operator communicatiorstplee
betweerr; 1, c21, ¢31, andea1, while intra-operator communication
takes place between; andciz, c21 andesaz, c31 andesz, andea;
and(:42.

To capture the two aforementioned types of communication we
define the two corresponding communication costs for thizesnt
application component graph: i) Tleter-operator communica-

cation component graph on a node, we now discuss why such ation costis defined asinier = > s; - le; and captures the cost

placement is infeasible in practice and identify the resewon-
straints that determine a number of replicas per node n. The
two resource constraints that affect component replicagpieent in
practice are processing capacity and network bandwidthhcBb
a primary component replica, a node needs processing tapaci
process its input stream(s), downstream bandwidth toveésiin-
put stream(s), upstream bandwidth to transfer its outpaasi(s)
to the next primary component replicas in the applicatiomgo-
nent graph, and upstream bandwidth to transfer its outpedisi(s)

jEL...n
of transferring the streaming data through the primaryicaplof
the application component graph, with bandwidth requinsisie;
and link latencies., . ii) Theintra-operator communication cost
Cintra 1S defined ainira = >, Y. siz - liz @and captures
i€l..nx€l...0
the cost of transferring the output of the primary replicashieir
backups, with bandwidth requirements and link latencie$;,..
Thus, the component placement problem is defined as a con-
strained optimization problem, where the goal is to deteenthe

to its backup component replicas. To host a backup componentsmallest group of nodes to host then component replicas of an

replica, a node needs downstream bandwidth to receivepts in
stream(s).

As described in section 3, the monitoring module of a node
collects information regarding its residual processingacity rp.,,
and the residual network bandwidth.; on each virtual linke; be-

application, that minimizes the total communication agst., +
cintra, SUCh that no replicas of the same component are hosted by
the same node, and the processing and bandwidth constaaimts
met.

Previous work on component placement to improve applinatio

tweenv; and another node. The bandwidth and the processing time performance [3,23] has considered the simpler versioneopthb-

requirements of a component are included in the query ¢lah
an application request. Bandwidth requiremenisare calculated
according to the user-requested stream rate, while priocessie

lem without replicated components. In this case, the plargm
problem is reduced to the placement of only the primary cempo
nent replicas, in other words the construction of the apfibn

requirements,, are calculated according to the data rate and re- component graph. Even in this simpler case, finding an optima

00

Figure 4: A smple distributed stream processing applica-
tion.

solution is an NP-complete problem [3].

Since an optimal solution is not available, we propose adyree
one that: i) Places the primary component replicas so tledhtbr-
operator communication cost is minimized. ii) Places thekbp
component replicas so that the intra-operator commuicatost
is minimized. We use virtual link latencies to guide the plac
ment decisions of primary and backup component replicasjrie
imize the inter- and intra-operator communication costpee-
tively. While the amount of data; that needs to be transferred
in every case is defined by the application and cannot betaffec
by the placement decisions, we take it into account in theepla
ment decisions by weighing link latencies with The fact that we
try to minimize the number of nodes to use for component capli
placement, to maximize availability, limits the number afdncy
measurements we need to perform and simplifies the repbcapl
ment problem.

5. DISTRIBUTED PLACEMENT PROTOCOL

We now present our protocol for placing the component raplic
of a distributed stream processing application. Our pryngaral
is to provide a scalable distributed protocol that deteawireplica
placement for high availability of the application. For ggaent
decisions that are equivalent in terms of availability, veeksto
maximize the application’s performance. Our protocol ieapl
ments in a decentralized manner the three decisions regarii
The collocation of components to maximize application latrl-
ity (section 4.1), ii) the number of nodes to use for placensen
that system resources are not exceeded (section 4.2)jjandith
nodes to use so that the communication costs are minimized (s
tion 4.3). Component collocation is achieved by reusingasddr
placement as much as possible. Resource overloads aredwid
taking into account the nodes’ processing capacity and ititeaV/
links’ network bandwidth in the placement protocol. Figaihter-
and intra-operator communication costs are minimized kin¢a
into account the virtual links’ latencies in the placemeatidions.

The placement algorithm takes as input a user stream pingess
request, described by a query plarand the component’s repli-
cation degree. The output of the placement algorithm is an ap-
plication component graph, specifying the primary component
replicas that accomplish the application execution, aedntbdes
that are hosting them, as well as a replication componemphgra
specifying the backup component replicas that replicaeotitput
of the primaries, and the nodes that are hosting them.

Component replica placement decisions are carried oublep-

Figure 5: Replication in a simple distributed stream pro-
cessing application.

hop. To this end, we have implemented the following types e-m
sages: Placement requests, placement replies, placeegotiar
tions, and placement decisions. We describe the conteritesé
messages as we introduce their role in the placement pioteo
now present the details of the placement protocol, whiclude
its three phases, namely the bootstrapping, the propagaiod
the completion, and focus on the six steps for primary anduyac
placement, that are executed on every hop. A high level iteor
of the placement algorithm is shown in Algorithm 1.

Phase 1. Bootstrapping. The protocol execution begins with
the submission of a user request for a stream processingcappl
tion, described by a query plan and the replication degreeof
the application’s components. A user request is submititextttly
to a nodevs, if the client is running the middleware, or redirected
to a nodev, that is closest to the client based on a predefined prox-
imity metric (e.g., geographical location), bootstraps the place-
ment protocol by sending the user request to the node(shtsat
the inputs of the application, which we call temirce nodes. These
nodes are usually pinned where the data sources are, eaye @h
packet capturing device is located in the network in the gtarof
Figure 1. The source nodes are discovered by querying the DHT

Each source node receives the user request and begins the com
ponent replica placement by deciding the placement of tinegoy
replicas of its downstream components in the applicationpm
nent graph. For example, in Figure 5, where the applicatas h
only one source node and this node has only one downstream com
ponent, the source node decides the placement of replica

Phase2. Propagation. The node that becomes the host of a pri-
mary replica is responsible for continuing the placementqgmol.
Becoming the host of a primary replica and consequentlyeagre
ing to continue the placement protocol is achieved by atug@t
pl acenent request. A placement request is sent from a node
that makes a placement decision for the primary replicaehxt
component in the application component graph to a nodeshat i
quested to host this primary replica. A placement requettidies
the query plarg, the application component graphto the extent
that it has been defined so far, the replication componephgr#o
the extent that it has been defined so far, the replicationegeg
and an index to identify which operator of the query plan taeg-
ment request refers to. In addition to hosting the requastietary
component replica, the node receiving a placement reqsiessd
requested to find nodes to host this component’'s backupcespli
and nodes to host the primary replicas of the downstream aemp
nents of this component. For example, in Figure 5, a placéneen
guest sent from the source node to the node that is requestedtt

Algorithm 1 Placement algorithm.

Input:
Output:

query plarg, replication degree, nodevs
application component graph
replication component graph
for each node; in path
perform transient resource allocationvat
identify candidate nodes already used for placement
select candidate nodes meeting bandwidth requirements
sort candidate nodes by latency
for each primary replica of downstream component
send placement request or placement negotiation
receive placement reply
send placement decision
for each backup replica of current component
send placement decision

c11 makes the recipient responsible for finding nodes to hest
cs1, andci2. We now describe the six detailed steps of the place-
ment protocol that are executed on each hop for placing thepy
replica of each downstream component and the backup replica
the current component.

Step 1. Primary placement selection. A node decides upon the
placement of the primary replica of each of its downstream-co
ponents based on three criteria: First, nodes that havadyiteeen
used for placing previous replicas for this particular &gilon are
preferred. These nodes are identified by the (partial scafap)i-
cation and replication component graphs that are includettie
placement request. Second, out of these previously usezsnoe
select the ones that have enough residual network bandtidttr
commodate the bandwidth required by the output stream the.
nodes for whiclbs,; < rb.;. The bandwidth measurements are col-
lected by the monitoring module, as was described in se2tidine
bandwidth requirement of the output stream is calculatedraling
to the user-requested stream rate, and is included in thg glen
¢ of the placement request, as was described in section 3d,Thir
the previously used nodes that can sustain the requirednidind
are ordered from the closest to the most remote in terms ofrasm
nication latency. . The latency measurements are again collected
by the monitoring module as was described in section 2. We cal
these nodes thetosest used candidates. The reason we try to reuse
nodes is that, as we discussed in section 4.1, collocatimgponent
replicas on nodes, as much as the nodes’ resources penmgbii;
mizes application availability. If there are not enoughselst used
candidates to place all the required primary replicas esbsandi-
dates are used instead. To identify thesest candidates, only the
last two of the above three criteria are taken into accoumt, the
residual network bandwidth and the communication latency.

Step 2. Primary placement negotiation. The placement of
a primary replica of a downstream component is decided tiijrec
by a node if this node hosts its only upstream component. dn Fi
ure 5 for example this is the case for the host:af which can de-
cide the placement af;; directly. However, when the downstream
component has more than one upstream components, its glatem
decision has to be cooperative, taking into account theept@nt
preferences of all the upstream components. The decisipade
by the upper node in the application component graph, taikitag
account all involved nodes’ placement preferences. Fomele
in Figure 5, the node hosting; can be decided by both the nodes
hostingcz: andesq. The upper node in the application component
graph is defined as the decision maker, which in this caseeis th
node hostinge21. Thus, the host ofs; informs the host of2;
of its placement preferences, before the host.pfcan decide the

placement oty; .

The nodes’ placement preferences are transferred psiagement
negot i at i on messages. A placement negotiation is sent from a
node that determines that a primary replica of the next corepb
in the application component graph can be decided by moresnod
than itself, to the upper node in the graph that can make sdeh a
cision. The placement negotiation message inclgdes p, ¢, an
index to identify which operator of the query plan the plaeetme-
gotiation refers to, and a list of nodes that the sender woaltt the
component to be placed on, ordered by their latency to théesen
This is the list of closest used candidates the node cortstrac
the list of closest candidates, if no used candidates eRiste the
recipient receives placement negotiations from all upstreom-
ponents of a component that needs to be placed, it decideh whi
node should be asked to host the downstream component. dt doe
so by finding the first intersection of the candidate listse Tan-
didate lists are traversed from the list of the node with tigiadst
requested output bandwidth to that of the node with the lonees
quested output bandwidth. This way, the preferences arghedi
according to the requested output bandwidth. Once the datali
for hosting the primary replica of the downstream comporerst
been identified, either directly or through the negotiapoocess, a
placement request is sent to it.

Step 3. Primary placement evaluation. A node receiving a
placement request for hosting a primary replica evaluatesthrer
it can accept it or not. To determine whether to accept or deny
a request a node checks whether: i) The profiled processimg ti
required for the operator of the primary replica to be instaed
will not exceed the residual processing capacity of the node
Do; < rpu;, and ii) The requested bandwidth for the output of this
primary replica will not exceed the residual network bardttvion
the virtual links to the nodes that will be asked to host therro
stream components of this primary replica, and to the noldafs t
will be asked to host its backup replicas, ik, < rb.; for all
corresponding virtual links;. For example, in Figure 5, a place-
ment request sent from the node hostingci; to the nodevs;
that is requested to host; will be accepted only ipo, < rpuy;,
bsy < Thegy 41, ANAbs, < They; oo-

Both the bandwidth and the processing time requirements of a
new placement are included in the query pfaof the placement
request. Bandwidth requiremeriis; are calculated according to
the user-requested stream rate, while processing timéeegents
Do, are calculated according to the data rate and resourceimpgofil
results for the operators (section 3). The residual pratgsspac-
ity rp., and the residual network bandwidth.; are collected by
the monitoring module of the node (section 2).

Once a placement request has been evaluated, the node sends a

pl acenent reply to the node that sent the placement request.
The placement reply includes an identifier of the requestrigply-
ing to and whether the request is accepted or denied.

Step 4. Primary placement decision. The node making the
placement decision of a primary replica waits for the closesd
candidate’s placement reply. If the placement requestriiedethe
next closest used candidate is contacted. If no closestasset-
dates accept the placement, the closest candidates aeemuht

Once a placement request is accepteal, acenment
deci si onis sentto the node that accepted, to complete the place-
ment of the primary component replica. A placement decigon
sent from a node that makes a placement decision for a compone
replica to the node that is requested to host this replica. pléce-
ment decision includes the identifier of the applicationdbmpo-
nent replica will be a part of, a unique identifier of the comguat
replica within the application, the operator the compomeptica

will be offering, and the fact that the component will be anpary
replica. The receiver of a placement decision allocatesuress
for the replica. This way, overallocations caused by comzurpro-
tocol executions are avoided.

Step 5. Backup placement selection. Once a node has placed
all the primary replicas of its downstream components irejai-
cation component graph, the backup replicas of the curremt c
ponent are placed. For example, in Figure 5, the host oheeds
to placecio, after it has placed.:, andcsi. The backup replicas
are again placed at the closest used candidates, to inareesgm-
nent collocation and hence maximize application avaitgbilf the
replication degree exceeds the number of closest useddzdes
closest candidates are used instead. (Please note thaasapfithe
same component can never be collocated.) The closest uséid ca
dates are identified following the same procedure descfilretie
placement selection of the primary replicas in step 1. Thieme-
ciding where to place a component’s backup replica is hggtie
primary replica that will generate the input of this backeplica.
Therefore it can ensure that the requested bandwidth fanthe
of the backup replica can be accommodated by the residual net
work bandwidth on the virtual link to the node that will be edko
host it, i.e.,bs; < rbe;. Again,bs; is included in the query plan
¢ (section 3), whilerb.; is provided by the monitoring module of
the node (section 2). A backup replica does not have any addi-
tional requirements from the recipient regarding eithercpssing
or downstream communication. Therefore, no placementestiqu
and reply procedure similar to the primary replicas’ plaeetris
required.

Step 6. Backup placement decision. The placement of each
backup component replica is completed by sending a plademen

decision to the node that has been decided to be the host of the

backup replica. In addition to the information included iplace-
ment decision of a primary replica, a placement decision imew
cludes the fact that the component being placed will be augack
replica. Again, the receiver of a placement decision atkexae-
sources for the backup replica to avoid overallocations.

Phase 3. Completion. We call the node(s) that host the outputs
of the application thalestination nodes. These nodes are usually
pinned where the data receivers are, e.g., where a netwera-op
tion center is located in the example of Figure 1. Once a noale t
accepted a placement request notices that it only has thieaes
tion nodes as its downstream nodes, it only has to place taipa
replicas of the current component and then the placemeohesa
completion. The node discovers the destination nodes bryimge
the DHT. It then propagates the placement request for thikcapp
tion to the destination nodes. The placement request ndwdes
the complete application and replication component gragbeci-
fying the placement of all primary and backup replicas. Testid
nation nodes propagate these to nogewnhich now can inform the
source nodes to begin streaming.

If at any step of the placement protocol a node cannot find any
candidate to host the requested component replicas, tegarof
collocation (availability) and latency (performance) uggments,

a failure message is returned #9 and then to the user and the
component replicas that had been placed so far are deatbcat
This however is an extreme case, indicating that the systms d
not have the required processing and network resourcesstate
requested application.

Failure Handling. Failures of nodes during the protocol ex-
ecution result to message timeouts, causing the sendee afoth
responding message to try the next available candidateldoep
ment. To avoid message timeouts by detecting node failures i
advance, more elaborate failure detectors [33] can alsosbd. u

Moreover, failures affecting component discovery are hethtby
the DHT [29]. Handling failures not during the placement dut-
ing the stream processing application execution is a diffeand
rather complicated problem, considering the request atdsthe
real-time requirements of the applications. Several maishzs
have been proposed to address this problem, including pbetk
ing [10, 16], masking [32], logging [15], and trading-off regs-
tency [5]. Since our work focuses on placement to minimiderfa
probability and not on handling failures during executieristing
solutions for the latter can be integrated in our architectu

6. EXPERIMENTAL EVALUATION

We have implemented in Synergy our replica placement proto-
col, as well as the network monitoring application from thee&m
Query Repository shown in Figure 1, and have conducted a per-
formance evaluation over PlanetLab. Synergy is implenteagea
multi-threaded system of about 35,000 lines of Java codevab
uate Synergy’s distributed placement protocol’s performance, we
compared it to four more placement protocaBptimal places all
primary component replicas on a node, antackup replicas on
each of anothes — 1 nodes. As we described in section 4.2, such a
placement is practically infeasible due to the processimgtand-
width constraints. However, we include it for comparisonguses,
as it maximizes availability.Random places component replicas
on nodes randomly, as is done for example in [Partition im-
plements a scheme [39] that aims to maximize inter-componen
correlation. Similar to RAID-1, it partitions nodes to gpsuof
o nodes each and assigns all replicas of a component to onp grou
every time. [39] showed that this placement performs besitfact
composite applications, therefore we include it here astinent
state of the art. Finallyl_atency places components based solely
on network latencies, similarly to current placement protse for
distributed stream processing systems [3, 23] that seelaiimize
application performance.

Each node in the system generates an application requést tha
triggers component replica placement. By sharing the sys&e
sources among multiple concurrent applications, we do iva g
Synergy’s resource-aware placement protocol an advarmtege
the other protocols, in terms of placement choices. In fhot, to
resource sharing, Synergy results to placing the compaeptfit
cas of an application te or more nodes. We present the average
results over the total number of participating nodes. Wk lab
application availability and replica failure ratio as nietrfor avail-
ability, and at average inter- and intra-operator delaysetsics for
performance. For clarity purposes we do not include Latevtogn
evaluating availability, as it is equivalent to Random. Eanty, we
do not include Optimal when evaluating performance, asiteri
operator delay is 0, while its intra-operator delay is eglgnt to
Random.

We experiment with different network sizes, percentagésaitafd
nodes, application component graph sizes, and replicdégrees,
to determine the sensitivity of our results to all of theseapze-
ters. When kept constant, the values of the above paramaters
20 nodes, 3 of them failing, 9 components in the applicatimm-c
ponent graph (as in Figure 1), and 2 replicas of each componen
We artificially control node failures, while ensuring thaine of
the PlanetLab machines actually failed during our expentsiéNVe
chose a default failure percentage of 15% of the nodes, lmasedr
analysis of actual ping traces between all pairs of Plarieticales,
obtained from http://pdos.csail.mit.edu/ strib/pl_ApBy parsing
these traces and considering that a node has failed whenéser
not reachable by any other node, we found 15% to be a repeesent
tive failure percentage. We experiment with fail-stopdedls; once

Effect of Replication Degree on Availability

Effect of Application Component Graph Size on Availability

' Random ‘ ‘
Synergy ——
12 | Optimal b
Partition ---l--
>
% S —— ..:_...........-.-.......-......
Kl
©
T 4
>
<
c R
S 4
T :
S
Q. L .
< 7
O.ZT 1
0 L L L L L
1 15 2 25 3 3.5 4
Replication Degree
Figure 6: Replication degree sensitivity.
Effect of Scale on Availability
1.4 T T
Random
Synergy —+—
12 | Optimal b
Partition - -
2
3
S
T
>
<
c
k=)
T
S
g
2 04 B
0.2 | 1
0 L L L
10 15 20 25 30

Number of Nodes

Figure8: Scalability.

a node has failed we regard all the components hosted bydiglan
the applications using these components, as permaneitdg.fa

We chose a default application component graph size of 9, cap
turing the graph size of the implementation of the networknimo
toring application from the Stream Query Repository we sttbin
Figure 1.

6.1 Application Availability

We first present the experimental results for the applioaiail-
ability achieved by the different placement protocols. Weasure
availability by the percentage of successful requestsdorposite
applications.

Effect of component replication degree. When increasing
the replication degree of components, application aviitalin-
creases. However, an intelligent replica placement cameeeh
higher availability with a lower replication degree. Thésshown
in Figure 6. Synergy achieves availability close to optireatn
with a replication degree of 2, by paying attention to thatieé
placement of replicas. In contrast, Random and Partitigaire
one more replica to achieve comparable availability.

Effect of application component graph size. To determine
the effect of the component graph size on application avitiilg
we experimented with artificial graphs of various sizes, lasns
in Figure 7. In general, as the sizeof the application component
graph increases, application availability decreasess iBHhecause

more nodes need to be employed for hosting all the component

replicas (since no replicas of the same component can bechbgt
the same node), while all of the components need to be alaftatb
the application to be available. However, as Figure 7 sh@ys;

' Random ‘
Synergy ——
12 | Optimal b
Partition -
8
'g oM]
P s W n
= 0.6 | E
S
g
2 04 | 1
0.2 | 1
0 L L L L L
6 8 10 12 14
Application Component Graph Size
Figure7: Component graph size sensitivity.
Effect of Failure Percentage on Availability
1.4 T T
Random
Synergy —+—
12 | Optimal b
Partition -
I
g 0.8 | . 9
< Tl
2 o6 e T a
g o
g
2 04
0.2 | 1
0 L L L
5 10 15 20 25

Percentage of Failed Nodes

Figure9: Failure percentage sensitivity.

ergy’s replica placement protocol manages to maintain higfil-
ability even in larger application component graphs. Thesoa
lies in that Synergy reuses nodes to collocate componetfitasp
Hence, the number of nodes used for placement does notliinear
increase as the number of components increases.

Effect of scale. Figure 8 shows that the availability benefits of
Synergy hold regardless of the size of the network. This cabse
Synergy collocates replicas on nodes that have already uwesh
for placement as much as possible. Therefore it is not &ffeby
the available placement options that more nodes preser#t.isTim
contrast to Random and Partition, which are blind to whictlazo
have already been used for placement for a particular agijalic
and have a higher probability of spreading components ag mor
nodes are available.

Effect of failure percentage. When the percentage of failed
nodes increases, inevitably availability drops. Howewer,Fig-

ure 9 shows, Synergy manages to postpone this phenomenon as

much as possible, by using the minimum feasible number oésod
thus minimizing the probability that any of the componenstso
will fail. Using the minimum feasible number of nodes canyonl
be achieved when placing components specifically catedrant
application request. This is why Partition does not achizwa-
parable availability, since it statically places compdsén nodes,
regardless of any particular application requests.

6.2 Component Replica Failure Ratio

An intelligent replica placement achieves high applicatwail-
ability even when the ratio of failed replicas to the numbketotal
replicas, which we call replica failure ratio, is high. Thssbe-

Effect of Scale on Failures

Random
Synergy ——
Optimal

0.8 |___Partition ---Jlf-- b

0.6 | 1

04 1

Ratio of Failed Component Replicas

Number of Nodes

Figure 10: Failureratiowith scale.

Effect of Scale on Inter-Operator Delay

90 ‘ ‘
Random
80 || Synergy —— 7
Latency ~
% 70 [L_Partition .- 7
z 6or | 7
8 50 o !
§n'
& T |
g O
Q 30} 7
g
£ 2l | 7
10 | 7
0 ‘ | |
10 = " . |

Number of Nodes

Figure 12: Scalability of inter-operator delay.

cause just one replica of each component needs to be aeaifad
example, Optimal can achieve availability 1 even if all et
one have failed, in which case the replica failure ratio iximam
({&=2). To explore this we measure the replica failure ratio and
compare it to the application availability achieved by tliféedent
placement protocols. We present results from varying boemet-
work size and the percentage of failed nodes.

Effect of scale. Figure 10 shows that the higher availabil-
ity Synergy achieves over its competitors does in fact stem f
a smaller number of replica failures. This is because Syrferg
replica placement protocol tries to minimize the humber adas
used. Optimal’s placement protocol is even more intelligsimce
it can achieve availability equivalent to or higher than &gy,
even though its replica failure ratio is higher.

Effect of failure percentage. The conclusions that can be
drown from the effect of the percentage of failed nodes taepéca
failure ratio, as shown in Figure 11, are similar to the onethe
effect of network scale from Figure 10. Moreover, we see FHzat
tition is more appropriate as a placement strategy for idiged
stream processing applications than Random, since th&lai
ity it achieves is higher, even though their replica failtagos are
similar.

6.3 Average Delay

We now discuss average delays attained, as they represeat-a m
sure of the performance of an instantiated application.

Effect of scale on inter-operator delay. Figure 12 summa-
rizes the performance attained by a distributed streamegsicg
application, as it is determined by the communication délay

Effect of Failure Percentage on Failures

Random
Synergy ——
Optimal

0.8 |__Partition ---Jlf-- b

0.6 | 1

04 1

Ratio of Failed Component Replicas

5 10 15 20 25
Percentage of Failed Nodes

Figure 11: Failureratio and percentage.

Effect of Scale on Intra-Operator Delay

90 T T
Random
80 | ?_yr‘lergy —— 4
atency
E 70 L Partition M- | eI []
z R
5 60 |) . 4
)
8 50 i
S 40| T i
g .
Q 30 i
g
g 20 =t @ 4
10 i
0 L 1
10 15 20 25 30

Number of Nodes

Figure 13: Scalability of intra-operator delay.

[Number of Nodes | Latency Information Gathering Time (ms) |

10 1827
20 2100
30 5539

Table 2: Latency information gathering.

tween primary component replicas. Synergy’s placemertopob
focuses on maximizing the availability of an applicatiord amly
takes performance into account when comparing placemeit de
sions that are equivalent in terms of availability. Yet, &gufFe 12
shows, the performance of the applications placed with Syfe
protocol is comparable to those placed by Latency, whick oagy
performance as a placement criterion. As expected, Randaoim a
Partition perform much worse, since they do not considerrsam
nication delays in their placement decisions.

Effect of scale on intra-operator delay. The cost of keeping
the backup replicas up to date with their primary countesper
summarized in Figure 13. Again, Synergy manages to redwe th
latency of these data transfers, while not sacrificing atadity.
Since Latency can choose the closest nodes for placemenmtgamo
all nodes, regardless of which have been used for placerodat,s
it can decrease intra-operator delay further. However eaalready
discussed this leads to low availability.

Effect of scale on gathering latency information. Table 2 lists
the average absolute time a node needs to gather lateneynafo
tion for virtual links to remote nodes in the overlay. Thiseafs
how fast Synergy’s placement protocol can reach a decisfa.
we see, the required time remains in the order of a few seconds

The fact that we try to minimize the number of nodes to use for from static distributed applications, in that replicas coumicate
replica placement to maximize availability also limits tiember with each other. This includes communication both betweagn p
of latency measurements we need to gather. maries as well as between primaries and backups. This commun

7. RELATED WORK

Existing research in the area of high availability for dimsited
stream processing systems [5,10,15,16,32] has focusdticard
replica state maintenance to mask component failures. iS@#
tent, recovery mechanisms [15], failure masking [32], stesicy
trade-offs [5], and checkpoint scheduling [10, 16] havenber-

plored. In this work we focus on replica placement to maxamiz

application availability. Therefore, technigques like thigove are
complementary to ours and can be integrated in our system.

Placement of components or operators has been investigmated

maximize the performance of distributed stream processirsy
tems [3, 23]. In order to limit the number of nodes to be exadin
for placement, previous approaches employ heuristicctratider
only a subset of all nodes [3], or employ a latency space [28].

cation affects application performance and thereforekisrtanto
account by our placement protocol.

8. CONCLUSION

In this paper we have studied the problem of component @plic

placement to achieve high availability in distributed atrepro-
cessing applications. We have identified design princifdieseplica
placement that take into account the particular charatiesi of
these applications. We have incorporated these principlaslis-
tributed replica placement protocol, that aims to maxinaxzail-

ability, while respecting resource constraints, and n@ggierformance-

aware placement decisions. Our protocol is decentraled&glying
nodes to proceed concurrently with their placement detssiand
requiring only local knowledge. We have integrated our iogpl
placement protocol in our distributed stream processinddia

our case, the number of nodes to be examined for placement iSware. Our experimental comparison over PlanetLab with the ¢

limited by the fact that we want to collocate components ashmu

as possible to maximize availability. As was already disedsin
section 4.1, a performance-oriented placement resultartdom
relative replica placement with low availability.

Replica placement has been studied extensively in dis&ibu
systems, both with availability and with performance in chiklow-
ever, the focus of research in distributed storage [2, 807 dis-
tributed databases [13, 22, 24, 34], distributed objectesys [11,
12,14,18, 21,25, 36], and web services [6, 20] is on the alviity
of individual objects.

Similar to distributed stream processing systems, apjica
built on object-, component-, or service-based architestusuch

as CORBA [11, 12, 14, 21] or Enterprise JavaBeans [36], or on

multi-tier architectures [13, 22] are composite. Whileg@gh in
fault tolerance for such applications addresses timedia@s! cor-
rectness in the presence of failures, it does not focus omethe
tive placement of objects. This is because usually an agijic

server can host all the primary object replicas of such ardi-app

cation (similarly to our Optimal placement algorithm). Dioethe
high processing volume and rate required by distributehstrpro-
cessing applications, as well as the amount of data thatdimaue
to be transferred to an individual host, this approach isismot
feasible in a distributed stream processing system. Oweplant
mechanisms however can be applied to distributed objetersygs
if the primary replicas of the objects of a composite appiicaare
distributed.

Similar to distributed stream processing applications,appli-
cations considered in [18] have both fault tolerance aneéltimess
requirements. To address these needs, a two-tier replicatchi-
tecture is constructed, depending on the consistencyregants
of the replicas. Replica selection algorithms are then @seg to
satisfy the applications’ timing requirements. This wdigrds that
can tolerate weaker consistency can take advantage of $astéce
time. Unlike distributed stream processing applicatioosdver,
the applications described in [18] follow a single-objeataxigm,
where a client request involves one object, instead of pislti

The only study of the availability of multi-object operai®in
distributed systems we are aware of is [39] (with the thecmbt
analysis provided in [38]), which compares the availapaithieved
by several DHTs with regards to the strictness of an apjdicat
We are able to achieve higher availability than the protdbat
is identified as best for strict operations in [39], by pemiorg
an ad-hoc placement of the replicas, once an applicationestq
arrives. Distributed stream processing applicationsh&rrdiffer

rent state of the art corroborated our claims that our teples
maximize availability, while sustaining good performance

This is the first work we are aware of to discuss component

replica placement for high availability in distributedesdim pro-
cessing systems. Our future work includes incorporatinguo
middleware current research on fault tolerant distribuitrdam
processing systems, such as checkpointing techniqueoifiss
tency maintenance and failover techniques for failure nmaskn-
other area of future work includes the integration of ourioap
placement protocol with performance-oriented placemeatbgols,
which includes maximizing the availability of already deygd ap-
plication component graphs.

9. REFERENCES

[1] D. Abadi et al. The design of the Borealis stream processi
engine. InProceedings of 2nd Biennial Conference on
Innovative Data Systems Research, CIDR, Asilomar, CA,
USA, January 2005.

[2] A. Adya et al. FARSITE: Federated, available, and rdiéab
storage for an incompletely trusted environment. In
Proceedings of 5th Symposium on Operating Systems Design
and Implementation, OSDI, Boston, December 2002.

[3] Y. Ahmad and U. Cetintemel. Network-aware query
processing for stream-based application?roceedings of
30th International Conference on Very Large Data Bases,
VLDB, Toronto, Canada, August 2004.

[4] A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, and
C. Porth. BAR fault tolerance for cooperative services. In
Proceedings of 20th Symposium on Operating Systems
Principles, SOSP, Brighton, UK, October 2005.

[5] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis distebut
stream processing system.Rnoceedings of ACM SGMOD,
Baltimore, MD, USA, June 2005.

[6] A.Bartoli, R. Jimenez-Peris, B. Kemme, C. Pautasso,

S. Patarin, S. Wheater, and S. Woodman. The ADAPT
framework for adaptable and composable web services.
|EEE Distributed Systems On Line, September 2005.

[7] A. Bavier et al. Operating systems support for
planetary-scale network services.Rroceedings of 1st
Symposium on Networked Systems Design and
Implementation, NSDI, San Francisco, USA, March 2004.

[8] K. Birman. The process group approach to reliable
distributed computingCommunications of the ACM,
36(12):37-53, December 1993.

[9] N. Budhliraja, K. Marzullo, F. B. Schneider, and S. Toueg.
Primary-Backup protocols: Lower bounds and optimal
implementations. li€Cornell University Technical Report
TR-92-1265, January 1992.

[10] z. Cai, V. Kumar, B. Cooper, G. Eisenhauer, K. Schwaml an

R. Strom. Utility-driven proactive management of

availability in enterprise-scale information flows. In

Proceedings of 7th Middleware, Melbourne, November 2006.

P. Felber, B. Garbinato, and R. Guerraoui. The design of

CORBA group communication service. Broceedings of

15th Symposium on Reliable Distributed Systems, SRDS

Ontario, Canada, October 1996.

P. Felber and P. Narasimhan. Experiences, approacides a

challenges in building fault-tolerant CORBA systent=EE

Transactions on Computers, 54(5):497-511, May 2004.

[13] S. Frglund and R. Guerraoui. e-Transactions: Endatb-e
reliability for three-tier architecture$EEE Transactions on
Software Engineering, 28(4):378-395, April 2002.

[14] A. Gokhale, B. Natarajan, D. C. Schmidt, and J. Cross.
Towards real-time fault-tolerant CORBA middleware.
Cluster Computing, 7(4):331-346, October 2004.

[15] J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,

M. Stonebraker, and S. Zdonik. High-availability algonith
for distributed stream processing. Pnoceedings of 21st
International Conference on Data Engineering, ICDE,
Tokyo, Japan, April 2005.

[16] J. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik. A
cooperative, self-configuring high-availability solutifor
stream processing. Proceedings of 23rd International
Conference on Data Engineering, |CDE, Istanbul, Turkey,
April 2007.

[17] A. Kermarrec and C. Morin. Smooth and efficient integmat
of high-availability in a parallel single level store systeln
Proceedings of Euro-Par, August 2001.

[18] S. Krishnamurthy, W. Sanders, and M. Cukier. An adaptiv

quality of service aware middleware for replicated sersice

|EEE Transactions on Parallel and Distributed Systems,

14(11):1112-1125, November 2003.

P. Melliar-Smith and L. Moser. Surviving network

partitioning.|EEE Computer, 31(3):62—68, March 1998.

M. G. Merideth, A. lyengar, T. A. Mikalsen, S. Tai,

I. Rouvellou, and P. Narasimhan. Thema:

Byzantine-fault-tolerant middleware for web-service

applications. IrProceedings of 24th Symposium on Reliable

Distributed Systems, SRDS, Orlando, FL, October 2005.

[21] Object Management Group. Fault tolerant CORBMG
Technical Committee Document formal /02-06-59, Chapter
23, CORBAJIIOP 3.0.3, 2004.

[22] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and
G. Alonso. Consistent database replication at the middiewa
level. ACM Transactions on Computers, 23(4):1-49, 2005.

[23] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator
placement for stream-processing systemsrimceedings of
22nd International Conference on Data Engineering, |CDE,
Atlanta, GA, USA, April 2006.

[24] C. Plattner, G. Alonso, and M. T. Ozsu. DBFarm: A scadabl
cluster for multiple databases. Rroceedings of 7th

[11]

[12]

[19]

[20]

Middleware, Melbourne, Australia, November 2006.

[25] Y. Ren, D. Bakken, T. Courtney, M. Cukier, D. Karr,

P. Rubel, C. Sabnis, W. Sanders, R. Schantz, and M. Seri.
AQUA: An adaptive architecture that provides dependable
distributed objectd EEE Transactions on Computers,
52(1):31-50, January 2003.

[26] T. Repantis, X. Gu, and V. Kalogeraki. Synergy:
Sharing-aware component composition for distributechstre
processing systems. Proceedings of 7th Middleware,
Melbourne, Australia, November 2006.

[27] T. Repantis and V. Kalogeraki. Alleviating hot-spats i
peer-to-peer stream processing environmentBraceedings
of 5th International Workshop on Databases, Information
Systems and Peer-to-Peer Computing, DBISP2P, Vienna,
Austria, September 2007.

[28] T. Repantis and V. Kalogeraki. Hot-spot prediction and
alleviation in distributed stream processing applicatidn
Proceedings of 38th International Conference on
Dependable Systems and Networks, DSN, Anchorage, AK,
USA, June 2008.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, distet

object location and routing for large-scale peer-to-peer

systems. IrProceedings of 1st Middleware, Heidelberg,

Germany, November 2001.

F. Schintke and A. Reinefeld. Modeling replica availigpin

large data gridsGrid Computing, 1(2):219-227, June 2003.

[31] F. Schneider. Implementing fault-tolerant servicemg the
state machine approach: A tutoriAlCM Computing
rveys, 22(4):299-319, December 1990.

[32] M. Shah, J. Hellerstein, and E. Brewer. Highly avai&gbl
fault-tolerant, parallel dataflows. FProceedings of ACM
S GMOD, Paris, France, June 2004.

[33] K.C.W. So and E. G. Sirer. Latency and

bandwidth-minimizing failure detectors. RProceedings of

2nd EuroSys Conference, Lisboa, Portugal, March 2007.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and

G. Alonso. Understanding replication in databases and

distributed systems. IRroceedings of 20th IEEE

International Conference on Distributed Computing Systems,

ICDCS Taipei, Taiwan, April 2000.

B. Wong, A. Slivkins, and E. Sirer. Meridian: A lightwgit

network location service without virtual coordinates. In

Proceedings of ACM SGCOMM, Philadelphia, PA, USA,

August 2005.

H. Wu and B. Kemme. Fault-tolerance for stateful

application servers in the presence of advanced trangactio

patterns. IrProceedings of 24th Symposium on Reliable

Distributed Systems, SRDS, Orlando, FL, October 2005.

K.-L. Wu et al. Challenges and experience in prototgpan

multi-modal stream analytic and monitoring application on

system s. IrProceedings of 33rd International Conference

on Very Large Data Bases, VLDB, Vienna, September 2007.

H. Yu and P. Gibbons. Optimal inter-object correlatishen

replicating for availability. InProceedings of 26th

Symposium on Principles of Distributed Computing, PODC,

Portland, OR, USA, August 2007.

H. Yu, P. Gibbons, and S. Nath. Availability of multi-jelot

operations. IrProceedings of 3rd Symposium on Networ ked

Systems Design and Implementation, NSDI, San Jose, CA,

USA, May 2006.

[30]

[34]

[35]

[36]

[37]

[38]

[39]

