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ABSTRACT
A significant number of emerging on-line data analysis applications
require the processing of data streams, large amounts of data that
get updated continuously, to generate outputs of interest or to iden-
tify meaningful events. Example domains include network traf-
fic management, stock price monitoring, customized e-commerce
websites, and analysis of sensor data. In this paper we look at the
problem of high availability in such a distributed stream process-
ing system. By taking into account the particular characteristics of
stream processing applications we first identify design principles
for a replica placement algorithm for high availability. Weincor-
porate these principles in a decentralized replica placement proto-
col that aims to maximize availability, while respecting resource
constraints, and making performance-aware placement decisions.
We have integrated our replica placement protocol in Synergy, our
distributed stream processing middleware. Our experimental com-
parison over PlanetLab with the current state of the art corroborates
our claims that our techniques maximize availability whilesustain-
ing good performance.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms, Design, Experimentation, Reliability

Keywords
Distributed Stream Processing, High Availability, Replica Place-
ment

1. INTRODUCTION
Over the past few years there is an increasing number of event-

based systems that deal with large volume and high rate data feeds.
In such systems data streams are processed in or near real-time for
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a variety of purposes, such as monitoring or on-line decision mak-
ing. Application domains include network traffic management, fi-
nancial trades surveillance, customized e-commerce applications,
and analysis of sensor data.

To facilitate the performance and scalability requirements of these
applications, a number of distributed stream processing systems
have been proposed (e.g., [1, 3, 23, 26, 37]). These have beende-
signed to provide low-latency and high-throughput processing of
data streams and to adapt to rapid changes in load and resource
needs. Another important requirement is the availability of these
systems, which is crucial for their correct and continuous opera-
tion. To provide high availability, replication of the stream process-
ing components is required. The basic idea behind high availabil-
ity is that by replicating components and distributing themacross
different nodes, the failure of a replica will not interruptthe exe-
cution of the applications, since other replicas can continue to pro-
vide the service. While previous research has shown how compo-
nent placement affects the performance of distributed stream pro-
cessing applications [3, 23], in this paper we demonstrate how it
also affects application availability. We focus on the placement of
replicated components to maximize application availability, com-
plementing existing research in the area of high availability for dis-
tributed stream processing systems. Existing work in this area has
focused on tolerating failures during application execution despite
the continuous arrival of data and on fast recovery despite the sig-
nificant state maintenance overhead. In this context recovery mech-
anisms [15], failure masking [32], consistency trade-offs[5], and
scheduling of checkpoints [10,16] have been investigated.

We use a simple stream processing application example from the
Stream Query Repository1 to illustrate the availability requirements
of distributed stream processing applications. In our stream pro-
cessing application example we assume a packet capturing device
installed in a network, used by a system administrator that wishes
to monitor the source-destination pairs in the top 5 percentile in
terms of total traffic in the past 20 minutes over a backbone link.
Figure 1 shows the components that are involved in processing the
packet input over 20-minute windows, to generate the monitoring
output.

Despite its simplicity this example illustrates several key charac-
teristics of distributed stream processing applications,which deter-
mine the intricacies in their availability requirements: i) First of all,
a distributed stream processing application is composed ofseveral
components, as shown in the directed acyclic graph of the example
of Figure 1. We call such applicationscomposite. ii) More impor-
tantly, a distributed stream processing application such as the one
of Figure 1 cannot tolerate availability of a subset of the compo-

1http://www-db.stanford.edu/stream/sqr/netmon.html



Figure 1: Stream processing application example.

nents. Even if incomplete results can be produced in the absence
of certain components, correct execution requires all of them to be
available. Therefore, we call such applicationsstrict. iii) More-
over, each component may be shared by multiple applicationscon-
currently. For example, the aggregator of Figure 1 may be part
of more than one monitoring applications. A failure in a shared
component has to be masked from all the applications that arecur-
rently using it. iv) Furthermore, streaming data typicallyarrive in
large volumes and at high rates, like the traffic in a busy network
for the example of Figure 1. Failure recovery has to be fast, for
the execution to be able to continue with minimal loss. Yet, state
maintenance between replicas requires a non-trivial amount of data
transfer. v) Finally, even though this is not demonstrated with this
simple example, a distributed stream processing application may
consist of large numbers of components, distributed over wide-area
networks.

Replication for high availability and fault tolerance has been
studied from different perspectives in a variety of domains, includ-
ing distributed databases [13, 22, 24, 34], distributed object sys-
tems [11, 12, 14, 18, 21, 25, 36], and web services [6, 20]. While
many aspects of replication have been studied extensively,and so-
lutions such as active [31] and passive [9] replication are widely
accepted, in this work we focus on replicaplacement for maximiz-
ing the availability of distributed stream processing applications.
Our placement mechanisms cater to the composite and strict na-
ture of these applications. Ensuring the availability of a composite
application differs from guaranteeing the availability ofindividual
objects, such as files in distributed storage systems [2,4,17,30], or
databases [13, 22, 24, 34]. Furthermore, the scale of distributed
stream processing applications, both in terms of data volume and
rate, as well as in terms of numbers of components, affects sig-
nificantly the placement decisions. For example, not all primary
replicas can be hosted by the same server, as might be the case
with object-, component-, or service-based architectures, such as
CORBA [11, 12, 14, 21], Enterprise JavaBeans [36], or multi-tier
architectures [13,22]. Our placement mechanisms however can be
applied to such systems, if their scale requires the primaryreplicas
of a composite application’s components to be distributed and sig-
nificant amounts of data transferred between them make the relative
placement of components important.

This paper addresses the problem of component replica place-
ment to maximize the availability of distributed stream processing
applications, by making the following contributions:

• We reason and illustrate how the fact that distributed stream
processing applications are composite and strict affects the
availability of different component replica placements. We
then show how the practical constraints in replica placement
that arise from the limited processing and network resources
available in the system determine the number of nodes to be
used for replica placement. Finally, among placements that
are equivalent in terms of availability we show how to se-
lect the one that improves application performance. While

component placement to maximize the performance of dis-
tributed stream processing applications has been investigated
before [3,23], to the best of our knowledge this is the first pa-
per to discuss component replica placement to maximize the
availability of such applications.

• We propose a practical and fully distributed component replica
placement protocol to implement our design principles. Our
protocol collocates components to maximize application avail-
ability, respects the processing power and bandwidth avail-
ability, and minimizes the communication latency to maxi-
mize application performance.

• We incorporate our replica placement protocol for high avail-
ability in Synergy [26], our distributed stream processing
middleware. We evaluate the performance of our prototype
on the PlanetLab [7] wide-area network testbed. To assess
the availability gains of our protocol, we compare it to the
current state of the art for replica placement for high avail-
ability of multi-object operations in general distributedsys-
tems [39]. Additionally, we compare our protocol to an opti-
mal and to a random replica placement. Finally, we compare
the application performance we achieve to the performance
attained by a placement protocol that focuses only on appli-
cation performance, such as the existing placement protocols
for distributed stream processing systems [3,23]. Our results
show that our protocol achieves availability close to optimal,
outperforming its competitors, while sustaining performance
close to that of a performance-oriented placement.

2. MIDDLEWARE OVERVIEW
We have implemented our replica placement protocol in the Syn-

ergy distributed stream processing middleware [26]. We begin by
presenting an overview of the middleware. Figure 2 shows thear-
chitecture of Synergy, built on a peer-to-peer overlay. Themiddle-
ware’s goal is to support the execution of distributed stream pro-
cessing applications with QoS constraints, while efficiently man-
aging the system’s resources.

As illustrated in Figure 2, each node of the middleware consists
of the following main modules: i) Adiscovery module that is re-
sponsible for locating existing data streams and components. Syn-
ergy leverages the structure of the underlying overlay network for
registering and discovering available components and streams in
a decentralized manner. In our current prototype we implement a
keyword-based discovery service, on top of the Pastry distributed
hash table (DHT) [29]. This allows us to register and discover com-
ponents by hashing keywords instead of the component IDs them-
selves, and thus decouple component placement from their discov-
ery. ii) A routing module that routes protocol messages and data
streams between nodes. iii) Amonitoring module that is respon-
sible for maintaining resource utilization information for the node
and the virtual links connected to it. In the current implementation,
the monitoring module keeps track of the CPU load, the network



Figure 2: Middleware architecture.

bandwidth, and latencies to other nodes. iv) Ascheduling module
that implements various algorithms to schedule the execution of
the stream processing applications running on a node. v) Acompo-
sition module that composes stream processing applications from
already deployed components. The middleware adopts a fullyde-
centralized architecture, where any node can compose a distributed
stream processing application [26]. vi) Aload balancing module
that proactively alleviates hot-spots relying on decentralized migra-
tion decisions [27,28]. vii) Anapplication module that implements
the logic of the various stream processing applications themid-
dleware can offer. We have currently implemented network traffic
monitoring and stream encryption. viii) Auser interface module
to control and monitor the execution of the middleware and ofthe
applications. ix) Finally, we have extended Synergy with areplica
placement module, that we describe in this paper, that determines
on which nodes to place the component replicas of a composite
application to maximize application availability.

3. SYSTEM MODEL
We now define our system model. Table 1 summarizes our nota-

tion. Each nodevi is characterized by its current processor loadpvi

and its residual processing capacityrpvi
, which are inferred from

the CPU idle time as measured from the/proc interface. The
residual available bandwidthrbej

on a virtual linkej betweenvi

and a remote node is calculated using a bandwidth measuring tool
(e.g., Iperf). We also usebej

to denote the amount of current band-
width consumed onej . Finally, the communication latency of a
virtual link ej betweenvi and a remote node is measured using di-
rect pings, even though more elaborate latency calculationmethods
can be integrated [35].

A data streamsj consists of a sequence of continuous data tu-
ples. A stream processing componentci is defined as a self-contained
processing element that implements an atomic stream processing
operatoroi on a set of input streams

P

isi and produces a set of
output streams

P

osi. Stream processing components can have
more than one inputs (e.g., a join operator) and outputs (e.g., a split
operator). Each atomic operator can be provided by multiplecom-
ponent instancesc1, . . . , ck, which we callcomponent replicas.

A stream processing request (query) is described by aquery plan,
denoted byξ. The query plan is represented by a directed acyclic
graph (DAG) specifying the required operatorsoi and the streams
sj among them. Figure 1 shows an example of a query plan. The
CPU processing time requirements of the operatorspoi

,∀oi ∈ ξ

and the bandwidth requirements of the streamsbsj
,∀sj ∈ ξ are

also included inξ. Bandwidth requirements are calculated accord-
ing to the user-requested stream rate, while processing time re-
quirements are calculated according to the data rate and resource
profiling results for the operators [26]. Processing and bandwidth
requirements can represent average or worst-case load, depending
on the robustness required from the application instantiation.

The query plan is dynamically instantiated into anapplication
component graph, denoted byλ, depending on the particular com-
ponents that are being used by the application. The verticesof an
application component graph represent the components being in-
voked at a set of nodes to accomplish the application execution,
while the edges represent virtual network links between thecom-
ponents, each one of which may span multiple physical network
links. An edge connects two componentsci andck if the output of
componentci is the input for componentck.

We assume a primary/backup, passive replication scheme [9,12].
Each component has a primary and a number of backup replicas.
The primary component replicas are the vertices of the application
component graph. With each streamsj flowing between primary
componentsci andck we associate a required bandwidthbsj

, and
with the corresponding virtual network linkej we associate a la-
tency lej

. For each of the primary component replicas there exist
one or morebackup component replicas. The backup component
replicas are passive replicas in the sense that they do not process
data streams, but they asynchronously replicate the outputof the
primary replicas to be able to take over in case their primarycoun-
terparts fail. This enables faster recovery compared to instantiating
components after a failure occurs. State transfer between the pri-
mary and backup replicas is not the focus of this paper and existing
solutions for consistency, checkpointing, failure masking, and re-
covery for distributed stream processing systems [5,15,32], as well
as solutions based on view-synchronous communication [8],can
be integrated in our architecture. Letbix be the bandwidth needed
to do a state transfer of a primary componentci to its xth backup
replica and letlix be the communication latency of the correspond-
ing virtual network link between the two replicas. Since in our
implementation the state transferred from a primary replica to its
backup replicas is the primary’s output, essentiallybix = bsj

for all
of a component’s backup replicas. The primary and backup com-
ponent replicas are the vertices of a disconnected, directed graph,
called thereplication component graph, denoted byρ. The edges
of this graph represent the replication of the output of the primary
component replicas to their backup counterparts.

Component replicas are hosted by different nodes (machines) in
the system. We call the number of replicas of a component the
component’sreplication degree ̺. ̺ is defined in an application
request. We denote withn the number of primary component repli-
cas needed by a composite distributed stream processing applica-
tion, which corresponds to the number of vertices in the application
component graph. We denote withk the number of component
replicas belonging to a particular application that are being hosted
by a single node. Essentially,k represents the number of compo-
nent replicas of an application that are collocated in a single node.

A node is available with probabilityα, or fails with probability
(1 − α), which we define as its failure probabilityφ. φ includes
both the failure probability of the node itself and of the network
links connecting it to other nodes. Not having any historical fail-
ure data, we assume that all nodes fail with the same probability φ.
We only consider independent, fail-stop failures, and oncea node
has failed we regard all the components hosted by it, and all the
applications using these components, as permanently failed. We
assume a reliable communication protocol such as TCP, and that
network partitions are handled by redundancy in the routingtables



Notation Meaning Notation Meaning

ξ Query Plan λ Application Component Graph
ρ Replication Component Graph ̺ Replication Degree
n Number of Components in Application k Number of Components on a Node
A Availability of Application F Failure Probability of Application
ai Availability of Component fi Failure Probability of Component
α Availability of Node φ Failure Probability of Node
vi Node ej Virtual Network Link
oi Operator sj Stream
ci Component lej

Latency of Virtual Linkej

poi
Processing Time Required for Operatoroi bsj

Bandwidth Required for Streamsj

pvi
Processor Load on Nodevi bej

Network Load on Virtual Linkej

rpvi
Residual Processing Capacity on Nodevi rbej

Residual Network Bandwidth on Virtual Linkej

Table 1: Notations.

of the DHT substrate, or by some other mechanism that guaran-
tees eventual consistency [5, 19]. We define the availability ai of
a componentci, as the probability that at least one of its replicas
is available (executing correctly and reachable over the network).
The probability(1−ai) we define as unavailability or failure prob-
ability fi of a componentci.

When an application request arrives, our goal is to place compo-
nent replicas in a way that maximizes the availability of theappli-
cation to be instantiated. For placement decisions that areequiv-
alent in terms of availability we also seek to maximize the appli-
cation’s performance. We define the availabilityA of a composite
application as the probability that all its components are available
(executing correctly and reachable over the network). The proba-
bility (1 − A) we call unavailability or failure probabilityF of the
composite application. In other words, we seek to maximize the
percentage of successful requests for composite applications.

4. DESIGNING REPLICA PLACEMENT FOR
HIGH AVAILABILITY

We now describe the design principles of our high availability
placement algorithm, focusing on the three aspects introduced in
section 1, namely: i) Determining a placement of component repli-
cas that maximizes availability (section 4.1). ii) Determining the
number of nodes to use for placing the component replicas accord-
ing to the system’s resource availability (section 4.2). iii) Deter-
mining where to place the component replicas across nodes tomax-
imize application performance (section 4.3).

4.1 Maximizing Application Availability
We first look at the problem of determining a placement of com-

ponent replicas that maximizes the availability of a distributed stream
processing application. We look at the two important characteris-
tics of distributed stream processing applications, namely the fact
that they are composite and strict, to understand their availability
requirements that differentiate them from other distributed applica-
tions, and to guide our placement decisions. In many distributed
applications such as distributed storage [2,4,17,30] or client/server
computing [6, 12, 14, 18, 20, 25, 36] that focus on the availability
of individual objects, such as files or processes, an increase in the
number of replicas usually implies a similar increase in theavail-
ability of the application. While we expect that increasingthe num-
ber of component replicas will also increase the availability of a dis-
tributed stream processing application composed of them, we find
that this increase greatly depends on the relative placement of the
individual component replicas. Moreover, unlike applications that
can tolerate missing objects, such as ones based on majorityvoting
or erasure coding, a distributed stream processing application re-
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Figure 3: Availability decreases with larger application compo-
nent graphs and increases as components are concentrated in
fewer nodes.

quires all of its components for correct execution. In short, how the
individual component replicas are placed on nodes affects whether
all components will be available for the application execution.

To gain a better understanding of how component placement af-
fects application availability we conduct a simple simulation. We
place components with replication degree̺ = 2 on a subset of 30
nodes. We then calculate using recursion all possible combinations
of 5 failed nodes and determine the average application availabil-
ity from all failure combinations. We simulate applications with
n = 3, 5, 10 components. Figure 3 summarizes the results and
helps us reach the following conclusions: The relative placement
of the individual components affects the availability of the com-
posite application. More specifically, concentrating the component
replicas in a smaller than̺·n subset of nodes increases application
availability. The reason lies in the fact that the compositeappli-
cation is strict. Please note that spreading the componentsacross
more nodes would have the opposite effect for an applicationwhere
even a subset instead of all the components being available would
suffice. Finally, we observe that as the sizen of the application
component graph increases, application availability decreases. This
is because more nodes need to be employed for hosting all com-
ponent replicas (since no replicas of the same component canbe
hosted by the same node), while all of the components need to be
available for the application to be available. Similar conclusions
are drawn with larger replication degrees as well.

From the above discussion we reach the conclusion that collocat-
ing as many component replicas as possible in the smallest number
of nodes, in other words maximizing the numberk of components



hosted by a node, maximizes the availability of a distributed stream
processing application. The larger thek the larger the availability
A achieved. Thus, taking into account that replicas of the same
component should be placed on different nodes, an optimal replica
placement algorithm for a distributed stream processing applica-
tion would place all primary component replicas on a node, and
use another̺ − 1 nodes to place the backup component replicas,
placingn backup replicas on each node. In practice however such a
placement is infeasible due to the distributed nature of theapplica-
tions and also the resource constraints imposed by the nodes. Yet,
we show in the experimental evaluation in section 6 that the avail-
ability achieved by our replica placement algorithm, that takes into
account the system’s resource constraints, is comparable to that of
this optimal placement.

Existing research efforts on component placement for distributed
stream processing systems [3, 23] place components to nodeswith
performance optimization in mind and ignore how componentsare
placed relative to each other. This results to a random relative com-
ponent placement. However, [39], which is the only study of the
availability of multi-object operations in distributed systems we
are aware of, has shown that random placement offers the worst
availability for multi-object operations that cannot tolerate missing
objects. Furthermore, [39] has shown that for multi-objectoper-
ations that cannot tolerate missing objects the highest availability
is provided by increasing inter-object correlation. In ourwork
we maximize inter-object correlation by placing all replicas in the
smallest possible group of nodes, as long as the nodes’ resources
allow us to do so. We show in the experimental evaluation in sec-
tion 6 that placing components ad-hoc, per application request, al-
lows us to achieve higher availability than a placement algorithm
that partitions nodes to groups and statically pre-assignsreplicas to
these groups, which is the one that performs best for strict multi-
object operations in [39]. The fact that the application performance
also needs to be taken into account in placement decisions, as it
is affected by inter-component communication, further differenti-
ates our replica placement for distributed stream processing appli-
cations from replica placement for other distributed applications
such as those presented in [39] (e.g., storage).

4.2 Respecting Resource Availability
While our investigation so far suggests that application availabil-

ity would be maximized by placing alln components of an appli-
cation component graph on a node, we now discuss why such a
placement is infeasible in practice and identify the resource con-
straints that determine a number of replicas per nodek ≤ n. The
two resource constraints that affect component replica placement in
practice are processing capacity and network bandwidth. Tohost
a primary component replica, a node needs processing capacity to
process its input stream(s), downstream bandwidth to receive its in-
put stream(s), upstream bandwidth to transfer its output stream(s)
to the next primary component replicas in the application compo-
nent graph, and upstream bandwidth to transfer its output stream(s)
to its backup component replicas. To host a backup component
replica, a node needs downstream bandwidth to receive its input
stream(s).

As described in section 3, the monitoring module of a nodevi

collects information regarding its residual processing capacityrpvi

and the residual network bandwidthrbej
on each virtual linkej be-

tweenvi and another node. The bandwidth and the processing time
requirements of a component are included in the query planξ of
an application request. Bandwidth requirementsbsj

are calculated
according to the user-requested stream rate, while processing time
requirementspoi

are calculated according to the data rate and re-

source profiling results for the operators, as described in section 3.
Thus, to be able to host a primary component replicaci, node

vi needs: poi
≤ rpvi

, bsj
≤ rbej

,∀sj ∈
P

isi, and bsj
≤

rbej
,∀sj ∈

P

osi, for all virtual links ej connecting primary to
primary and primary to backup component replicas. To be able
to host a backup component replicaci, nodevi needs: bsj

≤
rbej

,∀sj ∈
P

osi, for the virtual linkej connecting the backup
replica to its primary counterpart. For example, in Figure 5, node
v21 can host primary replicac21 only if po2

≤ rpv21
, bs4

≤
rbe21_41 , andbs4

≤ rbe21_22 . Nodev12 can host backup replica
c12 only if bs2 + bs3 ≤ rbe11_12 .

Thus, we collocate replicas on nodes as much as their resources
permit it. Therefore, the nodes’ processing capacity and the vir-
tual links’ network bandwidth ultimately determine the minimum
number of nodes that can be used for placing replicas in practice.

4.3 Maximizing Application Performance
While application availability is only affected by the number of

nodes that are used for placing component replicas, application per-
formance is also affected by the particular nodes used for place-
ment. Moreover, both availability and performance are affected
by the relative placement of the component replicas among nodes.
For placement decisions that are equivalent in terms of availability
we seek to maximize the application’s performance. To determine
which nodes to use for placing the component replicas and where
to place the component replicas across these nodes to maximize ap-
plication performance we look at the two types of communication
that affect it: i)Inter-operator communication: The primary com-
ponent replicas that participate in a distributed stream processing
application exchange data in the form of input and output streams.
ii) Intra-operator communication: The primary component repli-
cas asynchronously replicate their output streams to theirbackup
component replicas. In the application component graph example
of Figure 4 component replicasc11 andc12 offer operatoro1, c21

andc22 offer o2, c31 andc32 offer o3, andc41 andc42 offer o4.
Thus, as Figure 5 shows, inter-operator communication takes place
betweenc11, c21, c31, andc41, while intra-operator communication
takes place betweenc11 andc12, c21 andc22, c31 andc32, andc41

andc42.
To capture the two aforementioned types of communication we

define the two corresponding communication costs for the entire
application component graph: i) Theinter-operator communica-
tion cost is defined ascinter =

P

j∈1...n

sj · lej
and captures the cost

of transferring the streaming data through the primary replicas of
the application component graph, with bandwidth requirementssj

and link latencieslej
. ii) The intra-operator communication cost

cintra is defined ascintra =
P

i∈1...n

P

x∈1...̺

six · lix and captures

the cost of transferring the output of the primary replicas to their
backups, with bandwidth requirementssix and link latencieslix.

Thus, the component placement problem is defined as a con-
strained optimization problem, where the goal is to determine the
smallest group of nodes to host the̺ · n component replicas of an
application, that minimizes the total communication costcinter +
cintra, such that no replicas of the same component are hosted by
the same node, and the processing and bandwidth constraintsare
met.

Previous work on component placement to improve application
performance [3,23] has considered the simpler version of the prob-
lem without replicated components. In this case, the placement
problem is reduced to the placement of only the primary compo-
nent replicas, in other words the construction of the application
component graph. Even in this simpler case, finding an optimal



Figure 4: A simple distributed stream processing applica-
tion.

Figure 5: Replication in a simple distributed stream pro-
cessing application.

solution is an NP-complete problem [3].
Since an optimal solution is not available, we propose a greedy

one that: i) Places the primary component replicas so that the inter-
operator communication cost is minimized. ii) Places the backup
component replicas so that the intra-operator communication cost
is minimized. We use virtual link latencies to guide the place-
ment decisions of primary and backup component replicas, tomin-
imize the inter- and intra-operator communication costs respec-
tively. While the amount of datasj that needs to be transferred
in every case is defined by the application and cannot be affected
by the placement decisions, we take it into account in the place-
ment decisions by weighing link latencies withsj . The fact that we
try to minimize the number of nodes to use for component replica
placement, to maximize availability, limits the number of latency
measurements we need to perform and simplifies the replica place-
ment problem.

5. DISTRIBUTED PLACEMENT PROTOCOL
We now present our protocol for placing the component replicas

of a distributed stream processing application. Our primary goal
is to provide a scalable distributed protocol that determines replica
placement for high availability of the application. For placement
decisions that are equivalent in terms of availability, we seek to
maximize the application’s performance. Our protocol imple-
ments in a decentralized manner the three decisions regarding: i)
The collocation of components to maximize application availabil-
ity (section 4.1), ii) the number of nodes to use for placement so
that system resources are not exceeded (section 4.2), and iii) which
nodes to use so that the communication costs are minimized (sec-
tion 4.3). Component collocation is achieved by reusing nodes for
placement as much as possible. Resource overloads are avoided by
taking into account the nodes’ processing capacity and the virtual
links’ network bandwidth in the placement protocol. Finally, inter-
and intra-operator communication costs are minimized by taking
into account the virtual links’ latencies in the placement decisions.

The placement algorithm takes as input a user stream processing
request, described by a query planξ and the component’s repli-
cation degree̺ . The output of the placement algorithm is an ap-
plication component graphλ, specifying the primary component
replicas that accomplish the application execution, and the nodes
that are hosting them, as well as a replication component graph ρ,
specifying the backup component replicas that replicate the output
of the primaries, and the nodes that are hosting them.

Component replica placement decisions are carried out hop-by-

hop. To this end, we have implemented the following types of mes-
sages: Placement requests, placement replies, placement negotia-
tions, and placement decisions. We describe the contents ofthese
messages as we introduce their role in the placement protocol. We
now present the details of the placement protocol, which include
its three phases, namely the bootstrapping, the propagation, and
the completion, and focus on the six steps for primary and backup
placement, that are executed on every hop. A high level description
of the placement algorithm is shown in Algorithm 1.

Phase 1. Bootstrapping. The protocol execution begins with
the submission of a user request for a stream processing applica-
tion, described by a query planξ, and the replication degree̺of
the application’s components. A user request is submitted directly
to a nodevs, if the client is running the middleware, or redirected
to a nodevs that is closest to the client based on a predefined prox-
imity metric (e.g., geographical location).vs bootstraps the place-
ment protocol by sending the user request to the node(s) thathost
the inputs of the application, which we call thesource nodes. These
nodes are usually pinned where the data sources are, e.g., where a
packet capturing device is located in the network in the example of
Figure 1. The source nodes are discovered by querying the DHT.

Each source node receives the user request and begins the com-
ponent replica placement by deciding the placement of the primary
replicas of its downstream components in the application compo-
nent graph. For example, in Figure 5, where the application has
only one source node and this node has only one downstream com-
ponent, the source node decides the placement of replicac11.

Phase 2. Propagation. The node that becomes the host of a pri-
mary replica is responsible for continuing the placement protocol.
Becoming the host of a primary replica and consequently agree-
ing to continue the placement protocol is achieved by accepting a
placement request. A placement request is sent from a node
that makes a placement decision for the primary replica of the next
component in the application component graph to a node that is re-
quested to host this primary replica. A placement request includes
the query planξ, the application component graphλ to the extent
that it has been defined so far, the replication component graphρ to
the extent that it has been defined so far, the replication degree̺,
and an index to identify which operator of the query plan the place-
ment request refers to. In addition to hosting the requestedprimary
component replica, the node receiving a placement request is also
requested to find nodes to host this component’s backup replicas
and nodes to host the primary replicas of the downstream compo-
nents of this component. For example, in Figure 5, a placement re-
quest sent from the source node to the node that is requested to host



Algorithm 1 Placement algorithm.

Input: query planξ, replication degree̺, nodevs

Output: application component graphλ,
replication component graphρ

for each nodevi in path
perform transient resource allocation atvi

identify candidate nodes already used for placement
select candidate nodes meeting bandwidth requirements
sort candidate nodes by latency
for each primary replica of downstream component

send placement request or placement negotiation
receive placement reply
send placement decision

for each backup replica of current component
send placement decision

c11 makes the recipient responsible for finding nodes to hostc21,
c31, andc12. We now describe the six detailed steps of the place-
ment protocol that are executed on each hop for placing the primary
replica of each downstream component and the backup replicas of
the current component.

Step 1. Primary placement selection. A node decides upon the
placement of the primary replica of each of its downstream com-
ponents based on three criteria: First, nodes that have already been
used for placing previous replicas for this particular application are
preferred. These nodes are identified by the (partial so far)appli-
cation and replication component graphs that are included in the
placement request. Second, out of these previously used nodes, we
select the ones that have enough residual network bandwidthto ac-
commodate the bandwidth required by the output stream, i.e., the
nodes for whichbsj

≤ rbej
. The bandwidth measurements are col-

lected by the monitoring module, as was described in section2. The
bandwidth requirement of the output stream is calculated according
to the user-requested stream rate, and is included in the query plan
ξ of the placement request, as was described in section 3. Third,
the previously used nodes that can sustain the required bandwidth
are ordered from the closest to the most remote in terms of commu-
nication latencylej

. The latency measurements are again collected
by the monitoring module as was described in section 2. We call
these nodes theclosest used candidates. The reason we try to reuse
nodes is that, as we discussed in section 4.1, collocating component
replicas on nodes, as much as the nodes’ resources permit it,maxi-
mizes application availability. If there are not enough closest used
candidates to place all the required primary replicas, closest candi-
dates are used instead. To identify theclosest candidates, only the
last two of the above three criteria are taken into account, i.e., the
residual network bandwidth and the communication latency.

Step 2. Primary placement negotiation. The placement of
a primary replica of a downstream component is decided directly
by a node if this node hosts its only upstream component. In Fig-
ure 5 for example this is the case for the host ofc11, which can de-
cide the placement ofc21 directly. However, when the downstream
component has more than one upstream components, its placement
decision has to be cooperative, taking into account the placement
preferences of all the upstream components. The decision ismade
by the upper node in the application component graph, takinginto
account all involved nodes’ placement preferences. For example,
in Figure 5, the node hostingc41 can be decided by both the nodes
hostingc21 andc31. The upper node in the application component
graph is defined as the decision maker, which in this case is the
node hostingc21. Thus, the host ofc31 informs the host ofc21

of its placement preferences, before the host ofc21 can decide the

placement ofc41.
The nodes’ placement preferences are transferred usingplacement

negotiation messages. A placement negotiation is sent from a
node that determines that a primary replica of the next component
in the application component graph can be decided by more nodes
than itself, to the upper node in the graph that can make such ade-
cision. The placement negotiation message includesξ, λ, ρ, ̺, an
index to identify which operator of the query plan the placement ne-
gotiation refers to, and a list of nodes that the sender wouldwant the
component to be placed on, ordered by their latency to the sender.
This is the list of closest used candidates the node constructs, or
the list of closest candidates, if no used candidates exist.Once the
recipient receives placement negotiations from all upstream com-
ponents of a component that needs to be placed, it decides which
node should be asked to host the downstream component. It does
so by finding the first intersection of the candidate lists. The can-
didate lists are traversed from the list of the node with the highest
requested output bandwidth to that of the node with the lowest re-
quested output bandwidth. This way, the preferences are weighed
according to the requested output bandwidth. Once the candidate
for hosting the primary replica of the downstream componenthas
been identified, either directly or through the negotiationprocess, a
placement request is sent to it.

Step 3. Primary placement evaluation. A node receiving a
placement request for hosting a primary replica evaluates whether
it can accept it or not. To determine whether to accept or deny
a request a node checks whether: i) The profiled processing time
required for the operator of the primary replica to be instantiated
will not exceed the residual processing capacity of the node, i.e.,
poi

≤ rpvi
, and ii) The requested bandwidth for the output of this

primary replica will not exceed the residual network bandwidth on
the virtual links to the nodes that will be asked to host the down-
stream components of this primary replica, and to the nodes that
will be asked to host its backup replicas, i.e.,bsj

≤ rbej
for all

corresponding virtual linksej . For example, in Figure 5, a place-
ment request sent from the nodev11 hostingc11 to the nodev21

that is requested to hostc21 will be accepted only ifpo2
≤ rpv21

,
bs4

≤ rbe21_41 , andbs4
≤ rbe21_22 .

Both the bandwidth and the processing time requirements of a
new placement are included in the query planξ of the placement
request. Bandwidth requirementsbsj

are calculated according to
the user-requested stream rate, while processing time requirements
poi

are calculated according to the data rate and resource profiling
results for the operators (section 3). The residual processing capac-
ity rpvi

and the residual network bandwidthrbej
are collected by

the monitoring module of the node (section 2).
Once a placement request has been evaluated, the node sends a

placement reply to the node that sent the placement request.
The placement reply includes an identifier of the request it is reply-
ing to and whether the request is accepted or denied.

Step 4. Primary placement decision. The node making the
placement decision of a primary replica waits for the closest used
candidate’s placement reply. If the placement request is denied, the
next closest used candidate is contacted. If no closest usedcandi-
dates accept the placement, the closest candidates are contacted.

Once a placement request is accepted, aplacement
decision is sent to the node that accepted, to complete the place-
ment of the primary component replica. A placement decisionis
sent from a node that makes a placement decision for a component
replica to the node that is requested to host this replica. The place-
ment decision includes the identifier of the application thecompo-
nent replica will be a part of, a unique identifier of the component
replica within the application, the operator the componentreplica



will be offering, and the fact that the component will be a primary
replica. The receiver of a placement decision allocates resources
for the replica. This way, overallocations caused by concurrent pro-
tocol executions are avoided.

Step 5. Backup placement selection. Once a node has placed
all the primary replicas of its downstream components in theappli-
cation component graph, the backup replicas of the current com-
ponent are placed. For example, in Figure 5, the host ofc11 needs
to placec12, after it has placedc21, andc31. The backup replicas
are again placed at the closest used candidates, to increasecompo-
nent collocation and hence maximize application availability. If the
replication degree exceeds the number of closest used candidates,
closest candidates are used instead. (Please note that replicas of the
same component can never be collocated.) The closest used candi-
dates are identified following the same procedure describedfor the
placement selection of the primary replicas in step 1. The node de-
ciding where to place a component’s backup replica is hosting the
primary replica that will generate the input of this backup replica.
Therefore it can ensure that the requested bandwidth for theinput
of the backup replica can be accommodated by the residual net-
work bandwidth on the virtual link to the node that will be asked to
host it, i.e.,bsj

≤ rbej
. Again, bsj

is included in the query plan
ξ (section 3), whilerbej

is provided by the monitoring module of
the node (section 2). A backup replica does not have any addi-
tional requirements from the recipient regarding either processing
or downstream communication. Therefore, no placement request
and reply procedure similar to the primary replicas’ placement is
required.

Step 6. Backup placement decision. The placement of each
backup component replica is completed by sending a placement
decision to the node that has been decided to be the host of the
backup replica. In addition to the information included in aplace-
ment decision of a primary replica, a placement decision nowin-
cludes the fact that the component being placed will be a backup
replica. Again, the receiver of a placement decision allocates re-
sources for the backup replica to avoid overallocations.

Phase 3. Completion. We call the node(s) that host the outputs
of the application thedestination nodes. These nodes are usually
pinned where the data receivers are, e.g., where a network opera-
tion center is located in the example of Figure 1. Once a node that
accepted a placement request notices that it only has the destina-
tion nodes as its downstream nodes, it only has to place the backup
replicas of the current component and then the placement reaches
completion. The node discovers the destination nodes by querying
the DHT. It then propagates the placement request for the applica-
tion to the destination nodes. The placement request now includes
the complete application and replication component graphs, speci-
fying the placement of all primary and backup replicas. The desti-
nation nodes propagate these to nodevs, which now can inform the
source nodes to begin streaming.

If at any step of the placement protocol a node cannot find any
candidate to host the requested component replicas, regardless of
collocation (availability) and latency (performance) requirements,
a failure message is returned tovs and then to the user and the
component replicas that had been placed so far are deallocated.
This however is an extreme case, indicating that the system does
not have the required processing and network resources to host the
requested application.

Failure Handling. Failures of nodes during the protocol ex-
ecution result to message timeouts, causing the sender of the cor-
responding message to try the next available candidate for place-
ment. To avoid message timeouts by detecting node failures in
advance, more elaborate failure detectors [33] can also be used.

Moreover, failures affecting component discovery are handled by
the DHT [29]. Handling failures not during the placement butdur-
ing the stream processing application execution is a different and
rather complicated problem, considering the request ratesand the
real-time requirements of the applications. Several mechanisms
have been proposed to address this problem, including checkpoint-
ing [10, 16], masking [32], logging [15], and trading-off consis-
tency [5]. Since our work focuses on placement to minimize failure
probability and not on handling failures during execution,existing
solutions for the latter can be integrated in our architecture.

6. EXPERIMENTAL EVALUATION
We have implemented in Synergy our replica placement proto-

col, as well as the network monitoring application from the Stream
Query Repository shown in Figure 1, and have conducted a per-
formance evaluation over PlanetLab. Synergy is implemented as a
multi-threaded system of about 35,000 lines of Java code. Toeval-
uateSynergy’s distributed placement protocol’s performance, we
compared it to four more placement protocols.Optimal places all
primary component replicas on a node, andn backup replicas on
each of another̺−1 nodes. As we described in section 4.2, such a
placement is practically infeasible due to the processing and band-
width constraints. However, we include it for comparison purposes,
as it maximizes availability.Random places component replicas
on nodes randomly, as is done for example in [2].Partition im-
plements a scheme [39] that aims to maximize inter-component
correlation. Similar to RAID-1, it partitions nodes to groups of
̺ nodes each and assigns all replicas of a component to one group
every time. [39] showed that this placement performs best for strict
composite applications, therefore we include it here as thecurrent
state of the art. Finally,Latency places components based solely
on network latencies, similarly to current placement protocols for
distributed stream processing systems [3,23] that seek to maximize
application performance.

Each node in the system generates an application request that
triggers component replica placement. By sharing the system re-
sources among multiple concurrent applications, we do not give
Synergy’s resource-aware placement protocol an advantageover
the other protocols, in terms of placement choices. In fact,due to
resource sharing, Synergy results to placing the componentrepli-
cas of an application ton or more nodes. We present the average
results over the total number of participating nodes. We look at
application availability and replica failure ratio as metrics for avail-
ability, and at average inter- and intra-operator delays asmetrics for
performance. For clarity purposes we do not include Latencywhen
evaluating availability, as it is equivalent to Random. Similarly, we
do not include Optimal when evaluating performance, as its inter-
operator delay is 0, while its intra-operator delay is equivalent to
Random.

We experiment with different network sizes, percentages offailed
nodes, application component graph sizes, and replicationdegrees,
to determine the sensitivity of our results to all of these parame-
ters. When kept constant, the values of the above parametersare
20 nodes, 3 of them failing, 9 components in the application com-
ponent graph (as in Figure 1), and 2 replicas of each component.
We artificially control node failures, while ensuring that none of
the PlanetLab machines actually failed during our experiments. We
chose a default failure percentage of 15% of the nodes, basedon our
analysis of actual ping traces between all pairs of PlanetLab nodes,
obtained from http://pdos.csail.mit.edu/˜strib/pl_app/. By parsing
these traces and considering that a node has failed wheneverit is
not reachable by any other node, we found 15% to be a representa-
tive failure percentage. We experiment with fail-stop failures; once
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Figure 9: Failure percentage sensitivity.

a node has failed we regard all the components hosted by it, and all
the applications using these components, as permanently failed.

We chose a default application component graph size of 9, cap-
turing the graph size of the implementation of the network moni-
toring application from the Stream Query Repository we showed in
Figure 1.

6.1 Application Availability
We first present the experimental results for the application avail-

ability achieved by the different placement protocols. We measure
availability by the percentage of successful requests for composite
applications.

Effect of component replication degree. When increasing
the replication degree of components, application availability in-
creases. However, an intelligent replica placement can achieve
higher availability with a lower replication degree. This is shown
in Figure 6. Synergy achieves availability close to optimaleven
with a replication degree of 2, by paying attention to the relative
placement of replicas. In contrast, Random and Partition require
one more replica to achieve comparable availability.

Effect of application component graph size. To determine
the effect of the component graph size on application availability,
we experimented with artificial graphs of various sizes, as shown
in Figure 7. In general, as the sizen of the application component
graph increases, application availability decreases. This is because
more nodes need to be employed for hosting all the component
replicas (since no replicas of the same component can be hosted by
the same node), while all of the components need to be available for
the application to be available. However, as Figure 7 shows,Syn-

ergy’s replica placement protocol manages to maintain highavail-
ability even in larger application component graphs. The reason
lies in that Synergy reuses nodes to collocate component replicas.
Hence, the number of nodes used for placement does not linearly
increase as the number of components increases.

Effect of scale. Figure 8 shows that the availability benefits of
Synergy hold regardless of the size of the network. This is because
Synergy collocates replicas on nodes that have already beenused
for placement as much as possible. Therefore it is not affected by
the available placement options that more nodes present. This is in
contrast to Random and Partition, which are blind to which nodes
have already been used for placement for a particular application
and have a higher probability of spreading components as more
nodes are available.

Effect of failure percentage. When the percentage of failed
nodes increases, inevitably availability drops. However,as Fig-
ure 9 shows, Synergy manages to postpone this phenomenon as
much as possible, by using the minimum feasible number of nodes,
thus minimizing the probability that any of the component hosts
will fail. Using the minimum feasible number of nodes can only
be achieved when placing components specifically catering to an
application request. This is why Partition does not achievecom-
parable availability, since it statically places components to nodes,
regardless of any particular application requests.

6.2 Component Replica Failure Ratio
An intelligent replica placement achieves high application avail-

ability even when the ratio of failed replicas to the number of total
replicas, which we call replica failure ratio, is high. Thisis be-
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Figure 10: Failure ratio with scale.
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Figure 11: Failure ratio and percentage.
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cause just one replica of each component needs to be available. For
example, Optimal can achieve availability 1 even if all nodes but
one have failed, in which case the replica failure ratio is maximum
( (̺−1)·n

̺·n
). To explore this we measure the replica failure ratio and

compare it to the application availability achieved by the different
placement protocols. We present results from varying both the net-
work size and the percentage of failed nodes.

Effect of scale. Figure 10 shows that the higher availabil-
ity Synergy achieves over its competitors does in fact stem from
a smaller number of replica failures. This is because Synergy’s
replica placement protocol tries to minimize the number of nodes
used. Optimal’s placement protocol is even more intelligent, since
it can achieve availability equivalent to or higher than Synergy,
even though its replica failure ratio is higher.

Effect of failure percentage. The conclusions that can be
drown from the effect of the percentage of failed nodes to thereplica
failure ratio, as shown in Figure 11, are similar to the ones of the
effect of network scale from Figure 10. Moreover, we see thatPar-
tition is more appropriate as a placement strategy for distributed
stream processing applications than Random, since the availabil-
ity it achieves is higher, even though their replica failureratios are
similar.

6.3 Average Delay
We now discuss average delays attained, as they represent a mea-

sure of the performance of an instantiated application.
Effect of scale on inter-operator delay. Figure 12 summa-

rizes the performance attained by a distributed stream processing
application, as it is determined by the communication delaybe-

Number of Nodes Latency Information Gathering Time (ms)

10 1827
20 2100
30 5539

Table 2: Latency information gathering.

tween primary component replicas. Synergy’s placement protocol
focuses on maximizing the availability of an application and only
takes performance into account when comparing placement deci-
sions that are equivalent in terms of availability. Yet, as Figure 12
shows, the performance of the applications placed with Synergy’s
protocol is comparable to those placed by Latency, which uses only
performance as a placement criterion. As expected, Random and
Partition perform much worse, since they do not consider commu-
nication delays in their placement decisions.

Effect of scale on intra-operator delay. The cost of keeping
the backup replicas up to date with their primary counterparts is
summarized in Figure 13. Again, Synergy manages to reduce the
latency of these data transfers, while not sacrificing availability.
Since Latency can choose the closest nodes for placement among
all nodes, regardless of which have been used for placement so far,
it can decrease intra-operator delay further. However, as we already
discussed this leads to low availability.

Effect of scale on gathering latency information. Table 2 lists
the average absolute time a node needs to gather latency informa-
tion for virtual links to remote nodes in the overlay. This affects
how fast Synergy’s placement protocol can reach a decision.As
we see, the required time remains in the order of a few seconds.



The fact that we try to minimize the number of nodes to use for
replica placement to maximize availability also limits thenumber
of latency measurements we need to gather.

7. RELATED WORK
Existing research in the area of high availability for distributed

stream processing systems [5,10,15,16,32] has focused on efficient
replica state maintenance to mask component failures. To this ex-
tent, recovery mechanisms [15], failure masking [32], consistency
trade-offs [5], and checkpoint scheduling [10, 16] have been ex-
plored. In this work we focus on replica placement to maximize
application availability. Therefore, techniques like theabove are
complementary to ours and can be integrated in our system.

Placement of components or operators has been investigatedto
maximize the performance of distributed stream processingsys-
tems [3, 23]. In order to limit the number of nodes to be examined
for placement, previous approaches employ heuristics thatconsider
only a subset of all nodes [3], or employ a latency space [23].In
our case, the number of nodes to be examined for placement is
limited by the fact that we want to collocate components as much
as possible to maximize availability. As was already discussed in
section 4.1, a performance-oriented placement results to random
relative replica placement with low availability.

Replica placement has been studied extensively in distributed
systems, both with availability and with performance in mind. How-
ever, the focus of research in distributed storage [2, 4, 17,30], dis-
tributed databases [13, 22, 24, 34], distributed object systems [11,
12,14,18,21,25,36], and web services [6,20] is on the availability
of individual objects.

Similar to distributed stream processing systems, applications
built on object-, component-, or service-based architectures, such
as CORBA [11, 12, 14, 21] or Enterprise JavaBeans [36], or on
multi-tier architectures [13, 22] are composite. While research in
fault tolerance for such applications addresses timeliness and cor-
rectness in the presence of failures, it does not focus on therela-
tive placement of objects. This is because usually an application
server can host all the primary object replicas of such an appli-
cation (similarly to our Optimal placement algorithm). Dueto the
high processing volume and rate required by distributed stream pro-
cessing applications, as well as the amount of data that would have
to be transferred to an individual host, this approach is usually not
feasible in a distributed stream processing system. Our placement
mechanisms however can be applied to distributed object systems,
if the primary replicas of the objects of a composite application are
distributed.

Similar to distributed stream processing applications, the appli-
cations considered in [18] have both fault tolerance and timeliness
requirements. To address these needs, a two-tier replication archi-
tecture is constructed, depending on the consistency requirements
of the replicas. Replica selection algorithms are then proposed to
satisfy the applications’ timing requirements. This way, clients that
can tolerate weaker consistency can take advantage of faster service
time. Unlike distributed stream processing applications however,
the applications described in [18] follow a single-object paradigm,
where a client request involves one object, instead of multiple.

The only study of the availability of multi-object operations in
distributed systems we are aware of is [39] (with the theoretical
analysis provided in [38]), which compares the availability achieved
by several DHTs with regards to the strictness of an application.
We are able to achieve higher availability than the protocolthat
is identified as best for strict operations in [39], by performing
an ad-hoc placement of the replicas, once an application request
arrives. Distributed stream processing applications further differ

from static distributed applications, in that replicas communicate
with each other. This includes communication both between pri-
maries as well as between primaries and backups. This communi-
cation affects application performance and therefore is taken into
account by our placement protocol.

8. CONCLUSION
In this paper we have studied the problem of component replica

placement to achieve high availability in distributed stream pro-
cessing applications. We have identified design principlesfor replica
placement that take into account the particular characteristics of
these applications. We have incorporated these principlesin a dis-
tributed replica placement protocol, that aims to maximizeavail-
ability, while respecting resource constraints, and making performance-
aware placement decisions. Our protocol is decentralized,allowing
nodes to proceed concurrently with their placement decisions, and
requiring only local knowledge. We have integrated our replica
placement protocol in our distributed stream processing middle-
ware. Our experimental comparison over PlanetLab with the cur-
rent state of the art corroborated our claims that our techniques
maximize availability, while sustaining good performance.

This is the first work we are aware of to discuss component
replica placement for high availability in distributed stream pro-
cessing systems. Our future work includes incorporating toour
middleware current research on fault tolerant distributedstream
processing systems, such as checkpointing techniques for consis-
tency maintenance and failover techniques for failure masking. An-
other area of future work includes the integration of our replica
placement protocol with performance-oriented placement protocols,
which includes maximizing the availability of already deployed ap-
plication component graphs.
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