cs141 Workshop: The Master Method

The Master Theorem:

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence:

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$. Then T(n) can be bounded asymptotically as follows:

If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$. 1.

2. If
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 for some constant $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.

3. If
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
 for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$.

Use the master method (where applicable) to solve the following recurrence relations:

Assume that T(n) is constant for $n \le 2$.

1.
$$T(n) = 2T(n/2) + n^3$$

2.
$$T(n) = T(9n/10) + n$$

3. $T(n) = 16T(n/4) + n^2$

3.
$$T(n) = 16T(n/4) + n^2$$

4.
$$T(n) = 7T(n/3) + n^2$$

5. $T(n) = 7T(n/2) + n^2$

5.
$$T(n) = 7T(n/2) + n^2$$

6.
$$T(n) = 2T(n/4) + \sqrt{n}$$

7.
$$T(n) = T(n-1) + n$$

8.
$$T(n) = T(\sqrt{n}) + 1$$

9.
$$T(n) = 3T(n/2) + n \lg n$$

10.
$$T(n) = 3T(n/3+5) + n/2$$

11.
$$2T(n/2) + n/\lg n$$

12.
$$T(n) = T(n-1) + 1/n$$

13.
$$T(n) = T(n-1) + \lg n$$

14.
$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$

$$15. \qquad T(n) = 3T(n/4) + n$$

$$16. \qquad T(n) = 2T(n/2) + n$$

17.
$$T(n) = 4T(n/2) + n^2$$