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ABSTRACT
Well-run organizations collect, archive and analyze data re-
lating to the effectiveness of their important processes. Ed-
ucational institutions discard a wealth of student scores that
could be analyzed. Each score contains important informa-
tion about the student as well as the item (i.e., problem
or question). This paper describes our project to develop
an outcomes-based assessment system that mines per-item
scores to track each student’s skills and knowledge. Statisti-
cal inference techniques from both educational statistics and
data mining will quantitatively determine each student’s ac-
quired competency, with minimal input from faculty. The
culmination of item-level assessment gives individual faculty
feedback on their courses, and gives curriculum committees
feedback on which objectives are sufficiently met by their
respective curricula.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.m [Computing Methodologies]: Artificial Intelligence—
miscellaneous

General Terms
Management

1. INTRODUCTION
One major force behind the push for assessment, course

management, introspection, and improvement is the accred-
itation organization for technology-related curricula in the
United States, the Accreditation Board for Engineering and
Technology (ABET). ABET’s current accreditation require-
ments, commonly known as “EC 2000”[2], mandate the use
of continuous-improvement techniques, similar to “total qual-
ity management” and ISO 9000 [1] techniques from the man-
ufacturing and industrial communities, now applied to mon-
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itoring and increasing educational effectiveness. The tar-
geted outcomes (student competencies in terms of knowledge
and/or skills) of every subsystem (course) and of the overall
system (degree program) must be measured, ideally in some
direct and quantitative fashion, and corrective actions must
be taken to remedy discrepancies between the targeted level
of each outcome and the actual levels measured.

This is both a blessing and a curse. Many faculty members
found occasional accreditation preparation and visitation to
be onerous when undertaken once or twice every decade.
Under EC 2000, accreditation is no longer an occasional
accounting exercise but a continuous process intended to
boost the effectiveness of instruction every year, not just
during a visit. Faculty adoption of the process perspective
is critical for success under the new requirements.

Most educators have an on-going improvement effort. But
EC 2000 is an impetus to move beyond the realm of “folk
pedagogy,” where gut-feelings and intuition dictate which
experimental attempts are considered successful and which
are not. Under EC 2000, degree programs must actively and
systematically monitor the instructional results.

Can proper quantitative assessment be prescribed and
performed in a manner unobtrusive enough to gain wide
faculty acceptance? In this paper we will introduce a sys-
tem that we hope does exactly that. The system described
here forms the basis for our own accreditation process.

Throughout the development of this project, two princi-
ples have governed our decisions at every step of the way:
simplicity and usability. The simplicity of the system can be
demonstrated by the fact that it has been assembled primar-
ily by one person over the course of two years. The usability
of the system can be seen by the voluntary adoption of var-
ious components by faculty members, and by the steady in-
crease in the number of users. The project goal is to develop
a system that makes it easier for faculty to perform instruc-
tional tasks and, as a side-effect, gives them the benefits of
comprehensive data analysis and assessment. Because of the
difficulty in changing basic usage paradigms, our tools have
to extend existing methods, like “red-pen grading” or “fill-
in-the-bubble” multiple-choice quizzes. Further, since every
instructor’s requirements are different, the software compo-
nents should be individually adoptable, with only minimal
invariant requirements.



2. PROCESS DATA PATH
The ultimate goal of this project is to provide a data-

backed, quantitative measurement of how well students are
meeting the goals of the curriculum. These goals range from
individual course goals, like learning linked-lists in the Data
Structures course, to knowledge and skill goals for our stu-
dents as of the day they graduate. The task is to develop a
process, both in terms of deployment and calculation, that
will allow us to generate these assessments while placing
minimal burden on the instructors.

It is impossible to determine a student’s level of ability in
any particular topic on the basis of per-course letter grades
[12] alone. Those grades represent the aggregation of too
many factors, causing the student’s ability in any particular
topic area to be lost in that aggregation. A finer granularity
of information is required.

Quantifiable assessment of student knowledge has been
possibile using techniques from educational statistics dat-
ing back to the 19th century with Classical Test Theory
and more recently with Item-Response Theory (IRT), the
workhorse behind the computer adaptive testing scheme used
in the GRE for the past decade [3]. Both of these techniques
have benefits and drawbacks, but both require a relatively
large amount of instructor time to feed the system the nec-
essary inputs. In most instructional settings, it is a burden-
some chore to record item-level data and to decide which
items related to which student competencies. We hope to
use advances in automation and data mining to reduce the
human oversight needed to extract identical outputs: how
much of each competence has each student achieved, and
how difficult and/or discriminating is each item of assess-
ment (test question or homework problem) in the curricu-
lum? Much of this is possible using computerized testing,
but we do not have sufficient resources to utilize this, and
many instructors would prefer to hold on to more traditional
assessment methods. In order to extend existing methods of
instruction, a more complicated assessment system is neces-
sary.

Inspired by and heavily patterned after published out-
comes measurement assessment techniques such as those in
[12], our overarching process is a multi-stage reduction from
concrete numeric data (student scores) through successive
layers of abstraction to our final numeric goal. Here we will
briefly outline these stages and the terminology behind this
process before examining each stage in depth.

Most importantly, given that this is a score-driven process,
it is vital to capture and record the scores. In this paper we
will represent the scores for a particular course as the matrix
S, whose rows are indexed by student and whose columns
are indexed by item. In order to facilitate the gathering of
student scores at the item level, we have developed a number
of tools, described in Section 3. To the extent possible, these
tools have been developed to allow behaviors similar to those
used when grading by hand, so as to reduce the barriers to
adoption.

To assess whether a course offering has successfully met
its goals, the instructors for each course have created formal
lists of five to ten course objectives. While there is likely
to be some inter-relation among these objectives, we treat
them as independent. It is important to note that identify-
ing objectives is a one-time task: the course objectives do
not change from term to term, although different instruc-
tors may place heavier emphasis on one or another when

they offer the the course. In order to determine the level
of coverage and successful knowledge testing on these objec-
tives, we need an m×n relevancy matrix R, which gives the
relevance of each of the m questions to each of the n course
objectives. Since courses generally have forty to one hun-
dred questions, filling out the entire m×n matrix would be
tedious and frustrating business. However, the student score
data itself contains hidden structure that can be extracted
using data mining techniques to fill in much of this matrix
automatically. These algorithms are discussed in Section
4.2. In order to ensure that the structure that is determined
by the course objectives, the instructors are asked to submit
partial relevancy information. We have found that identify-
ing 10− 20% of the entries in R is sufficient to complete R
with reasonably good accuracy.

R and the student score information S is sufficient to eval-
uate a single course. For each student we can now determine
a level of coverage and knowledge with respect to each topic.
Averaging these across the student population of the course
gives a meaningful measurement of the extent to which top-
ics were covered sufficiently for students to understand the
material. This is valuable information for the instructor,
and can be created easily and automatically given properly
formatted gradebooks and relevancy information. If a par-
ticular objective is not receiving sufficient coverage, or has
been covered but students are consistently unable to answer
questions relevant to that objective correctly, the score for
that objective will demonstrate this clearly. Similarly, if one
objective is covered more than all others, and students per-
form well on it, scores on that objective will be correspond-
ingly high. By evaluating the scores on those objectives
against the relative (subjective) importance of the various
objectives, instructors get numeric, verifiable feedback on
the workings of the course.

However, there does exist one hidden element of complex-
ity preventing simple matrix multiplication of the score ma-
trix S by R: S will have many missing entries due to stu-
dents not finishing tests, being absent, not submitting as-
signments, etc. Assigning a zero value to these is inaccurate:
if the students attempted the item, some fraction of them
would have answered correctly. Filling with zeros simply
drives coverage scores downward and muddles the ability to
extract entries of R correctly. In this case, it becomes useful
to have a predictive model by which we can predict whether
or not a student would have answered a question correctly
given their general course performance and some properties
of the question based on the responses of the students that
did attempt it. A simple solution for this, based on tech-
niques from educational statistics and psychometrics, can
predict these values with an accuracy of a 65-to-70 percent.
This model also provides feedback to instructors on the qual-
ity and difficulty of the questions, providing an extra level
of feedback for the system. This technique is discussed in
Section 4.1.

Abstracting an additional level beyond course evaluation,
we have identified a number of program objectives:1 those
general skills and competences that students ought to have
on the day they graduate from the program. These are very
general proficiencies, such as “Ability to apply mathemat-
ics, science, and engineering principles.” We can track a

1Known in ABET terminology as program educational out-
comes, a confusing use of the term “outcome” in which it
means “goal” rather than “result.”



running estimate of how well these are attained by further
abstracting from the scores we calculated for each course’s
objectives. The course objectives for each course are there-
fore related to the program objectives through a course ma-
trix. Given five to ten course objectives and ten to fifteen
program outcomes,2 this will generally have on the order of
one hundred entries. Filling these in requires, on average,
about ten to twenty minutes, and only needs to be done
once, as the course and program objectives do not change,
or change very infrequently.3 Multiplying course objectives
scores by the course matrix for that course, and summing
across courses gives a final score for each program objec-
tive. Just as an instructor can examine the course scores
to determine whether or not each objective is being covered
sufficiently, the curriculum committee can examine the pro-
gram scores to see whether or not there is sufficient coverage
for each of the program objectives.

In summary, the inputs to this system are

• the score matrix for each course, which we have built
tools to facilitate the recording of,

• the relevancy matrix relating each question in a course
with the objectives for that course. This matrix can
be provided in only partial form and filled in by data-
mining algorithms

• The course matrices for each course, which need to be
identified only one time, ever.

Given these inputs and the necessary algorithms to run
the system, we can then calculate numeric scores for each
course objective and program outcome. While these outputs
are dimension-less quantities, they do allow us to perform
the necessary task: continuous improvement functions just
as well when comparing two quantities or examining deriva-
tives. No absolute scale is necessary for evaluating these
numeric outputs, it is sufficient to compare scores between
objectives and outcomes (“Why didn’t we cover linked lists
as well as binary trees?”) and corresponding scores between
quarters (“Did this quarter’s explanation of hash tables go
better than last quarter’s?”)

3. DATA GATHERING
Two major tools have been developed for the gathering

of per-item score data, Agar and Marksense. Between these
tools, it is generally faster and easier to grade an instrument
and get item-level data output and stored in the correct
format than it would be to grade by hand. This section will
briefly detail each of these tools and their usage.

3.1 Agar
The most ambitious and complex tool is Agar, a robust

and generalized framework for computer-aided assessment
(CAA). Agar was designed not simply as an “automated
grader” like many CAA systems [13, 10, 9, 5], but rather
as an assistant for human graders. The purpose of Agar
is not to replace human grading, which is indispensible for
providing the feedback necessary for students to learn from
their mistakes. Instead, Agar has been designed to reduce

2The canonical ABET “A through K” are certainly the most
common of these.
3Although we give instructors the opportunity to update
their course matrix each term.

the amount of redundant and automatable work involved
in grading. It has proven itself useful not only in grading
programming assignments, which can be scripted, but also
in grading subjective work such as written homework prob-
lems, short-answer test questions, and the style aspects of
programming assignments.

Many components work together to make Agar useful, but
the most helpful feature is the write-once comment system.
While grading a set of submissions, it is common to repeat-
edly encounter the same small set of student errors. After
the first few instances of a frequent error, it is not uncom-
mon for a grader to become frustrated with the students
and to grade more harshly for that mistake. When students
compare scores and find different penalties for the same mis-
take, they feel abused, which hurts course morale. Agar’s
comment system prevents these problems. The first time a
grader encounters a particular error, he/she creates a new
comment. A comment consists of a score adjustment (bonus
or penalty), which item it applies to, a short name to dis-
tinguish it from other comments, and some text feedback
for the student. Once created, the new comment is added
to a list of comments (rubric) that has been generated for
that item. It is then a simple matter of drag-and-drop to
assign the same penalty and feedback to other submissions
deserving the same comment. Not only is this system more
fair, it is faster and more convenient for the grader, which
enhances the chances of adoption. In conjunction with the
user-created, no-programming-necessary automated-testing
tools for grading programming assignmnts, Agar saves time
and increases the consistency of grading across the spectrum
of assignments.

Agar supports the annotation of student work, much like
traditional “red-pen” grading, via its PDF annotation facil-
ity. Given digital submissions of the student work,4 Agar
allows for comments to be placed on the page and displayed
in the Agar interface as a standard red ’X’. In this way, com-
ments can be given a spacial location on the page, just as
with manual grading methods. When the grading process
is completed, Agar generates annotated PDF files for each
student, which contain colored sticky-notes viewable in any
compliant PDF reader. Double clicking these notes brings
up the comment’s text and penalty. Agar also facilitates
the automatic mailing of these documents to the students
that submitted them, meaning that no more class time needs
to be spent on handing back papers. Finally, since digital
copies are kept by the grader, there are no longer instances
of students bringing altered versions of their submission for
regrading.

A non-obvious feature of Agar that is of great importance
for matching existing grading paradigms is the ability to
merge Agar workspaces. Especially in large classes, grading
tasks are often divided among many graders. This division
may be accomplished either by having a particular grader
grade a particular question for the entire class, or by hav-
ing each grader grade a subset of the students. In order to
facilitate the administration of such group-grading projects,
Agar allows for the setup and distribution of an initial grad-
ing template, complete with comments, and then a final re-
merging of grades into a single workspace composed of all of
the individual assessment performed by many graders. This
has rapidly become one of the most important features of

4Including scans of written work submitted on paper.



the system. It is continually being used in an ever-increasing
number of unforeseen ways.5

3.2 MarkSense
To simplify the grading of multiple-choice quizzes and ex-

ams, we have developed in house a simple computer-vision
system to do optical mark recognition (OMR), which we
have dubbed MarkSense. MarkSense so far has been our
most successful tool in terms of instructor adoption: with
only minimal advertisement, about half of our undergradu-
ate courses utilize it after a year of combined development
and deployment time. It has been successfully used on ex-
ams that involved over 40, 000 grading decisions, and gen-
erally requires less than ten minutes of human involvement
to grade a typical quiz of 20 questions for a class of 100
students. Like Agar, MarkSense outputs per-item scores di-
rectly to a special-format spreadsheet, called a gradebook.
By simply examining each column of the spreadsheet, an
instructor can detect possible errors in their answer keys,
identify misleading questions, and more. Additionally, since
the pipeline of tools that MarkSense is composed of output
OMR results to a text file, re-grading is completely separate
from the computationally expensive step of performing the
OMR in the first place — thus, it is a trivial matter to fix
the effects of an incorrect answer key. MarkSense is by no
means a breakthrough tool, but it demonstrates how even
a basic application of automation can yield tools that have
significant value to educators.

MarkSense integrates perfectly with Agar for tests that
are part multiple-choice and part subjective. We have also
generalized the algorithms in the MarkSense software to
work for our course evaluation forms. Additionally, Mark-
Sense has been used to develop an OMR system for instruc-
tors who still prefer to grade by hand, allowing them to
bubble-in the scores for students on each question as they
grade and then have the grade sheet automatically generated
from that stack of forms. While relatively simple in scope,
MarkSense has been one of the major components driving
adoption of CAA technology within our department.

4. DATA ANALYSIS

4.1 Item Evaluation
Given per-item scores, it is also possible to evaluate the

questions themselves. Using this technique, it is possible
to identify question types or individual questions that are
particularly good or bad given the instructor’s teaching and
grading style. The concepts behind this method are a sim-
plification of a well-known statistical method from psycho-
metrics6 known as Item-Response Theory (IRT).

IRT is a test-analysis technique developed and refined by
a number of psychometric researchers, with much credit go-
ing to Frederic Lord [8], a research scientist with Educational
Testing Service (ETS), the organization that develops and
administers the SAT and GRE exams. The fundamental
idea behind IRT is that each item of assessment corresponds
to a single competency. Each student is presumed to have

5It is perhaps the hallmark of successful software develop-
ment that users can develop usage patterns and expertise
that the developers never expected or planned for.
6The area of psychology and educational statistics that gov-
erns measurement, data analysis, and test valididty

some numerically quantifiable amount of that competency
(a.k.a., latent ability) to be measured via IRT. Each item
has a “characteristic curve”, which is a plot of the probabil-
ity that a given student will get that item correct as a func-
tion of the amount θ of the corresponding competence that
the student possesses. The process of assessing or measur-
ing student competencies is therefore the process of admin-
istering these items, and then using student performance to
derive the parameters governing these characteristic curves.
Using regression techniques, one can then estimate each stu-
dent’s θ, i.e., where each student falls on the θ axis. The
most common model for an item’s characteristic curve is a
sigmoid curve or logistic function, (1 + eα(θ−β))−1, which
has two parameters:

• a difficulty, β, which is the value of θ at which the
probability is 50% and

• a discrimination factor, α, which corresponds to how
sharply the probability transitions from almost zero to
almost one.

An example plot is shown in Figure 1.

Figure 1: Example Characteristic Curves

IRT is powerful but has some limitations. Chief among
them is the need for larger student populations than most
courses have, which makes the actual mechanics of IRT in-
appropriate for our purposes. Also, within IRT there is
no good way of expressing that a single item may involve
more than one competency, or that the required competen-
cies are not needed in equal amounts. A simple thought
experiment can demonstrate that most if not all questions
are testing multiple competencies, although in general one
is tested more explicitly. For example, questions written in
English require that the student have a minimum amount of
the “Reads-English” competency to even attempt the item
as intended. While this is an extreme example, multiple
competency questions are quite common, especially in a dis-
cipline like computer science where the majority of knowl-
edge is cumulative and interconnected. While IRT itself is
not directly usable for this task, the concepts of question
difficulty and discrimination are very valuable.

Given the matrix of student scores for every question and
the vector of their overall course scores, we can easily evalu-
ate which questions are actually correlated with high ability



in the course, and estimate the difficulty of each question.
Instructors can then begin to learn which types of questions
are most meaningful (have a high α). This refinement of
questions is based entirely on the course score vector, and
thus the grading and course management policies of the in-
dividual instructor. Questions that are perfect for one in-
structor may not be perfect for another, although in general
they are likely to be correlated.

Knowing the β for the questions can provide insight into
what the students are really understanding. If, after evalu-
ating a question, the β seems too high, it indicates that the
topic is not well understood by the students. Generally one
can assume that a question with a high α and a β in the
useful range (the range of course scores that would pass the
course) is a “good question.”

4.1.1 Calculatingα andβ

To see how calculating the difficulty and discrimination
parameters can be accomplished easily, first assume β is
known for each question. It is then possible to find the
empirical discrimination for a question by evaluating how
well that β separates students that got the question right
from those that got it wrong.

There are a number of ways of evaluating this, and in
general they give similar results in most cases. We have
evaluated complex techniques like entropy-based measures,
but in general the simplest technique works well, with near-
identical results. That technique is to calculate the per-
centage of scores that would be guessed correctly under the
assumption that every student with ability under β got the
question wrong and every other student got it right:

α = (
X

i:Si<β

δ(Mi,j) +
X

i:Si≥β

δ(Mi,j − 1))/n

where i ranges over all students, j ranges over all items,
M is the matrix of per-item scores, and S is the vector
of overall course scores. δ is the Kronecker delta function,
which returns 1 if its argument is 0 and 0 otherwise.

If it really is the case that β is a perfect split point, then α
will be 1, a perfect score. If correct and incorrect scores are
evenly distributed on both sides of β then α will be .5, and if
somehow the question were completely backward (only stu-
dents with ability less than β answered correctly) this results
in a score of 0. Nearly any similarity measure developed for
data-mining / machine-learning “decision tree” algorithms
can be adapted to work here. Additional techniques can be
found in [11].

Given this ability to produce α given the question scores,
ability scores (course scores), and β, it is now easy to find the
actual β. The best estimate of β is the value of β that maxi-
mizes α. Since α depends only on which scores were guessed
correctly, it is sufficient to only loop through each distinct
course score and evaluate on those split points, avoiding any
gradient optimization methods. The procedure to produce
α and β for each question can be implemented in about 100
lines of code and is available from the first author’s website.

4.1.2 Assumptions
In order for the above to be usable, several assumptions

must be made. First of all, we are assuming that the ques-
tion has some relevance to the general subject matter of the
course so far. Secondly, nobody can track the true ability
level of the students; the use of course scores is only an

estimate. If those scores are highly uncertain (e.g., at the
beginning of the course) or have nothing to do with the ques-
tion, then this is not a valid assumption. This presumes that
each course involves a single proficiency, which is generally
untrue. But, for many courses where this is a particularly
bad assumption (for example, a course composed of two half-
courses on different topics), it is possible to use the scores
from only the appropriate portion of the course.

The estimates of both parameters rely heavily on the dis-
tribution of the course scores. Student grades fluctuate sig-
nificantly at the beginning of the course before the law of
large numbers begins to stabilize each student’s grade to-
ward its final value. Therefore, the values of α and β are
going to be most accurate at the end of the course, and
a final evaluation of which questions are worth keeping for
possible reuse is best done after the course has completed. It
is useful to evaluate questions immediately after grading the
instrument, especially to find topics that were tested but not
fully understood, but such evaluations should be recognized
as less-accurate estimates.

Independence of scores is also a concern. If the estimate of
ability (course score) includes the score on the given ques-
tion, then by definition there is some correlation between
the two. To get the best estimates of α and β, it is best to
provide ability estimates that do not include the score on
that question or instrument. In practice, if each individual
question has a very small effect on the total grade, then this
effect is negligible and no questions need to be evaluated
separately.

4.1.3 Cross-Term Consistency
This technique allows databanks of questions to be assem-

bled along with an estimate of the difficulty associated with
those questions. There are a few caveats here: the difficul-
ties are likely very dependent on instructor, are obviously
dependent on course, and are hopefully dependent on what
time during the course the question was asked. For exam-
ple, if one instructor uses a question on a quiz early in the
term in one term and on the final exam in the next term,
it is hopefully the case that the students will have solidified
the skills necessary to answer that question, so the empir-
ical difficulty will decrease. (This is a deviation from IRT,
where question parameters are absolute but student abilities
are generally increasing throughout the term.)

To demonstrate the validity of this statement, we have
identified 20 questions that were repeated between Fall 2004
and Winter 2005. Of these, eight were dramatically too easy,
with difficulty levels in the D- range or lower (in this range,
the density of student scores is too low for predictions to be
very accurate, without enormous class sizes). After ignoring
anything with a difficulty less than 65%, we are left with
12 questions ranging from difficulties of 66% to 95%. On
average the difference between difficulties between terms is
5%, with a standard deviation of 4%, meaning that more
than two thirds of the time, a repeated question will have
a difficulty within one letter grade when used under similar
circumstances.

4.1.4 Item Assessment Results
Table 2 are empirical difficulty and discrimination values

for several particularly good or bad questions from various
courses.



Question Difficulty Discrimination
How many values can be represented by a 4 byte binary word? 95% .81
What is the result of NOT(1000 AND (1100 OR 0101))? 67% .81
The Unix filesystem is a true tree/hierarchy. 73% .83
There are no loops or cycles. (T/F)
Using pthreads on a dual processor system 77% .82
can result in a single process utilizing both
processors fully. (T/F)
Write a simplified wc(1): a program that 67% .83
reads from standard input until it reaches EOF
and prints to standard output the number of
newline characters it reads.
Virtual memory and memory mapping allow multiple 93% .60
processes to share memory under the illusion of
being the only process in memory. (T/F)
Thrashing may not occur on a system using a 100% .58
two-level scheduler. (T/F)

Table 1: Sample Difficulty and Discrimination Scores

Method Avg. Squared Error
Diff+Disc 0.309%

Wrong 0.632%
Right 0.321%

Student Avg 0.416%

Table 2: Comparison of data-filling methods

4.1.5 Estimate Missing Data.
As mentioned in Section 2, it is advantageous if the stu-

dent score matrix S for each course has no missing entries.
In reality, this is a very rare event: every student answering
every item during the entire course offering. Developing a
simple predictive model to fill in the missing entries is an
important step. Given the already-discovered α, β parame-
terizations of each question, we can predict individual item
scores with an accuracy of 65 − 70% on binary items. For
each missing data value, set it to 0 if the course grade for
that student is less than β and 1 otherwise. As seen in Table
1, this technique outperforms all others we have seen men-
tioned in the literature on dealing with missing entries in
student data, in some cases by as much as a factor of 2.

4.2 Objective Identification
The final algorithmic hurdle to overcome on the data path

from item-score data to program objective scores is to gen-
erate R. Manually identifying topic information for each
question is tedious, and may not match the statistical model
supported by the data itself. An ability to automatically ex-
tract topic information from student scores would avoid such
tedium and additionally allow instructors to:

• determine which topic a student is struggling most
with,

• give targeted study suggestions,

• build a question-bank of questions with known diffi-
culty levels and known relevancy to each topic in the
course, or

• automatically generate a test or quiz covering specific
topics with a known expected average score.

The broad class of algorithms most suitable for topic ex-
traction are called “collaborative filtering algorithms.”

4.2.1 Collaborative Filtering
Collaborative filtering was initially developed as a method

for filtering arbitrary information based on user preferences
[4], for use in systems such as Amazon.com’s recommenda-
tion engine. At a high level, a pool of users assign ratings to
a various products (books, movies, CDs) and the system in-
fers the underlying structure: what factors govern whether
a user will like a product or not, how much does each factor
affect a given user, and how much of each factor is present
in each product. User preferences may drift over time, but
most filtering algorithms ignore this temporal aspect.

The overall concept of collaborative filtering can be viewed
in a number of ways. Collaborative filtering can be viewed
as a system for predicting missing ratings based on a user’s
similarity to other users that rated the missing item. It can
also be viewed as identifying the latent factors that influence
each rating and estimating the influence of those factors on
each user and each product.

This concept generalizes very easily into the educational
domain, although the input matrices are generally denser
and noisier in educational datasets. Each course covers a
number of “topics,” which are the latent factors in this con-
text. Each item in a course pertains to one or more of these
topics, and each student has some ability in each topic. Stu-
dents may gain or lose ability in each topic over the course
of the term, just as user preferences may drift. Here we as-
sume that drift is a negligible effect since testing on a topic
occurs after that topic has been covered in the course.

We have evaluated more than ten algorithms that could
perform some form of this type of filtering [14], and in the
end the most suitable is also in many ways one of the easiest:
Non-Negative Matrix Factorization.

4.2.2 Non-Negative Matrix Factorization
Non-Negative Matrix Factorization[7] (NMF) approximates

the matrix of interest M by the product of two non-negative



matrices UH ≈M where M is m×n and U is m×f and H
is f ×n. The parameter f is the number of factors assumed
to be present in the data. In the idealized educational view
of the algorithm, the factors are topics, i.e., Ui,j is the abil-
ity of student i in topic j, and Hj,k is the relevance of topic
j to question k. In practice, the factors that are identified
may correspond to non-topical factors ranging from whether
the student was having a good day to how good the student
is at reading trick questions.7

The non-negativity of NMF gives the output of the algo-
rithm a more intuitive interpretation than does principle-
component analysis (PCA) or singular-value decomposition
(SVD), two commonly used algorithms that perform a simi-
lar function. In these more common algorithms, the matrix
is broken down into possibly-negative values. With NMF,
any non-zero entry is an additive weight for the final output.
The assumption that a student’s score on an item is the in-
ner product of their ability on f topics and the relevancy of
the item to those f topics is certainly a gross simplification,
but it does capture some of the structure of the process.

A straightforward technique presented in [7] is a gradient
descent approach to discovering the U and H whose product
best approximates M . At each iteration, every entry in U
and H is updated multiplicatively in a way guaranteed to
reduce the component-wise Euclidean distance between M
and UH. On all gradebook datasets we have evaluated, this
algorithm converges to within 1% of M in under 300 itera-
tions, each of which can be calculated rapidly. Additionally,
it is generally very insensitive to initial conditions. Of the
1000 NMF runs we have performed to date, only once has
there been a noticeable effect of the algorithm being trapped
in a local minima. The simplest algorithm presented gives
multiplicative update rules that perform a gradient descent
minimization of the Frobenius norm of M − UH (that is,
the element-wise Euclidean distance between M and UH):

Ui,a ← Ui,a
[MHT ]i,a
[UHHT ]i,a

Ha,u ← Ha,u
[UT M ]a,u

[UT UH]a,u

In practice, squared error is not necessarily the best met-
ric to minimize because it penalizes just as heavily for esti-
mating a score to be 30% instead of 10% as it does for 80%
instead of 100%. An alternative to optimizing the Euclidean
distance metric is presented in [6] where the objective func-
tion is

F =

mX
i=1

nX
u=1

[Miu log(UHiu)− UHiu]

This objective function is derived by interpreting the NMF
process as a method for constructing a probabilistic model
where value Mi,j is generated by adding Poisson noise to
UHi,j and then finding the maximal likelihood U and H for
generating the known M .

The benefit of using this objective function is that its
corresponding update rules

Ui,a ← Ui,a

X
u

Mi,u

[UH]i,u
Ha,u

7We have seen and identified both of these situations in
practice.

Ha,u ← Ha,u

X
i

Mi,u

[UH]i,u
Ui,a

no longer contain matrix multiplication operations on M ,
thus allowing the missing values to be dealt with only in the
multiplication of S by R, rather than repeatedly through
the process.

In the summations, simply skipping those entries that are
undefined because of missing values in M is equivalent to
assigning 0 to the missing entries. An option that works
better is to normalize each summation by the number of
missing entries in that summation (thus, multiply by 1.5 if
only 2 of 3 values was present.) This is actually equivalent to
pre-processing two versions of M : one where missing values
are initialized to the average value for the row (a student
is predicted to do as well on missing items as they did on
average for existing items) and one similarly for columns (a
student is predicted to do as well on a missing item as the
average of those classmates that attempted the item.)

4.2.3 Known Relevance
One benefit that NMF has over other algorithms that we

could have chosen is that it is trivial to enhance it with
known entries from R. In order to encode a known value,
it is sufficient to set that value at the beginning of every
gradient descent update. The question is, what percentage
of the values in R must be supplied by the faculty in order
for meaningful results to be extracted? It may be the case
that the factors that are mathematically most relevant are
not topic at all, but are instead question type (short answer
vs. multiple choice), whether the student was having a good
day, or whether the question is a “trick” question.

4.2.4 Topic Identification Results
To determine the accuracy of NMF in reconstructing R,

we measure the average value of the Frobenius norm of a
fully-provided R subtracted off from the R recovered by
NMF. A plot of this as a function of how much of R is
provided is shown in Figure 4.2.4.

Figure 2: Error vs. Data present

While the error decreases continuously as a function of
how much data is provided, anything below the 15% error
range can be viewed as acceptable error, misclassifying only
one question in 7 on average. In our informal experiments



with having the same instructor generate a new R for the
same data, the error rate remained at least that high. For
this plot, taken from a course with four course objectives
and only 15 items, on average each question would need to
be linked with one objective to provide this level of accuracy.
It is important to note that although some of the identifica-
tions made here should be positive (this question relates to
this objective), it is just as useful to identify which objec-
tives an item does not relate to. In practice, this makes the
task much faster.

5. CONCLUSIONS
We have identified a method for performing quantitative

outcome assessment based primarily on data generated dur-
ing every course: student score data. The tools and algo-
rithms presented here, the domain knowledge of the instruc-
tors, and a moderate amount of computational time are suf-
ficient to generate a detailed quantitative evaluation of how
much graded exposure the students were given to each topic,
and how successful they were on those items. Additionally,
as a side-effect of performing this analysis, items that were
particularly good or particularly bad can be identified for
the instructor, giving them feedback that will hopefully train
them to ask better questions more consistently.

It is important to note that none of this system is theo-
retical. As of this year, this system has been deployed, and
every step presented here has been performed in our depart-
ment’s improvement process. Furthermore, our department
has seen ever-increasing adoption and buy-in from the fac-
ulty.

Given this infrastructure, we are now capable for the first
time of assigning a numeric impact on experimental cur-
ricula changes or changes in teaching method for a given
course. The effects of this are just beginning to be seen
in our department as our continuous-improvement process
takes firmer hold and begins to be explored more fully by
the faculty. We expect that in-addition to assessing the ef-
fectiveness of our curriculum, our process and the data it
gathers will allow for significant future research into how
students understand computer science.
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