
1

Computer Aided Grading with Agar
Titus Winters and Tom Payne, UC Riverside

Abstract— Computer-based grading tools have existed for
nearly as long as computing courses. The majority of these
tools have focused on completely automatic grading of functional
requirements, leaving no room for subjectivity, and generally
eschewing human feedback in favor of total automation. We
argue that these tools are of little practical use because they
severely limit the types of assessments that can be graded, and
force the user to adopt to the paradigms of the grading tool,
rather than vice versa. We present Agar, a tool designed to
compensate for those possible shortcomings, discuss the design of
Agar, and discuss unanticipated usage patterns that have already
sprung up in our user base.

I. I NTRODUCTION

Given computer scientists’s fondness of automate repetitive
tasks, it comes as no surprise that computer-aided assessment
(CAA) has been used continuously in various forms for nearly
50 years. Given a set of student submissions, and the repetitive
tasks of checking compilation, program correctness, coding
style, and documentation, it is hard to imagine a computer
science instructor that hasn’t thought of some automation
scheme during long and tedious grading sessions.

However, most CAA systems seem to be lacking in two
areas, which prevents them from becoming very popular. First,
especially in Computer Science, CAA systems generally focus
on automated testing of code and little else. A relatively com-
mon example of this is to use JUnit to perform method-level
regression testing of Java assignments [3]. Programs can also
be specified in the now-familiar pattern of ACM Collegiate
Programming Contest problems: given a precise input and
output specification, test that the student submissions function
as a precise transformation on the input, and grade using
diff(3). Systems like [6], [1], and countless others have relied
on this level of precision, and performed strictly functional
grading.

A second major hurdle barring widespread adoption of
CAA systems is usability. While the academic community
undoubtedly has thousands of CAA systems in the literature or
active deployment at various institutions, nothing has grabbed
the community as a real “killer app.” One reason for this may
be paradigm mismatch: although there has been a lot of time
invested in CAA systems, we collectively have much more
experience with the “red-pen” style of grading. In order to be
really usable and have a chance of catching on, a CAA system
needs to match existing paradigms of usage to the greatest
extent possible, allow as many real-world usages as possible,
and restrict the user as little as possible.

This paper introduces Agar, a CAA system that appears to
be unique in the literature by overcoming these issues. Agar
has a fully featured functionality-testing system for checking
compilation, input and output, code unit testing and more.
However, every test that Agar performs can be overruled by

the human grader, and Agar’s usefulness extends well beyond
objective code testing. Agar has been used nearly a hundred
subjective assignments, quizzes, and exams. It has also been
granted credit for speeding up grading of tests for large intro-
level classes by at least a factor of two.

This paper is organized as follows: Section II provides a
brief history of the 47 documented years of CAA in the
literature, highlighting common design themes and what we
regard as overlooked design features. A description of the
design and features of Agar is given in Section III. Finally,
Section V summarizes the contributions of this tool.

II. H ISTORY OFCAA

Computer-aided assessment has a history dating at least
as far back as 1959. That year a computer program was
used to test machine-language programming assignments, and
was publicized the following year[2]. This paper by Jack
Hollingsworth of Rochester Polytechnic Institute captures the
very essence of CAA results since then: Given 120 students in
a full-semester programming course, he claims “We could not
accommodate such numbers without the use of the grader.”
This is a feeling that has surely been echoed thousands of
times as enrollments in CS have surged upward again and
again over the past four decades. Surely a sizable number
of CAA systems have seen their start because of a similar
thought.

Security is presented as a significant concern for
Hollingsworth: the computer systems being utilized did not
provide a method for protecting the grader in memory, so
malicious or buggy student submissions could alter the grader
itself.

The Hollingsworth grader was based on the paradigm of
precise functional grading wherein programs are completely
specified, and only a complete functional match is considered
a correct submission, which stifles many opportunities for
student creativity. Hopefully recent work like [4] will convince
the community that this may be a good paradigm to practice
from time to time to ensure students are capable of following
directions, but to attract a more diverse population and keep
student retention high, we must allow for more creativity.

However, this theme of I/O-spec grading continues through
most or all of the CAA systems that are in the literature. In
the late 1960s, the breakthrough CAA system was the Basser
Automatic Grading Scheme (BAGS) [1] from the University of
Sydney, which represented the first time that a grader could be
used without special support from a human operator. The paper
describing BAGS makes it quite clear what types of programs
are acceptable for grading: precise mathematical operations
with zero margin for error. Useful, challenging assignments
undoubtedly, but not the type of assignment that captures



2

the interest of students currently being drawn away to other
majors.

The mid-1990s saw the development and publication of sys-
tems like Kassandra[6], an automated grading system designed
for a scientific computing course to evaluate Maple or Matlab
code. Kassandra is a system with a number of very impressive
features, like networked operation and a secure client-server
paradigm that absolutely prevents students from interacting
with the reference solutions. Especially in the face of growing
sophistication on the part of the students, Kassandra certainly
represents a step in the right direction: who hasn’t worried at
some point about compiling and running student code, either
with the use of a CAA tool or manually? Still, we find that
Kassandra focuses exclusively on grading precise functional
behavior, and little more.

One aspect of the adoptability of these systems that cannot
be easily evaluated from the published literature is the usage
paradigm for the system. A fundamental concept in human-
computer interaction is that programs are difficult to use if the
system model doesn’t match with the user model [5]. Since
users generally come to a new program with little or no initial
concept of the precise workings of the system, user model
is often wildly erratic, at least during the initial stages of
use. Users experience a great deal of stress when they are
suffering from such a model mismatch. A reliable method
for reducing the time needed to correct the user model is
to leverage existing, known usage patterns. In essence, the
system model should match existing usage patterns as much
as possible so that a user doesn’t have to deal with expectation
violations that cause a program to be “hard to use.” Without
having actually interacted with these other CAA systems, we
cannot judge for certain whether the program matches existing
grading styles, but there doesn’t appear to be much reason to
assume that this sort of usability was of much import to the
designers of these systems.

III. A GAR

Agar attempts to be a highly usable tool by focusing on a
handful of design principles:

1) Allow existing grading styles - Both in terms of how
an individual grader grades, and how grading tasks are
broken up for large classes, Agar attempts to match
existing grading styles.

2) Support the subjective - Agar goes beyond most CAA
systems by supporting grading of subjective features
(style, documentation, written work), rather than just
functionality. This means it can be used for tests and
quizzes, or programming work with a creative aspect.

3) Eliminate repetition - Whenever possible, Agar elimi-
nates the repetitive tasks in grading. One of the primary
ways it does so is by making student feedback instantly
reusable. But this trait also applies to recording scores
in a gradebook, emailing students their scores and feed-
back, and more.

Grading with Agar can be broken up into five main phases:
identifying submission files, setting up a rubric, running tests
and conversions, performing any needed manual grading, and
reporting scores.

A. Identifying Submissions

Our homework-submission system has students turn in an
entire directory at once. One effect of this is that there are
often extra files that are not strictly necessary to make a
programming assignment function: object files, backup source
files, sample inputs, etc. Agar includes three main methods
of identifying which of the files in a student’s submission
directory are actually part of their submission and should be
included in Agar’s list of files for that student. When we first
started working on CAA systems, one of our requirements
was that students submit files with a precise filename. On
average, ten to twenty percent of the students ignored these re-
quirements, regardless of how terrible a penalty we threatened.
Eventually we decided it would be far better for our systems
to be able to identify which files were pertinent automatically.

The default method is using filemasks to identify which
files are important. When starting a new Agar workspace it
prompts the user for what kind of grading is to be done.
For written grading, this sets the filemask to*.ps, *.pdf, *.txt,
*.doc. Any filename in the submission directory matchingany
of those Unix globs will automatically be included in the
student’s file list. Similarly for C/C++ grading, the filemask is
set to *.c, *.cc, *.cpp, *.h, *.hh, Makefile. This covers the
majority of our grading, but an option exists to manually
enter an arbitrary filemask as well. Once the filemask is
identified, a base directory is selected. It is assumed that this
directory contains student submissions in the format generated
by our turnin system (this can be easily altered for other
environments). For each submission directory, the filemask is
applied and a collection of matching files are extracted. If
no files match the filemask in one or more directories, then
the user is automatically prompted to identify submission files
manually for those submissions.

Another method of identifying files relies on the student
submitting a valid (but simple) Makefile. For each dependency
in the Makefile that doesnot have an associated creation rule,
if that file exists in the directory it is added to the file list.
The Makefile parser also will do simple variable expansions,
although it does not fully emulate Make and its handling of
implicit dependencies and creation rules: all files must be
explicitly mentioned to be included.1

In general, one of the above two methods will suffice to
identify the vast majority of submission files. Once in a while
a student will name a file oddly or will have some other
problem with a submission, and it is necessary to manually
identify the files for that submission. Any possible submissions
in the base directory that cannot be understood with one of the
above methods can be identified by hand simply by opening
a file browser in that directory and manually adding files to
the submission (Figure 1).

Usually, identification of submission files is completely
automatic, and requires less than five minutes for a moderately
sized class, even in the presence of misunderstood submis-
sions.

1This means that, for example, implicit rules for generating.o files will not
be picked up by the system.



3

Fig. 1. Submission Manager

B. Creating a Rubric

Once submission files are identified, the next step is to create
the basic grading rubric. In Agar, a rubric is a tree of tests. The
top-level items are the point categories that will be reported
for student grades. For programming work these are often
one major category (“Insert”, “Remove”, “Style”, etc), for
written work there is generally a top-level rubric item for each
question. Each rubric item is selected from the available set
of tests (the left portion of Figure 2). Additionally, if a rubric
item fails, any sub-tests of that item will be executed, allowing
for conditional execution when necessary. The most common
usage of this hierarchical testing thus far is for compilation: in
our department we generally require theg++ flags -W -Wall
-Werror -pedantic for lower-division programming courses.
This helps ensure that the students are writing good code.
Often there will be a mandatory penalty for code that fails to
compile with these flags: by allocating some rubric points to
the default “Compile” (with flags), and then creating a sub-
test that re-attempts the compilation without the flags, we can
quickly compile all submissions that are compilable as well
as identify which students had warnings in their code.

Most of the tests shown in Figure 2 are separate executable
programs adhering to the Agar tool specification. With very
few basic requirements on parameter parsing and exit codes,
Agar users can write their own programs and scripts to perform
testing tasks in Agar. The tool specification is quite minimal,
requiring on the order of tens of lines of code, and eliminates
the need for a complex plugin structure, dynamic linking,
shared-object generation, or any other complex scheme. Any-
body should be able to easily write extensions for Agar, in any
language, so long as it can read command line parameters, run
as an executable under Unix, and return different error codes
when terminating.

In addition to determining which tests make up a rubric,
it is also important to identify the point values for each item.
Each rubric item has an associated point value, which is easily
changed using the spin control on the lower-right portion of
the screen. It is also possible to createcommentsthat are

automatically assigned to submissions that pass or fail on a
particular test. Tests themselves are fairly limited, and are
generally intended to be the first-pass: anything that passes
is good, anything that doesn’t pass or cannot be automatically
evaluated will be checked by hand later.

For an average-sized course, creation of a rubric for written
work is nearly automatic, and a suitable rubric for program-
ming work takes five-to-ten minutes.

C. Running Tests

Once the rubric is set up, tests can be run on all submissions.
One nice feature of Agar is that many of the tests that actually
run the student code have builtin safeties to ensure that student
code doesn’t run too long, use up too much memory, etc.
We do not currently resort to sandboxing student programs
in a chroot jail for security purposes, since we have never
encountered student code malicious enough to warrant such
measures, but building such a secure execution environment
test is certainly possible within Agar’s framework.

After running tests, Agar color-codes rubric items that
have a perfect pass or fail rate. Green tests indicate every
submission passed, red tests indicate everyone failed. Red
tests often indicate that something was improperly configured.
After re-configuring the test, individual rubric items can be
re-run without re-running all tests. Similarly, if a particular
student’s submission needs to be altered and re-tested, that
submission can have all tests re-run without affecting other
test results. It may take as long as ten minutes to run all the
tests for an average programming assignment, depending on
the computational complexity of the assignment and number
of students in the class.

D. Manual Grading

When testing is complete, the grader can switch to the
“Grading” view (Figure 3). From there they can switch
between submissions, view individual submission files for
each submission, launch a terminal in a particular submission
directory, and most importantly, assign comments.

Comments are used in Agar just like comments are used
when grading with a red-pen: identify something worth com-
menting on, provide the student some feedback, and possibly
associate a point value with it. Agar comments can be positive
or negative, additive or multiplicative (the difference between
bonus points and bonus percentage), or can simply set the
value for a particular top-level rubric item. Comments can also
be set to apply to all rubric items, like in the example shown
in Figure 4, which shows a comment that gives the student a
zero on the entire assignment.

The general process for grading in this phase is to go
through each submission and check anything needing to be
manually investigated. For well-specified programming assign-
ments with no Style component to their scores, this could be
nothing at all, since Agar does support total automation. For
written assignments or tests, this is the primary grading task.

In practice, one of the most useful pieces of functionality
in Agar is the “write-once” comment system. Since a large
class is almost guaranteed to repeat errors over and over, this



4

Fig. 2. Rubric Creation

Fig. 4. Creating or Editing a Comment

commenting system can be a great time saver for a number of
reasons. First of all, many people type faster than they write, so
typing out feedback is a good step. Secondly, since comments
are saved for re-use, when a duplicate error is encountered,
the comment can be dragged from the list and dropped on
the duplicate error in the new submission, saving even more
time. Third, comments are assigned by reference, and thus if
they are edited later all instances of that comment are updated.

This is useful in cases where penalties need to be adjusted later
on, or feedback requires editing before it is sent back. All of
these features greatly reduce the amount of time needed to
do a fair job of grading, and increase the overall consistency
of the grading itself. Since it is easier to assign an existing
comment regarding a problem than to create a new comment,
there is a tendency to be more fair in giving the same penalty
for similar problems. Students appreciate this consistency.

E. Annotation

There is also an alternate interface for assigning comments.
Especially for written work, tests, or quizzes, it is often best if
comments can have some “locality”, like “Notice that this node
in your 2-3 Tree has 1 child, which is forbidden in a 2-3 Tree.”
A comment of this type makes more sense when placed on the
page near the offending node of the tree. Agar’s annotation
interface allows many file types, including PostScript, PDF,
DOC, plain text, source code, and many image types, to be
displayed on screen and annotated with comments (Figure 5).

Using the annotation interface allows for graders to grade
either submission-by-submission or question-by-question (es-
pecially useful for scanned tests where all questions are on the
same page of the submission). When mailbacks are generated
for students, all of the “pages” of their submission are con-
verted to PDF, and the localized comments are added to the



5

Fig. 3. Basic Grading Interface

PDF as annotations viewable within Adobe Acrobat Reader2

as colored sticky-notes that expand to hold the comment text.

F. Reporting Scores

When the manual grading is completed, the remaining tasks
are to generate feedback for the students and to record scores
in the course gradebook. Generating feedback for the students
is easy, assuming the students all have email addresses in the
same domain. Agar identifies student submissions by their
username, and can be configured with an outgoing SMTP
server and the domain of the students. It then generates
mailback files containing score summaries, test results, and
comment feedback. If the annotation system was used it also
converts the submission to PDF and annotates it with the
appropriate comments. When the mailbacks have all been
generated, it automatically emails them out to the students.

For exporting grades, Agar primarily supports the use of a
spread sheet for storing grades. It prompts for the location of
the course gradesheet, which can be in either Microsoft Excel
format or the open-source Gnumeric format. It then searches
the gradebook for a sheet called “Summary” which has a
listing of the student usernames. Based on the row-ordering
of those usernames, it creates a new sheet with the scores for
the current assignment, with one column for each top-level

2Most other PDF viewers ignore annotation information.

rubric item and with students ordered into the same row order
in the new sheet as they appear on the Summary sheet. It
also (optionally) will export a column of indirect-references
to the total points column of the Summary sheet to keep it
up to date. Not only does use of Agar obviate hand entry of
score data, it also allows scores to be recorded and tracked
at a much finer granularity than would otherwise be kept.
This extra data allows better statistics to be calculated, giving
interested instructors better insight into what their students
actually knew on a given assignment, test, or quiz[7].

IV. U SAGE PATTERNS

Two relatively simple features of Agar that have been found
to be quite powerful are the ability to save different portions
of the workspace into different files, and to merge Agar files
together. These abilities allow for usage patterns similar to
those that are normally found in courses with large grading
loads.

One feature that has been used repeatedly is that of the
pre-developed rubric template. The Head TA for a large
class generally creates a rubric and a default set of expected
comments. The Head TA will then save just the rubric and
comments into a “template” file that is given to the other TAs
along with a list of which students to grade. Each TA runs Agar
on their own set of submissions, grades using that rubric and
those comments for even greater consistency, and then sends



6

Fig. 5. Agar Annotation Interface



7

back an Agar workspace complete with grading information.
The Head TA merges all of these Agar workspaces together
before sending mailbacks and exporting grades. This is a
simple method of splitting the workload student-by-student.
After grading, the templates can be updated with the most
common problems not covered with the original comments,
and saved for use in future course offerings.

When grading exams for large courses, Agar also allows
the work to be split question-by-question. Again, a Head TA
creates a rubric and possibly some basic comments for each
question, and then gives a copy of the full workspace (with
all rubric information and student submissions) to each TA,
along with instructions for which question to grade. The TAs
grade in parallel, just as they would with paper grading, and
then send their Agar workspaces back for merging. While the
selective saving and merge abilities of Agar are not technically
complex, they have proven to be invaluable in the adoption of
the system.

V. CONCLUSIONS

Agar is, as far as we can tell, a first-of-its-kind entry into the
domain of CAA tools. Agar embraces the idea that feedback
from a human grader is an essential and invaluable part of
the learning process. Rather than strive only for complete
automation, Agar works to extend the existing usage patterns
of graders by emulating red-pen grading as well as division-
of-labor methods for large grading tasks. By automating the
tasks of score recording and sending feedback to students,
Agar works to eliminate the clerical tasks that can otherwise
take up so much time in grading. The “write-once” comment
system also makes grading in Agar more consistent, and allows
graders to increase the quality of feedback to students. Agar
is more than just an automated grading system: it is an actual
aid for assessment, not a replacement for the feedback and
expertise that is so critical in the learning process.

VI. A CKNOWLEDGMENTS

We would like to thank our loyal and devoted user base
for perservering through numerous initial bugs and revisions:
instructors Brian Linard, Kristen Miller, Ann Gordon-Ross,
and, Dr. Peter Fr̈ohlich and TAs Tim Mauch, Keri Nishimoto,
Dave Sheldon, and Ryan Rusich have been invaluable in
providing feedback, feature requests, and bug-reports. They
suffered the bugs and misfeatures of our early efforts and must
also be recognized as a critical part of this project. Finally,
we’d like to thank our friendly local system administrator
Victor Hill for viewing this as an important project and giving
us the necessary support to make it fly.

REFERENCES

[1] J. B. Hext and J. W. Winings. An automatic grading scheme for simple
programming exercises.Commun. ACM, 12(5):272–275, 1969.

[2] J. Hollingsworth. Automatic graders for programming classes.Commun.
ACM, 3(10):528–529, 1960.

[3] A. Patterson, M. l K̈olling, and J. Rosenberg. Introducing unit testing
with bluej. In Proceedings of the Information Technology in Computer
Science Education Conference, 2003.

[4] L. Rich, H. Perry, and M. Guzdial. A cs1 course designed to address
interests of women. InSIGCSE 2004 Proceedings. ACM Press, 2002.

[5] B. T. Tognazzini.Tog on Interface. Addison-Wesley, 1996.
[6] U. von Matt. Kassandra: the automatic grading system.SIGCUE Outlook,

22(1):26–40, 1994.
[7] T. Winters and T. Payne. What do students know? InICER, 2005.


