
TinkerNet: A Low-Cost and Ready-To-Deploy Networking
Laboratory Platform

Titus Winters
Computer Science and Engineering Department

University of California Riverside
Engineering Building Unit 2

Riverside, CA 92521
titus@cs.ucr.edu

Ryan Ausanka-Crues
Computer Science Department

Harvey Mudd College
301 Platt Blvd

Claremont, CA 91711
rausanka@cs.hmc.edu

Mark Kegel
Computer Science Department

Harvey Mudd College
301 Platt Blvd

Claremont, CA 91711
mkegel@cs.hmc.edu

Erik Shimshock
Computer Science Department

Harvey Mudd College
301 Platt Blvd

Claremont, CA 91711
eshimsho@cs.hmc.edu

Daniel Turner Computer Science Department
Harvey Mudd College

301 Platt Blvd
Claremont, CA 91711
dturner@cs.hmc.edu

Mike Erlinger Computer Science Department
Harvey Mudd College

301 Platt Blvd
Claremont, CA 91711

mike@cs.hmc.edu

Abstract

TinkerNet1 was developed as a low-cost platform for
teaching bottom-up, hands-on networking at the un-
dergraduate level. Using “throw away” PCs, cheap
components, and free software, TinkerNet enables
students to build their own networking stack from
Ethernet up to TCP or UDP, and to have their pack-
ets actually transmitted on the wire. Since nothing is
emulated, standard networking tools such as packet
sniffers may be used to test student generated traf-
fic from a host located on the TinkerNet network.
Over the past summer TinkerNet has matured and
advanced thanks to an NSF deployment grant. This
paper discusses TinkerNet design, development, and
availability.

Keywords: Networks, Networking Labs, Education

1 Introduction

As computing grows and matures, we are continu-
ally adding layers of abstraction and encapsulation
to make our day-to-day usage and programming tasks
Copyright c©2006, Australian Computer Society, Inc. This
paper appeared at Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Tasmania, Australia, January
2006. Conferences in Research and Practice in Information
Technology, Vol. 52. Denise Tolhurst and Samuel Mann, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1This work was supported in part by the National Science Foun-
dation under grant NSF-DUE-0443012 to Harvey Mudd College

easier. Most of the time this is useful and highly desir-
able: it is a safe bet that the Internet would not have
taken off in the 90s if every programmer needed to im-
plement their own TCP/IP stack to interact with the
network. Abstracting away the growing complexity of
a modern computer is a necessary part of computing
today.

However, it is occasionally both useful and impor-
tant to be able to pull back those interfaces and see
the actual workings of the systems we build on. Just
as it is dangerous for users of the Standard Template
Library (Musser & Saini 1996) to not understand the
workings of the data structures implemented there, it
is important for students to understand the workings
of some of our more complicated systems. There is a
history of labs and programming environments that
allow just that (Christopher, Procter & Anderson
1993, Chapman & Carlisle 1997, Aburdene, M., et.
al. 2002, Hill, J. M. D., et. al. 2001, Comer 2002).
These systems remove any unnecessary complexity
and leave exposed the features most important for
students to gain the all-important hands-on under-
standing that is otherwise lacking. Our system, Tin-
kerNet, provides that experience for understanding
low-level networking. TinkerNet provides direct, real-
world access to Ethernet packets, and gives students
the features necessary to implement an OSI network
stack from the data link layer all the way up through
IP to UDP, simplified TCP, and even simple appli-
cation protocols. We feel that by giving students
a hands-on understanding of how the protocols that
have been hidden away by the now-universal Berkeley



Socket API (Donahoo & Calvert 2001) behave, stu-
dents will not only have a better grasp of the theo-
retical workings of an internetwork, but perhaps even
have a better understanding of proper usage of sock-
ets.

The 2002 SIGCOMM Workshop on Educational
Challenges for Computer Networking (Kurose, J., et.
al. 2002) exposed many issues related to teaching
computer networking: top-down versus bottom-up
approach; one course versus many courses; required
course versus elective course; and undergraduate ver-
sus graduate emphasis. Throughout the workshop
discussions one recurring theme emerged: the need for
a laboratory to augment lecture. While the principles
of networking can be presented in lectures, the group
recognized that real understanding occurs when stu-
dents actively develop and evaluate systems based
on those principles – there is no good substitute for
hands-on experience with real networks (Joint Cur-
riculum Task Force 1991) (Joint Task Force 2001). All
of the discussed laboratories shared a few common is-
sues: initial cost of the laboratory and cost of contin-
ued maintenance. TinkerNet uses well-known open-
source software and inexpensive “obsolete” hardware
which we believe mitigates these issues. TinkerNet
represents what we believe is a novel and powerful
environment for teaching undergraduates about the
details of networking and network protocols.

We introduced TinkerNet at ACE in 2004
(Erlinger, Molle, Winters, Shea & Lundberg 2004).
Since then we have made improvements in usability,
installation and deployment, functionality, and sam-
ple laboratory exercises. Most importantly we have
packaged it for widespread deployment. The intent
of this paper is to re-introduce TinkerNet, discuss
the new developments on the project, and enumerate
the requirements for institutions considering deploy-
ing the system.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief description of the design, goals,
and architecture of TinkerNet. Section 3 describes
the progress that has been made since the last paper.
Section 4 describes our current set of laboratory ex-
ercises. Section 5 gives some anecdotal discussion of
our use of TinkerNet and of the complexity and cost
in deploying a new TinkerNet. Section 6 discusses
how to acquire the relevant code and documentation.
Section 7 acknowledges the systems that perform a
similar function to TinkerNet and discusses the pros
and cons of each. Finally, we conclude with our future
plans in Section 8.

2 System Overview

At its core, TinkerNet is a system for easily letting
students insert code for processing, generating, and
responding to network packets into an OS kernel and
booting it on a real PC. The system is designed to
work with very limited hardware resources, and can
likely be assembled with parts that can be found un-
used in a decent sized institution.

When using TinkerNet, students are provided with
a skeleton source tree containing the function proto-
types they must implement, as well as a GNU Make-
file pre-configured (to build the student’s source, to
link the student object code to the existing object
code for handling the admin network, and to pre-
pare the image to be sent to a node). Using tools on
the server, students can have their kernel remotely
booted on one of the nodes and view output from
that kernel. At no time does the student have to be
aware of the existence of the admin network or the
infrastructure in place to support it. Finally, when
the student is done testing a particular build of their

kernel, they can simply push a button on the server
interface (tinkerboot) and have their node reboot and
rejoin the ready pool.

2.1 Hardware

TinkerNet, Figure 1, does not emulate network traf-
fic generated by the students. All of the data they
request to be sent on the Ethernet is sent on the net-
work, as is, malformed Ethernet frames and all. As
such, we have designed the system to function under
the assumption that all traffic on the network that the
students can send and receive is malicious. As such,
every node in the network is connected to two disjoint
Ethernet networks: one for student traffic (affection-
ately known as the warzone), and one for administra-
tive traffic, admin (control messages, file transfers,
etc). As such, each node needs two network cards.

However, that is the extent of the hardware de-
mands for the nodes themselves. The nodes have an
extremely limited processing requirement: at most
they need to keep up with incoming network traffic.
The size of the kernel that they execute is on the
order of three to four megabytes. We are unaware
of any student allocating more than a megabyte of
memory for data during execution. Thus, 8 MBs of
RAM is sufficient for a node, although it is difficult
to find even throw-away PCs with less than 32 MBs
at this point. The nodes need no hard drive: most in
our installations have been given a network enabled
bootloader and boot instructions via a floppy disk.
Thus the total requirements for a node in a TinkerNet
cluster are: two network cables, two network cards,
power, and effectively any PC that will still boot from
a floppy.

In addition to nodes for student kernels to be
booted on, there are a few other hardware require-
ments. The server connects to both the warzone and
admin networks, just like a node, but it also connects
to the institution’s production network on a third in-
terface. The server provides a home for the students
and for all the software to make TinkerNet opera-
tional. Also, two hubs or switches are required to
create the admin and warzone networks. Ideally at
least the device for the warzone network would be a
hub, since that makes all the warzone traffic avail-
able to all the students, giving them a more robust
network experience.

2.2 Student Kernels

The kernel running on each node is a modified ver-
sion of OSKit (Flux Group 2002). OSKit was de-
veloped and distributed by the University of Utah’s
Flux Group, but is no longer maintained. OSKit
includes file system support, POSIX threading, ex-
ecutable loading, video drivers, and more. The needs
of TinkerNet, however, are minimal, and so many of
the provided modules are not included in the build
process. Modules we do take advantage of include the
OSKit Standard C Library implementation, network
drivers, and the memory manager.

Due to the unique requirements of the project,
only low-level pieces of the OSKit networking modules
are included. This gives us access to packets coming
in off the network adaptors, but does not include a
full socket API. The kernel must be capable of deal-
ing with two entirely different types of traffic, be able
to respond to all control packets sent over the admin-
istrative network, and not crash, panic or lock up in
any way due to errors in student code. Therefore,
an implementation was required that would allow the
network module code to continue operating even if
student code had fallen into an infinite loop or dead-
locked.



Server

Node

The
Internet

Admin Network

Warzone Network

Node Node Node

Students

Hub

Hub

Figure 1: TinkerNet Architecture

Fortunately, any OSKit kernel is fully pre-
emptable. In our implementation packets are han-
dled as tasks. When a packet is received by either
NIC an interrupt is sent to the kernel. Administrative
packets, like requests for reboot or acknowledgement
of debugging information, are handled immediately
in the interrupt. Packets for the student kernel to
handle are instead added to a task queue. When not
handling an interrupt request, the node kernel spends
its time processing packets, removing them from the
queue and performing the appropriate actions. One
of the primary benefits of this design is that even if
the student code crashes, so long as the interrupt han-
dler remains in memory the node will still be able to
reboot and join the ready pool.

To aid in the debugging process students are given
the use of a specially designed variant of the printf
function, which we have dubbed netprintf. Stu-
dents communicate with their kernel through the node
controller daemon (tinkercontroller) residing on the
server. To access the node in any way, netprintf
relays student debugging information to tinkercon-
troller, which then records the data for each node in a
temporary file. This file can then be accessed through
tinkercontroller by either tinkerboot (the student in-
terface) or tinkeradmin (the administrative interface).

Students are given three files, two of which are
makefile related. The other file is a C file which is
a template with all prototypes that students need to
complete. From this C template students can access
any of the Standard C Library functions, as well as
the netprintf debugging function.

2.3 Downloading and Managing Student
Kernels

To boot the student OSKit kernels we employ a mod-
ified version of the GRUB (v0.97) boot loader on each
node. The modified boot loader is written to a floppy
disk (or optionally the node’s hard drive), which is
then booted each time the node is powered up. Upon
booting, GRUB sends a packet to the server inform-
ing the node control daemon (tinkercontroller) that
it is now operational and waiting to boot a kernel.
When a student decides to boot a kernel, the kernel
is sent through the student interface (tinkerboot) to
(tinkercontroller), which saves the kernel to a special
directory. Tinkercontroller then sends a special sig-
nal to whichever node is waiting (a node is chosen
more or less at random). The selected node’s GRUB
then processes the signal, which contains the name of
the kernel and some parameters to pass to the kernel
when booting it. GRUB then uses TFTP to retrieve
the kernel over the administrative network.

Tinkercontroller (the node control daemon) is the
heart of the software side of TinkerNet. This pro-
gram, written in Python, acts as a mediator between
students, administrators, and the TinkerNet nodes.
It is Tinkercontroller’s responsibility to keep track of
which nodes are free, waiting, and missing, to trans-
fer kernels, to log debug data, and to relay both stu-
dent and admin commands to the nodes. These are
tasks that in general could be handled by separate
programs, but since they would be accessing a com-
mon database of information, it is easier to create
threads that handle specific actions. For example any
time a student boots a kernel a new thread is spun
off to handle the debugging information for that stu-
dent and node. The thread is then killed off when the
student releases the kernel, and the node is rebooted.

2.4 Student Interface

The student interface, (Figure 2) tinkerboot has been
completely rewritten to use wxPython, the Python
version of the popular wxWidgets library, instead of
Tk for the interface. New features for the interface in-
clude an integrated debug log (the old version opened
a separate xterm window), and the ability to send cus-
tom packets (UDP packets containing student speci-
fied data).

2.5 Administrative Interface

The administrative interface, (Figure 3) tinkeradmin
is a new addition to TinkerNet. It allows an ad-
ministrative user (multiple copies of tinkeradmin can
be run without interfering) to reboot each node, and
more importantly to see the status of each node: the
current user, percentage of packet loss, boot status,
MAC addresses, and node IP address. The adminis-
trative user also has access to the debug log of each
node, making it easier for a lab assistant to help stu-
dents debug their networking code.

The tinkeradmin program connects to tinkercon-
troller over two different ports. One port is used to
send status data and processes input. The other port
receives commands from tinkeradmin and is authenti-
cated to prevent malicious users from gaining control
over the nodes.

3 New Features

Besides tinkeradmin we have made a number of signif-
icant improvements to the system. There have been
a handful of changes that improve the stability of the
student kernels. We have updated all of the interfaces



Figure 2: Tinkerboot Interface

Figure 3: Tinkeradmin Interface



to be more usable and to use more modern GUI sys-
tems. Perhaps of most interest are two new features:
security features and an administrative ability to add
random packet loss on the network,

3.1 Security

One feature that was sorely lacking2 in TinkerNet is
security. The nodes are generally controlled by send-
ing UDP packets to known ports for administrative
functions like rebooting a node in use, sending boot-
up instructions, and acknowledging netprintf mes-
sages. Since there was no authentication, any student
that knew the port numbers (which could be gathered
by running tcpdump) could conceivably cause some
annoyance by rebooting the machines of other stu-
dents. We have encountered students that have dis-
covered these port numbers, but we have never seen
or heard of students actually being malicious. Al-
though our students may be well behaved, building
in some security measures seemed necessary before
widespread deployment.

Security for TinkerNet is now accomplished in two
ways: tinkeradmin replaces all of the old secret loop-
back services, and uses PGP(Garfinkel 2002) for au-
thentication. Then, to prevent students from directly
sending the control packets on the admin network,
we added the restriction that administrative control
packets are only processed if they are coming from
a privileged port. Since non-root users cannot bind
to such ports, and the server is not routing outside
traffic into the admin or warzone networks, the only
way to control the nodes is from tinkeradmin, and the
only way to use tinkeradmin is to have access to the
TinkerNet administrator’s PGP key and the password
needed to access it.

3.2 Packet Loss

One exciting new feature in TinkerNet is the ability
for the administrator to configure the system to cause
random packet loss. Within the tinkeradmin inter-
face there is now an option for enabling packet loss.
When enabled, a simple slider controls the percent-
age packet loss experienced on the network. This is
implemented by communicating that percentage with
the administrative portion of all booted nodes. When
packet loss is enabled, the node’s administrative code
will compare the loss level with a random number and
use this to determine whether or not to enqueue the
packet for the student code to process or not. Thus
all packets arrive at their destination, and we can en-
able this packet loss without complex hardware, but
we can still produce the effect of having a lossy net-
work. From the point of view of the student code, the
packet never arrives. This allows for advanced end-of-
semester labs that focus on protocols that work in the
face of packet loss and adverse network conditions.

By default packet dropping is off, and can only be
modified from within tinkeradmin. A default value
for packet loss can be set in the configuration file for
tinkercontroller, but we assume that most users will
leave this at zero. Within the tinkeradmin interface,
packet dropping can be toggled, and the amount of
packet loss modified by a slider. Currently only inte-
ger values between 0 and 100 percent are accepted.

4 Laboratory Experiments

We have created a semester-long set of laboratory ex-
periments focused on student development of a fully

2Although as far as we know NEVER exploited in six TinkerNet
course offerings

functional network protocol stack. In this set of ex-
periments each new experiment builds on previous
experiments. We begin with an experiment to review
some issues around programming in C3, and then
work our way up from raw Ethernet packets to fully
functional IP and then UDP. The final two experi-
ments have students create their protocol and imple-
ment Blast (Peterson & Davie 2003), a microprotocol
which fragments and reassembles large messages. We
believe that there are many other experiments which
could be created, but that a full implementation of
TCP would require much more time than is available
in a semester. We envision TinkerNet being used in
advanced courses to implement application protocols
and/or network devices, such as a router.

4.1 Current Set of Laboratory Experiments

• Lab 1: The goal of this assignment is to gain pro-
ficiency with C programming, and to (begin to)
learn the differences between C and C++. There
are also a few exercises that address networking
in general, focusing on concepts like byte order-
ing and use of structs.

• Lab 2: The goals of this assignment are to gain
familiarity with the lab environment, to success-
fully compile a TinkerNet kernel, and to imple-
ment functions that send and receive Ethernet
packets.

• Lab 3: The goals of this assignment are to gain
more familiarity with the lab environment, to
successfully compile a TinkerNet kernel, and to
implement functions that send and receive ARP
packets.

• Lab 4: The goals of this assignment are to imple-
ment an end-host version of the Internet Proto-
col. The implementation must be able to recog-
nize IP packets addressed to your IP address and
ignore those addressed to other IP addresses.

• Lab 5: The goals of this assignment are to im-
plement the sending and receiving of UDP data-
grams, as well as a simple service to test this
functionality.

• Lab 6: The goals of this assignment are to de-
sign, to create, and to implement a peer-to-peer
protocol that will be used to locate other hosts
on the network running the same protocol. Using
this protocol, two machines will simultaneously
boot on TinkerNet, locate each other, and then
transmit data between themselves.

• Lab 7: The goals of this assignment are: to
implement the microprotocol Blast. Blast frag-
ments and reassembles large messages and at-
tempts to recover from dropped fragments by re-
transmitting them.

5 Current Deployment and Interest

Currently both Harvey Mudd College and University
of California, Riverside have TinkerNet implementa-
tions. TinkerNet has been used in six networking
course offerings with up to 65 students in a section.
We have found that having one node for two students
is an adequate size system, as students spend most
of their time writing code and compiling, not test-
ing. This can be further reduced to one node for
every three or four students if students work on the

3In the standard undergraduate curriculum at both UCR and
HMC, the majority of the programming is in C++ and many stu-
dents will be unfamiliar with the differences.



project in pairs with a Pair Programming paradigm.
Operationally, we have a set laboratory time when
students must be present. These gatherings are mon-
itored by faculty and tutors. But we also make the
system available 24/7 with students able to email fac-
ulty and tutors with problems.

A large part of our recent activity was to create
documentation such that other schools could imple-
ment TinkerNet. This documentation has been used
by two undergraduates to build a new TinkerNet
(server and 8 nodes). These students were unfamil-
iar with TinkerNet, either as users or administrators.
They were only allowed to communicate by email with
the TinkerNet team. The only documentation avail-
able to them was found on the TinkerNet web page.
We used their comments and questions to improve
the documentation, hopefully making it clear enough
that anyone can create a TinkerNet.

The building of the new TinkerNet progressed
through the following steps:

• Install and configure a Linux version on the
server. This machine needs to have 3 network
interfaces. Debian was used and this took about
3 hours.

• Build a rack of machines to act as nodes. Since
each machine needs 2 network interfaces and var-
ious cables must be installed, this activity took
the longest time, approximately 1.5 days.

• Create and install the boot disks on all the nodes.
Given the detailed instructions in the documen-
tation, this activity was done rather quickly, 2
hours.

• Install and configure all TinkerNet software on
the server. This took about 3 hours.

6 Availability

TinkerNet is now available to anyone interested in cre-
ating their own TinkerNet. All pertinent information
can be found at: http://www.cs.hmc.edu/tinkernet.

7 Related Work

TinkerNet, is a low-cost, flexible, stand-alone lab-
oratory for running networking experiments, which
combines ideas from various papers (Mayo & Kearns
1998) (Levin 1997) (Chapman & Carlisle 1997)
(Rickman, J., et. al. 2001); with open source software
(Flux Group 2002) (Ford, B., et. al. 1997) (Nelson &
M. 2000). Comer’s (Comer 2002) networking labo-
ratory description is similar to TinkerNet, but dif-
fers in significant ways. The most significant being
Comer’s need for special hardware (Console Multi-
plexor and Reset Controller) and his use of an oper-
ating system with limited features and accessibility,
XINU (Comer 1984). TinkerNet is based on commod-
ity hardware and the readily-available OSKit(Flux
Group 2002)(Ford, B., et. al. 1997), Linux, and GNU
software. Our software choices are more widespread
within the computing community, and thus Tinker-
Net will both benefit from the use of these other
projects and have more acceptance because it involves
well known and easily available technology. An addi-
tional advantage of the TinkerNet approach is that
it is accessible even to those institutions (e.g., un-
dergraduate institutions) that do not have on-going
research in the area of computer networks.

8 Future Work

We recognize that maintenance of the TinkerNet code
base and documentation will be a continuing activity.
We view these efforts as a necessary part of sharing
TinkerNet. We also plan on developing more labora-
tory experiments. It is our hope that over the next
couple of years TinkerNet can become a part of many
networking courses. Our documentation is currently
published as a Wiki, in the hopes of fostering a user
and development community around the project as it
continues to mature.

We also are considering expanding TinkerNet in
other directions. We believe that without too much
effort TinkerNet can become a basis for an operating
system laboratory. We are also considering using the
TinkerNet approach to teach systems administration.

The 2002 SIGCOMM Workshop on Educational
Challenges for Computer Networking (Kurose, J., et.
al. 2002) exposed many issues related to teaching
computer networking: top-down versus bottom-up
approach; one course versus many courses; required
course versus elective course; and undergraduate ver-
sus graduate emphasis. Throughout the workshop
discussions one recurring theme emerged: the need for
a laboratory to augment lecture. While the principles
of networking can be presented in lectures, the group
recognized that real understanding occurs when stu-
dents actively develop and evaluate systems based
on those principles – there is no good substitute for
hands-on experience with real networks (Joint Cur-
riculum Task Force 1991) (Joint Task Force 2001). All
of the discussed laboratories shared a few common is-
sues: initial cost of the laboratory and cost of contin-
ued maintenance. TinkerNet uses well-known open-
source software and inexpensive “obsolete” hardware
which we believe mitigates these issues. TinkerNet
represents what we believe is a novel and powerful
environment for teaching undergraduates about the
details of networking and network protocols.

9 Acknowledgments

We would like to thank Chris Lundberg and Roy Shea
for their initial work on the TinkerNet project, as well
as Dr. Mart Molle for his interest and support.

References

Aburdene, M., et. al. (2002), An undergraduate net-
worked system laboratory, in ‘Proceedings of the
2002 American Society for Engineering Educa-
tion Annual Conference and Exposition, Session
2258’, ASEE.

Chapman, R. & Carlisle, W. H. (1997), A linux-based
lab for operating systems and network courses,
in ‘Linux Journal’.

Christopher, W. A., Procter, S. J. & Anderson,
T. E. (1993), The nachos instructional operating
system, in ‘USENIX Winter’, pp. 481–488.
URL: http://citeseer.csail.mit.edu/
christopher93nachos.html

Comer, D. E. (1984), Operating System Design, The
XINU Approach, Prentice Hall. ISBN 0-13-
637539-1.

Comer, D. E. (2002), Hands on Networking with In-
ternet Technologies, Prentice Hall. ISBN 0-13-
048003-7.

Donahoo, M. J. & Calvert, K. L. (2001), TCP/IP
Sockets in C, Academic Press. ISBN 1-55860-
826-5.



Erlinger, M., Molle, M., Winters, T., Shea, R. &
Lundberg, C. (2004), Tinkernet: A low-cost net-
working laboratory, in ‘Computing Education
2004, Sixth Australasian Computing Education
Conference’, ACM Press.

Flux Group (2002), ‘The oskit project’.

Ford, B., et. al. (1997), ‘The Flux OSKit: A Substrate
for Kernel and Language Research’.

Garfinkel, S. (2002), PGP: Pretty Good Privacy,
O’Reilly.

Hill, J. M. D., et. al. (2001), Using an isolated net-
work laboratory to teach advanced networks and
security, in ‘SIGCSE Bulletin’, ACM Press.

Joint Curriculum Task Force (1991), Computing Cur-
ricula 1991, ACM Press.

Joint Task Force (2001), Computing Curricula 2001
Computer Science, ACM Press.

Kurose, J., et. al. (2002), ‘Workshop on computer
networking: Curriculum designs and educational
challenges’.

Levin, M. (1997), A prototype for a data communica-
tions laboratory or a data comm lab in a closet,
in ‘ACM SICSE Bulletin’, Vol. 29, ACM Press,
pp. 179–183.

Mayo, J. & Kearns, P. (1998), A secure-networked
laboratory for kernel programming, in ‘ACM
SICSE Bulletin’, Vol. 30, ACM Press, pp. 175–
177.

Musser, D. R. & Saini, A. (1996), STL Tutorial and
Reference Guide, Addison-Wesley. ISBN 0-201-
63398-1.

Nelson, D. & M., N. Y. (2000), Teaching computer
networking using open source software, in ‘ACM
SICSE Bulletin’, Vol. 32, ACM Press.

Peterson, L. L. & Davie, B. S. (2003), Computer Net-
works, A Systems Approach, Morgan Kaufmann.
ISBN 1-55860-832-X.

Rickman, J., et. al. (2001), Enhancing the computer
networking curriculum, in ‘ACM SICSE Bul-
letin’, Vol. 33, ACM Press.


