Thoughts on Applicability

Titus Winters!

%Adobe, Inc, 104 5th Ave, 4th Floor, 10011, New York, New York, USA

1. Introduction

For the past decade, I have tried to reduce the gap between industry and
academia, attending conferences, describing industry approaches to tasks like
refactoring and testing, and leading the work on the book “Software Engineer-
ing at Google.” Even though I’'m more focused on theory than most industry
practitioners, attending ICSE or reading JSS is often frustrating. In many cases,
talks and papers seem irrelevant in practice even in these top-tier venues. Thus,
when the JSS EICs suggested writing about this applicability gap, I felt T had
to jump at the opportunity. I’ve spent the past week going over my notes from
ICSE’23 and reading a selection of recent open-access articles from JSS. What
follows here is a hopefully-constructive critique of the type of work presented
in these forums, followed by a selection of topics and research questions that
I would love to see covered in future research. My hope in writing this article
is to contribute to the badly needed discourse between research and practice,
to help bridge these domains. I certainly do not wish to single out anyone or
cast aspersions - after all, these are talks and papers that made it into top-tier
venues!

With that said, let us first look at the applicability concerns faced by aca-
demic software engineering papers.

2. Solutions Without Clear or Practical Context

At ICSE this year I remember at least one presentation on algorithms to
connect “self admitted technical debt” (a.k.a. “TODO” comments) to issues in
an issue tracker. The researchers were deploying machine learning techniques to
automate this process, and evaluating what aspects of feature selection (com-
ments, authorship, surrounding code, pull request metadata, etc) were most
relevant.

1To appear in JSS: https://doi.org/10.1016/j.jss.2024.112086

Preprint submitted to Elsevier April, 202/



Coincidentally, at roughly the same time, I got into discussions about Google
style standards for TODO statements2. Google has had a consistent internal for-
mat for many years, preferring TODO(1link to bug) - Description of issue
for new code. The new discussion focused on compatibility with external tools
and standards. Apparently the default syntax highlighting in popular source
browsers (GitHub) and some editors (XCode), assumes TODO: link to bug -
Description. We reasoned that tools will eventually converge, there’s no rea-
son to wait, and made the change. Personally, I took it as a given that any
company or OSS project that cares will have mandated a similar format.

Thus, when presented with precision/recall graphs for automatically match-
ing SATD to issues, I have to ask: isn’t there an easier way? Why ask an
algorithm to do a poor job of a task that a human can pretty obviously do
cheaply? Who would such an algorithm be for? If any team or organization
needed that matching, it would be much easier to tell developers to leave that
sort of paper trail in their TODOs. With more than a decade of involvement
in Google style discussions, I have only once heard anyone argue that such a
requirement is a problem?.

For me, this is a frequent concern for academic software engineering papers:
what kind of constraints are needed to motivate the approach being researched?
I have to imagine that if we were clearer about the assumed constraints, it
would be easier to identify the most relevant and most impactful research. Not
coincidentally, this would also make it easier for practitioners to identify what is
relevant to them. It could even motivate practitioners to re-evaluate their own
constraints, in order to adopt a valuable tool or practice that is inapplicable in
their current environment!

I highly recommend researchers consider what assumptions are needed to
motivate the problems they are investigating. Are we assuming developer be-
havior cannot be changed? Or that tests exist? Or that tests don’t exist? Are
we assuming code cannot be shared? Or cannot be rebuilt? These constraints
absolutely dominate the applicability of academic research in industry domains:
too few constraints and the results aren’t applicable, too many and the results
aren’t meaningful. Be clear about those assumptions. If strange assumptions
seem to be making the problem hard, try an easier approach®.

21 was still employed at Google at the time

3That was specifically in the discussion of disallowing TODO (username), with the notion
that some teams have many small and short-lived TODOs, and that use of an issue tracker
for that volume would be annoying. Even the primary author of that argument admitted it
was not a particularly critical debate.

4If we don’t know what assumptions are reasonable or not, surveys of the practice to
identify norms seem like a very valuable place to start! Or feel free to email me, I'm happy
to share what perspective I have.



3. Answering Research Questions that Nobody is Asking

A recent Requirements Engineering paper set out to model which prioriti-
zation criteria were most used at different phases of the software workflow, and
to discern whether those criteria change based on how far along a given feature
has progressed.

This certainly does not suffer from the same issues as my previous example.
Countless discussions and meetings happen on a daily basis, as teams decide
what to tackle next. Requirements Engineering and prioritization decisions are
quite relevant. My concern with work like this is not that the problem isn’t
legitimate, it’s that I don’t know what to do with any answers to the research
questions.

Imagine a once-in-a-lifetime miracle occurs and we discover an absolutely
perfect algorithm to describe dynamic prioritization, taking into account all
available data in our issue trackers. We validate this against not only the original
issue-tracking dataset but thousands of novel datasets, and the algorithm almost
perfectly matches behavior in the wild - only differing where human project
managers or team leads made “non-optimal” priority decisions.

Even with such a result ... what do we expect to be different in practice?
Is the intent to automate away project managers? Should we feed all of our
issue tracker state into an algorithm and get a machine-generated list of as-
signments for every developer on the team? I may suffer from a lack of vision,
but my strong suspicion is that nobody would actually do that - the amount
of supplemental information that goes into real priority decisions is substantial.
Priorities are often chosen considering things like: Who is expert on this task?
Who is going on vacation? Who is overloaded? Who has commitments to other
projects? Who are we trying to train to be able to tackle this type of task in the
future? Not only are these contextual details not present in an issue tracker,
they probably should not be.

If the statistically-impossible but best-theoretically-possible result leaves us
wondering how to apply said result, we should find more applicable avenues of
research.

4. Small Audiences or Rare Applicability

Consider a recent paper that touched on estimating error bounds in a proof-
of-concept co-simulation system. In this case, my concerns are not (purely)
whether that’s a real problem, nor what to do with the results. My issue here
is that the fraction of software engineers concerned with simulation is pretty
small in my experience. Further reducing that to people facing the need to
combine simulations running in distinct simulation environments starts seeming
vanishingly unlikely. Reducing that one more time by finding people that need
to be able to bound the magnitude of errors in such co-simulation scenarios,
and it’s clear that general applicability is unlikely.

In industry there’s a term that I'm quite fond of: the “toothbrush test.”
The most important tools, skills, and ideas are the ones used “as often as a



toothbrush.” If your chosen problem domain is applicable once a year for a
potential audience of a hundred practitioners globally, it should not be surprising
when those papers aren’t picked up by the industry.

5. Building on Unfounded Assumptions

Several recent papers concerned me by virtue of being fuzzy about what is
being used as a ground truth. Considering the Requirements Engineering work
again: do we believe that humans are making perfect decisions? If not, why
are we training an algorithm to capture that behavior? If we think humans are
actually making perfect decisions, we should probably think again.

In a recent Dependency Management paper, SemVer requirements are (un-
surprisingly) taken as inputs to the proposed dependency-selection constraints
algorithm, alongside call-graph level details. This wholly ignores the fact that
SemVer is a lossy human-generated estimate of compatibility for a given change
or release, against a generalized abstract notion of “compatibility”. This wholly
ignores Hyrum’s Law, as well as the substantially better detail available from
call-graph level detail. It also ignores basic truths about compatibility: com-
patibility is a property of a relationship, not an entity. Taking a messy, human-
generated, lossy estimate of abstract compatibility as a ground truth clearly
limits the practical utility of any downstream results. Given this, what makes
us believe that the chosen algorithm is giving “better” results in practice?

Or consider a recent paper about evaluating best practices in ML software
systems. I generally liked the work, and the inventory of potential practices
could be a valuable reference. But when it comes to validating the work, I have
concerns. Asking 7 practitioners about whether a given idea is a “best practice”
seems iffy, especially when that cohort has a median tenure under 5 years. There
are engineers with that much experience who have my complete faith, but most
don’t. Even ignoring the question of whether the practitioners are qualified to
verify the list of practices, we can’t really evaluate such things in a vacuum: of
course we would prefer to have everything in version control, more robust tests,
and better documentation. The question is not whether those practices are a
benefit, it’s whether in practice we believe it has a positive ROI for the time,
resource cost, and effort. If we present a hundred items that someone said was
a good idea, it’s reasonable to imagine universal support with no constraints or
budget.

If software engineering research is about characterizing software engineers
and their behavior, we can treat every human decision as correct. If software
engineering research is about understanding the multi-version production of
multi-version software®, the notion of ground truth correctness needs to be based

5Bonus points for readers that catch the reference to my favorite definition of software
engineering, and a mea culpa: I said for a while that this was a Dave Parnas quote but it is
in fact properly attributed to Brian Randell.


http://semver.org
http://hruymslaw.com

on what yields the best results. Again we need to be very clear about context
and external validity.

6. Academic Toys vs Industry Projects

Lastly, we certainly have to discuss scale. I admit that my years in the
industry have messed with my calibration for what counts as “a lot” of engineers,
code, data, or compute resources. Still, I suspect that the sizes presented in
many software engineering papers are too small for generality or applicability.

Reading through recent JSS papers I saw an analysis of dependency man-
agement approaches applied to four low-level packages, none of which had more
than 10 direct dependencies, with codebase sizes ranging from 6-116 KLoC. No
information was presented about the size of the transitive fanout, if any. Even
the lowest-level common packages I've worked with are substantially larger and
have substantially more complexity than this®. Looking at the full dependency
tree of a popular OSS desktop system, office, or graphics package would be far
more illustrative.

Going back to the Requirements Engineering example mentioned above:
methodologically, that paper was based on a single medium/large project at
one company. Is there any reason to believe those results have external valid-
ity? Was the project successful? Is it representative of the industry at large?

While I have no reason to disbelieve the statistical analyses presented in these
papers, the size of datasets, size of programs, size of developer populations, etc.,
all seem too small. Even if all the other risks listed here are addressed, scale is
a substantial concern. And unfortunately, it is a concern that I have few ideas
how to manage: industry is notoriously private, for good reason, but without
industry-sized problems and populations to study, it’s hard to draw meaningful
conclusions.

7. The Meta Question: What Are We Studying?

Lurking beneath several of the above scenarios is an existential question for
the research community: is Software Engineering research studying the artifacts
and practitioners of software, simply to describe them as-is, or is it contributing
to theory building to improve software practices, tools and processes?

If we believe that practice and practitioners are immutable subjects to be ap-
proached non-intrusively, that is inherently going to limit applicability and rel-
evance. If we reconceptualize software engineering research as providing theory
and evidence for tools, techniques, and practices that lead to better outcomes,
that will produce far more applicable results.

6See Abseil in C++ or Guava in Java.



8. What Should We Be Researching?

Taking the above concerns into account, the domains I find most interesting
are the broad and shallow topics in software engineering. I'd be thrilled to see a
general trend toward more overall study and understanding of the broad field,
rather than narrow focus on a tightly-focused topic. Broad areas that deserve
attention include:

e Productivity

e Testing / defect detection

e Code review

e Prioritization / requirements planning
e Design

e Communication / collaboration

e Version control

e Dependency management

e Release management

e Reliability

These are topic areas that matter to most engineers, most of the time. Many
of these topics pass the toothbrush test. There are endless unanswered ques-
tions in these domains, as well a staggering amount of misunderstanding and
misinformation among both practitioners and researchers. A substantial shift in
priority toward these topics would be wonderful, and (I suspect) would majorly
improve the applicability of research in this domain.

I cannot claim to have a complete listing of relevant research questions in
those topics. However, we certainly can zoom in from those broad topics to
some research questions that I would be thrilled to have answers to:

e What’s the project size/scale/lifespan payoff rate for automated unit test-
ing? That is, how would we describe the tipping point where (on average)
it’s more efficient to write tests than not? Most engineers I have asked
estimate that it’s on the order of 1 engineer x week, but a convincing
study would be useful. While automated testing and continuous integra-
tion have had substantial uptake in the industry, it is by no means rare
to still encounter organizations with little to no testing or test automa-
tion. Providing additional citations and evidence on the efficacy of this
approach would be hugely impactful.



e What are the pros and cons of adopting code review policies? There
have been horror stories of teams with toxic (or entirely perfunctory) code
review cultures, but there are also organizations where it’s a substantial,
and important, piece of the software workflow.

e What fraction of SemVer constraints are bogus? As Russ Cox points out,
most specified SemVer dependencies are decided based on whatever the
developer happened to have installed at the time. That isn’t actually
evidence that an earlier version wouldn’t work. Nor is the removal of an
unused API evidence that a major version is incompatible’. The only
truth in these “compatibility” discussions is to build the code and run the
tests®.

e What are the generally accepted best practices (version control, CI, code
review, etc)? How consistent is adoption of those practices? Do adoption
rates or practices differ by language or industry? How are those changing
over time?

e What measures of code quality match human intuition? How much can
that be automated, if at all? (And if we automate that, do we run afoul
of Goodhart’s Law?)

e What proxies do we have for engineering productivity? In which domains
do different proxies apply?

That final question is perhaps the most important. Although we likely take
it too far and are too reductive in our approach, industry practice is sensibly
focused on impact and good return on investment. Anything that academic
software engineering research can do that helps improve outcomes, reduce costs,
improve efficiency, or measure productivity has a decent chance of seeing some
uptake. If we want to make research venues like JSS generally applicable to
industry practitioners, the density of papers that help with common real world
tasks needs to increase. As it stands, the ROI for reading through these papers
is generally lacking. If I (and all the academia-adjacent practitioners I count
as friends and colleagues) can’t justify spending the time on that reading, that
tells us everything we need to know about the current gap between academia
and industry.

"Removing an unused API is a perfectly compatible change.

8My intuition is that a majority of the time that we are dealing with “dependency hell”
is due to irrelevant SemVer constraints. The industry as a whole will be grateful if someone
can prove that the current path is silly.


https://research.swtch.com/vgo-mvs
https://en.wikipedia.org/wiki/Goodhart%27s_law

	Introduction
	Solutions Without Clear or Practical Context
	Answering Research Questions that Nobody is Asking
	Small Audiences or Rare Applicability
	Building on Unfounded Assumptions
	Academic Toys vs Industry Projects
	The Meta Question: What Are We Studying?
	What Should We Be Researching?

