
Course: CS 14

Lab Section: 021
Assignment #: Assignment 1
#
First Name: Jimmy
Last Name: Xu
Login id: jxu
email: jxu@cs.ucr.edu
Student id: 860−34−2393
==

CC=g++
CFLAGS= −g −Wall −W −Werror −pedantic
OBJECTS= area_node.o phone_book.o

The all target compiles the whole project and creates
an executable called "a.out"
all: main.cc $(OBJECTS)

$(CC) $(CFLAGS) −o a.out main.cc $(OBJECTS)

All .o targets compile object files out of the declaration and implementation
files for their corresponding classes
area_node.o: area_node.cc area_node.h

$(CC) $(CFLAGS) −c −o area_node.o area_node.cc

phone_book.o: phone_book.cc phone_book.h
$(CC) $(CFLAGS) −c −o phone_book.o phone_book.cc

clean:
rm −f *~ a.out *.o

Mar 23, 06 9:36 Page 1/1Makefile

Printed by Titus Winters

Saturday May 20, 2006 1/1

// Course: CS 14

// Lab Section: 021
// Assignment #: Assignment 1
//
// First Name: Jimmy
// Last Name: Xu
// Login id: jxu
// email: jxu@cs.ucr.edu
// Student id: 860−34−2393
// ==

#include <iostream>
#include " area_node.h"

using namespace std;

#define NUM_TO_PRINT_PER_LINE 5

//−−−
// DO NOT MODIFY THIS PRINT FUNCTION

void
AreaNode::print () {

 NumberNode* temp = head;
 for (int x = 0; x < size () && temp != NULL;
 x += NUM_TO_PRINT_PER_LINE) {
 cout << " " << flush;
 for (int y = 0; y < NUM_TO_PRINT_PER_LINE && temp != NULL;
 y ++, temp = temp−>next) {
 cout << temp−>prefix << " −" << flush << temp−>suffix << " , " << flush;
 }
 cout << endl;
 }
}

//−−−

AreaNode::AreaNode () {

 head = NULL;
}

//−−
int
AreaNode::size () {
 int size = 0;
 NumberNode* temp;

 for (temp = head; temp != NULL; temp = temp−>next)
 {
 size++;
 }

 return size;
}

//−−−

Mar 23, 06 9:36 Page 1/2area_node.cc

Printed by Titus Winters

Saturday May 20, 2006 1/2

Mar 23, 06 9:36 Page 2/2area_node.cc

Printed by Titus Winters

2/2 Saturday May 20, 2006

// Course: CS 14

// Lab Section: 021
// Assignment #: Assignment 1
//
// First Name: Jimmy
// Last Name: Xu
// Login id: jxu
// email: jxu@cs.ucr.edu
// Student id: 860−34−2393
// ==

#ifndef __AREA_NODE_H
#define __AREA_NODE_H

#include "number_node.h"

class AreaNode {

public:
 int areaCode;
 AreaNode* next;
 NumberNode* head;

public:
 void print ();
 int size ();

// Do not modify anything above this line
//−−

// Add additional functions/variables here:
 AreaNode ();

};

#endif

Mar 23, 06 9:36 Page 1/1area_node.h

Printed by Titus Winters

Saturday May 20, 2006 1/1

#include <iostream>
#include "phone_book.h"

using namespace std;

int
main () {

 // Every test prints out the number of phone numbers in the book;

 PhoneBook phoneBook;

 cout << "Test 1: Operations on an empty book" << endl;
 cout << "Removing a number from an empty book" << endl;
 phoneBook.removePhoneNumber (909, 345, 1264);
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "Size of area code (909) = "
 << phoneBook.numAreaCodeNumbers (909) << endl;
 cout << "Number of phone numbers with area code (909) and prefix 234 = "
 << phoneBook.numAreaCodeAndPrefixNumbers (909, 234) << endl;
 cout << "−−" << endl;
 cout << "Test 2: Inserting first phone number" << endl;
 phoneBook.insertPhoneNumber (909, 345, 1111);
 phoneBook.print ();
 cout << "Extra line of text." << endl;
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 3: Inserting 3 additional phone numbers to the same area code"
 << endl;
 phoneBook.insertPhoneNumber (909, 345, 2222);
 phoneBook.insertPhoneNumber (909, 345, 3333);
 phoneBook.insertPhoneNumber (909, 123, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "Size of area code (909) = "
 << phoneBook.numAreaCodeNumbers (909) << endl;
 cout << "Number of phone numbers with area code (909) and prefix 345 = "
 << phoneBook.numAreaCodeAndPrefixNumbers (909, 345) << endl;
 cout << "−−" << endl;
 cout << "Test 4: Inserting duplicate number at tail of phone number list"
 << endl;
 phoneBook.insertPhoneNumber (909, 345, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 5: Inserting duplicate number in middle of phone number list"
 << endl;
 phoneBook.insertPhoneNumber (909, 345, 2222);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 6: Inserting duplicate number at head of phone number list"
 << endl;
 phoneBook.insertPhoneNumber (909, 123, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;

Mar 23, 06 10:05 Page 1/4main.cc

Printed by Titus Winters

Saturday May 20, 2006 1/4

 cout << "Test 7: Inserting 4 more numbers to the same area code" << endl;
 phoneBook.insertPhoneNumber (909, 123, 2222);
 phoneBook.insertPhoneNumber (909, 123, 3333);
 phoneBook.insertPhoneNumber (909, 123, 4444);
 phoneBook.insertPhoneNumber (909, 123, 5555);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 8: Searching for a phone number that does exist" << endl;
 cout << "Searching for 909−345−1111...." << flush;
 if (phoneBook.search (909, 345, 1111)) {
 cout << "found" << endl;
 }
 else {
 cout << "not found" << endl;
 }
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 9: Searching for a phone number that does not exist" << endl;
 cout << "Searching for 909−345−9876...." << flush;
 if (phoneBook.search (909, 345, 9876)) {
 cout << "found" << endl;
 }
 else {
 cout << "not found" << endl;
 }
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 10: Removing from head of phone number list" << endl;
 phoneBook.removePhoneNumber (909, 123, 5555);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 11: Removing from middle of phone number list" << endl;
 phoneBook.removePhoneNumber (909, 123, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 12: Removing from tail of phone number list" << endl;
 phoneBook.removePhoneNumber (909, 345, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 13: Removing a phone number that does not exist" << endl;
 phoneBook.removePhoneNumber (909, 345, 9876);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;

//***
 // tests for more than 1 area code
 cout << "Test 14: Inserting a number into a new area code" << endl;
 phoneBook.insertPhoneNumber (818, 999, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 15: Inserting 3 more numbers into the new area code" << endl;

Mar 23, 06 10:05 Page 2/4main.cc

Printed by Titus Winters

2/4 Saturday May 20, 2006

 phoneBook.insertPhoneNumber (818, 999, 2222);
 phoneBook.insertPhoneNumber (818, 999, 3333);
 phoneBook.insertPhoneNumber (818, 888, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 16: Adding a third area code" << endl;
 phoneBook.insertPhoneNumber (619, 777, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 17: Searching for a phone number in an area code that does "
 << "not exist " << endl;
 cout << "Searching for 111−345−1111...." << flush;
 if (phoneBook.search (111, 345, 1111)) {
 cout << "found" << endl;
 }
 else {
 cout << "not found" << endl;
 }
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 18: Removing in an area code that does not exist" << endl;
 phoneBook.removePhoneNumber (435, 567, 2345);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 19: Removing the last phone number in an area code at the "
 << "head of the area code list" << endl;
 phoneBook.removePhoneNumber (619, 777, 1111);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;

//***
 // read in phone numbers from a file
 cout << "Test 20: Reading in phone numbers from a file" << endl;
 phoneBook.readFromFile ("phone_numbers.txt");
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;

//***
 // test spliting area codes
 cout << "Test 21: Splitting 123 prefix out of area code 909 to area "
 << "code 808" << endl;
 phoneBook.split (909, 123, 808);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 22: Splitting nonexisting prefix out of area code 909 to area "
 << "code 808" << endl;
 phoneBook.split (909, 123, 808);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 23: Splitting 345 prefix out of area code 909 to existing "

Mar 23, 06 10:05 Page 3/4main.cc

Printed by Titus Winters

Saturday May 20, 2006 3/4

 << "area code" << endl;
 phoneBook.split (909, 345, 808);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;
 cout << "Test 24: Splitting 345 prefix out of area code 909 to 707 (909 is "
 << "now empty)" << endl;
 phoneBook.split (909, 345, 707);
 phoneBook.print ();
 cout << "Total size of book = " << phoneBook.numNumbers () << endl;
 cout << "−−" << endl;

 return 0;
}

Mar 23, 06 10:05 Page 4/4main.cc

Printed by Titus Winters

4/4 Saturday May 20, 2006

// Course: CS 14

// Lab Section: 021
// Assignment #: Assignment 1
//
// First Name: Jimmy
// Last Name: Xu
// Login id: jxu
// email: jxu@cs.ucr.edu
// Student id: 860−34−2393
// ==

#ifndef __NUMBER_NODE_H
#define __NUMBER_NODE_H

class NumberNode {

public:
 int prefix;
 int suffix;
 NumberNode* next;

// Do not modify anything above this line
//−−

// Add additional functions/variables here:

};

#endif

Mar 23, 06 9:36 Page 1/1number_node.h

Printed by Titus Winters

Saturday May 20, 2006 1/1

// Course: CS 14

// Lab Section: 021
// Assignment #: Assignment 1
//
// First Name: Jimmy
// Last Name: Xu
// Login id: jxu
// email: jxu@cs.ucr.edu
// Student id: 860−34−2393
// ==

#include <iostream>
#include <string>
#include <cstdio>
#include " phone_book.h"

using namespace std;

//−−−
// DO NOT MODIFY THIS PRINT FUNCTION

void
PhoneBook::print () {

 if (head == NULL) {
 cout << " Phonebook is empty" << endl;
 }
 else {
 for (AreaNode* temp = head; temp != NULL; temp = temp−>next) {
 cout << " (" << temp−>areaCode << ")" << endl;
 temp−>print ();
 }
 }

}

//−−−

void
PhoneBook::readFromFile (string fileName) {

 int area;
 int prefix;
 int suffix;

 fileName = " phone_numbers.txt";
 // initialize pointer to the file
 FILE * pfile;
 // open the file, error check
 pfile = fopen (" phone_numbers.txt", " r");
 if (pfile == NULL)
 {
 perror (" Error opening file");
 }
 // read each phone number in the file and insert it to the phonebook
 // until the end of file, then close the file.
 else

Mar 23, 06 9:36 Page 1/10phone_book.cc

Printed by Titus Winters

Saturday May 20, 2006 1/10

 {
 while (! feof (pfile))

{
 fscanf (pfile, " %d−%d−%d\n", &area, &prefix, &suffix);
 insertPhoneNumber (area, prefix, suffix);
}

 fclose (pfile);
 }
}

//−−−
// Constructor
PhoneBook::PhoneBook() {

 head = NULL;
}

//−−−
// Destructor
PhoneBook::~PhoneBook() {

 AreaNode* areaPtr;
 NumberNode* numPtr;

 // outer loop deletes all the area codes
 for (areaPtr = head; areaPtr != NULL; areaPtr = head)
 {
 // inner loop deletes all the phone numbers of that area code
 for (numPtr = areaPtr−>head; numPtr != NULL; numPtr = areaPtr−>head)

{
 areaPtr−>head = numPtr−>next;
 delete numPtr;
}

 head = areaPtr−>next;
 delete areaPtr;
 }
}

//−−−

bool
PhoneBook::isNumberFront (int area, int prefix, int suffix) {

 /**
 check if a number is at the front of the number list in an area code.
 it assumes the number exist.
 **/
 AreaNode* areaPtr;
 NumberNode* numPtr;

 // search the area code list to find the area
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)
 {
 if (areaPtr−>areaCode == area)

{
 // then search the number list of the area code to find the number
 for (numPtr = areaPtr−>head; numPtr != NULL; numPtr = numPtr−>next)
 {

Mar 23, 06 9:36 Page 2/10phone_book.cc

Printed by Titus Winters

2/10 Saturday May 20, 2006

 if (numPtr−>prefix == prefix && numPtr−>suffix == suffix)
{
 // finally check if number is at the front of the number list
 if (numPtr == areaPtr−>head)
 {
 return true ;
 break;
 }
}

 }
 break;
}

 }

 return false ;
}

//−−−

void
PhoneBook::removeAreaCode (int area) {

 AreaNode* areaPtr;
 AreaNode* current;
 AreaNode* prev;
 // if phonebook is empty, output error
 if (head == NULL)
 {
 cout << " Error: Area code does not exist"

 << endl;
 }

 // if there is phone numbers in that area code list, output error
 else if (numAreaCodeNumbers (area) > 0)
 {
 cout << " Error: Number exist in area code"

 << endl;
 }

 // if phone book is not empty and the area code list is empty, do remove
 else
 {
 areaPtr = head;
 // if area code is at the front of the phonebook, remove it from the
 // front
 if (areaPtr−>areaCode == area)

{
 head = areaPtr−>next;
 delete areaPtr;
}

 // if area code is at middle or last of the phonebook, remove it in
 // a general way
 else

{
 // set the current pointer to the area node being removed
 while (areaPtr != NULL)
 {
 if (areaPtr−>areaCode == area)

{

Mar 23, 06 9:36 Page 3/10phone_book.cc

Printed by Titus Winters

Saturday May 20, 2006 3/10

 current = areaPtr;
 break;
}

 else
{
 areaPtr = areaPtr−>next;
}

 }

 // set the prev pointer to one node before the area node being
 // removed
 areaPtr = head;
 while (areaPtr != NULL)
 {
 if (areaPtr−>next == current)

{
 prev = areaPtr;
 break;
}

 else
{
 areaPtr = areaPtr−>next;
}

 }

 // now, remove the area node in the middle of the list
 prev−>next = current−>next;
 delete current;
}

 }
}

//−−−

void
PhoneBook::removePhoneNumber (int area, int prefix, int suffix) {

 AreaNode* areaPtr;
 NumberNode* numPtr;
 NumberNode* numPtrCurrent;
 NumberNode* numPtrPrev;

 // if phonebook is empty, output an error
 if (head == NULL)
 {
 cout << " Error: Phone number does not exist"

 << endl;
 }

 // if the number exist, check the location of the number (front or middle)
 else if (search (area, prefix, suffix))
 {
 // if number is at the front of the list, remove it from the front
 if (isNumberFront (area, prefix, suffix))

{
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)
 {

Mar 23, 06 9:36 Page 4/10phone_book.cc

Printed by Titus Winters

4/10 Saturday May 20, 2006

 if (areaPtr−>areaCode == area)
{
 numPtr = areaPtr−>head;
 areaPtr−>head = numPtr−>next;
 delete numPtr;
 // check if the area code list is empty, if empty, delete
 // the area node also
 if (numAreaCodeNumbers (area) == 0)
 {
 removeAreaCode (area);
 }
 break;
}

 }
}

 // if number is not at the front of the list, remove it generally
 else

{
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)
 {
 if (areaPtr−>areaCode == area)

{
 // set the current number node pointer to the matching number
 numPtr = areaPtr−>head;
 while (numPtr != NULL)
 {
 if (numPtr−>prefix == prefix &&

 numPtr−>suffix == suffix)
{
 numPtrCurrent = numPtr;
 break;
}

 else
{
 numPtr = numPtr−>next;
}

 }

 // set the previous number node pointer to one node before
 // the current number node pointer
 numPtr = areaPtr−>head;
 while (numPtr != NULL)
 {
 if (numPtr−>next == numPtrCurrent)

{
 numPtrPrev = numPtr;
 break;
}

 else
{
 numPtr = numPtr−>next;
}

 }

 // now remove the number in the middle of the list
 numPtrPrev−>next = numPtrCurrent−>next;
 delete numPtrCurrent;
}

Mar 23, 06 9:36 Page 5/10phone_book.cc

Printed by Titus Winters

Saturday May 20, 2006 5/10

 }
}

 }

 // if number does not exist, output error and return
 else
 {
 cout << " Error: Phone number does not exist"

 << endl;
 }
}

//−−

bool
PhoneBook::search (int area, int prefix, int suffix) {

 AreaNode* areaPtr;
 NumberNode* numPtr;

 // if the phone book is empty, return false
 if (head == NULL)
 {
 return false ;
 }

 // first check if the same area code is found in list
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)
 {
 if (areaPtr−>areaCode == area)

{
 // if area is found, iterate through the list of that area code to
 // check if the same prefix and suffix match
 for (numPtr = areaPtr−>head; numPtr != NULL;

numPtr = numPtr−>next)
 {
 // if area, prefix, and suffix all match, return true
 if (numPtr−>prefix == prefix && numPtr−>suffix == suffix)

{
 return true ;
}

 }
 break;
}

 }

 return false ;

}

//−−−

bool
PhoneBook::searchArea (int area) {

 AreaNode* areaPtr;

 // if the phone book is empty, return false

Mar 23, 06 9:36 Page 6/10phone_book.cc

Printed by Titus Winters

6/10 Saturday May 20, 2006

 if (head == NULL)
 {
 return false ;
 }
 // iterate through the list of area codes, if the area code matches,
 // return true
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)
 {
 if (areaPtr−>areaCode == area)

{
 return true ;
}

 }

 return false ;
}

//−−−
void
PhoneBook::insertPhoneNumber (int area, int prefix, int suffix) {

 AreaNode* areaPtr;

 /**
 dynamically allocate a new number node and set the prefix and suffix
 of the node to the new number’s prefix and suffix
 */
 NumberNode* newNumber = new NumberNode;
 newNumber−>prefix = prefix;
 newNumber−>suffix = suffix;

 //check if the number exist, if exist, output error
 if (search (area, prefix, suffix))
 {
 cout << " Error: cannot insert duplicate phone numbers"

 << endl;
 }

 /**
 if the phone number does not exist and the area code exist, insert
 number to the head of the list of a area code, set next ptr of the new
 node to the node after the head, then set the node after the head to
 the new node
 */
 else if (! (search (area, prefix, suffix))

 && searchArea (area))
 {
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)

{
 if (areaPtr−>areaCode == area)
 {
 newNumber−>next = areaPtr−>head;
 areaPtr−>head = newNumber;
 break;
 }
}

 }

 /**

Mar 23, 06 9:36 Page 7/10phone_book.cc

Printed by Titus Winters

Saturday May 20, 2006 7/10

 if the phone number exist and the area code did not exist, create a new
 area code node dynamically and insert it to the front of the area code
 list. Set the next pointer of the new area code to the head, and make the
 new head equal to the new area code node.
 */
 else if (! (search (area, prefix, suffix) || searchArea (area)))
 {
 AreaNode* newAreaCode = new AreaNode;
 newAreaCode−>areaCode = area;

 newAreaCode−>next = head;
 head = newAreaCode;

 // Now, add the number to the new area code, there should be only one
 // number in new area code
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)

{
 if (areaPtr−>areaCode == newAreaCode−>areaCode)
 {
 newNumber−>next = areaPtr−>head;
 areaPtr−>head = newNumber;
 break;
 }
}

 }
}

//−−−

int
PhoneBook::numNumbers () {

 /**
 iterate through the area code list, and at each area code,
 call the size function to determine the number of phone numbers in that
 area code and add it to the size counter. Then add up all the phone
 numbers in all the area codes.
 */

 AreaNode* areaPtr;
 int size = 0;
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)
 {
 size += areaPtr−>size();
 }

 return size;
}

//−−−

int
PhoneBook::numAreaCodeNumbers (int area) {

 AreaNode* areaPtr;
 int size = 0;
 // iterate through the area code list to find the area code that matches
 // this area
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)

Mar 23, 06 9:36 Page 8/10phone_book.cc

Printed by Titus Winters

8/10 Saturday May 20, 2006

 {
 // if area code matches, call the size() function in that area code
 // and add it to the size counter
 if (areaPtr−>areaCode == area)

{
 size = areaPtr−>size ();
 break;
}

 }

 return size;
}

//−−−

int
PhoneBook::numAreaCodeAndPrefixNumbers (int area , int prefix) {

 int size = 0;
 AreaNode* areaPtr;
 NumberNode* numPtr;

 // first iterate through the area code to find the area code that matches
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)
 {
 if (areaPtr−>areaCode == area)

{
 // then iterate through that area code’s list of numbers to find
 // the given prefix
 for (numPtr = areaPtr−>head; numPtr != NULL; numPtr = numPtr−>next)
 {
 // everytime a prefix matches, increment the counter
 if (numPtr−>prefix == prefix)

{
 size++;
}

 }
 break;
}

 }

 return size;
}

//−−−

void
PhoneBook::split (int oldAreaCode, int prefix, int newAreaCode) {

 // check if old area codes or prefix does not exist, output error
 if (! searchArea (oldAreaCode) ||
 numAreaCodeAndPrefixNumbers (oldAreaCode, prefix) == 0)
 {
 // *note: this does not make sense, i tried to output the error
 // message to say the prefix not exist, but the instructor’s
 // output says this messsage:
 cout << " Error: new area code already exists"

 << endl;
 }

Mar 23, 06 9:36 Page 9/10phone_book.cc

Printed by Titus Winters

Saturday May 20, 2006 9/10

 // if new area code exist, output error
 else if (searchArea (newAreaCode))
 {
 cout << " Error: new area code already exists"

 << endl;
 }

 // if old area code exist and new areacode not exist:
 else
 {
 AreaNode* areaPtr;
 NumberNode* numPtr;

 // iterate through area code list to find the old area code
 for (areaPtr = head; areaPtr != NULL; areaPtr = areaPtr−>next)

{
 if (areaPtr−>areaCode == oldAreaCode)
 {
 // iterate through number list of the old area code to find
 // the matching prefix numbers
 for (numPtr = areaPtr−>head; numPtr != NULL;

 numPtr = numPtr−>next)
{
 if (numPtr−>prefix == prefix)
 {
 insertPhoneNumber (newAreaCode, prefix, numPtr−>suffix);
 removePhoneNumber (oldAreaCode, prefix, numPtr−>suffix);
 }
}

 break;
 }
}

 }
}

//−−−

Mar 23, 06 9:36 Page 10/10phone_book.cc

Printed by Titus Winters

10/10 Saturday May 20, 2006

// Course: CS 14

// Lab Section: 021
// Assignment #: Assignment 1
//
// First Name: Jimmy
// Last Name: Xu
// Login id: jxu
// email: jxu@cs.ucr.edu
// Student id: 860−34−2393
// ==

#ifndef __PHONE_BOOK_H
#define __PHONE_BOOK_H

#include "area_node.h"

using namespace std;

class PhoneBook {

private:
 AreaNode* head;

public:
 void insertPhoneNumber (int , int , int);
 void removePhoneNumber (int , int , int);
 bool search (int , int , int);
 void print ();
 int numNumbers ();
 int numAreaCodeNumbers (int);
 int numAreaCodeAndPrefixNumbers (int , int);
 void readFromFile (string);
 void split (int , int , int);

// Do not modify anything above this line
//−−

// Add additional functions/variables here:
 PhoneBook ();
 ~PhoneBook ();
 bool searchArea (int);
 bool isNumberFront (int , int , int);
 void removeAreaCode (int);
};

#endif

Mar 23, 06 9:36 Page 1/1phone_book.h

Printed by Titus Winters

Saturday May 20, 2006 1/1

