
Introduction to Programming with JES

Titus Winters & Josef Spjut

October 6, 2005

1 Introduction

First off, welcome to UCR, and congratulations on becoming a Computer Engineering major.
Excellent choice.

One of the major skills you’ll be learning as a Computer Engineer is the art of programming.
Since this is very likely to be a skill that you haven’t been exposed to before, we’d like to take
this opportunity to give you a head start. Tonight, we are hoping to present you with most of the
high-level concepts from an introductory programming course all in the space of 3 hours. Sound
difficult? It won’t be. If anything, this should be a lot of fun.

1.1 JES

Tonight we are using JES, a cutting-edge tool for teaching introductory programming, and we are
going to use it to do some fun stuff with graphics. JES1 is a free implementation of the Python2

programming language, and also includes some nice tools for playing with media files like graphics
and sounds. We are only going to focus on graphics tonight.

To get started figure out how to open a terminal in the default config and type jes, and
then hit Enter. It may come up with a box asking for your registration information, you should
just hit Cancel if that happens.

JES has two main ways of writing code (we call instructions for the computer “source code” or
just “code” for short). If you are just trying stuff out, trying to see what things do, you can use
the interactive window. The interactive window is the black box at the bottom of the JES window.

If you are writing code that you want to keep, like the code you’ll turn in for the Freshman
Programming Contest, then you want to write it in the upper window. The upper window lets
you store your code to a file, or load it from a file later on. A good rule of thumb is that if you
are writing a function (which we’ll get to in Section 5), you should write it in this upper window.
Otherwise, just use the interactive window.

The rest of this handout will be organized into sections. Each section will have a few simple
examples of new commands and tools, followed by an activity for you to complete. If you finish
before everybody else, go see who needs help. You’ll learn a lot by helping others, and you may
make some new friends.

1http://coweb.cc.gatech.edu/mediaComp-plan/94
2http://www.python.org

1

2 Variables & Arithmetic

Traditionally, the first program that you should write in any language is what we call the “Hello
World” program, a simple program that prints out the friendly message “Hello World!” In the
Python programming language3 this is very easy. Type in the interactive window (the bottom
window)4:

print "Hello World!"

When you hit Enter, JES goes off to interpret what commands you gave it. In this case, it
interprets your command as an instruction to print5 the message in quotes. In Python, a bit of
text in quotes is called a “string”. You can do things with strings other than just print them. For
example, in Python you can add two strings together (concatenation) using the “+” sign. Look at
this and guess what it does before you run it:

print "Hello" + "World!"

Did you guess right? Exactly right? Notice that there is a little bit of uglyness here. Fix it
before moving on.

All better now? Good. Moving right along. What if we want to put together two strings and
save the results for later? Instead of printing the results to the screen, we can just assign the result
of mashing those strings together to a variable, like so:

x = "Hello " + "World!"
print x

Of course, if all we have to work with is text, we’re gonna be pretty limited. Python also
supports numeric calculations:

print 5 * 10
print 3 / 2
print 3.0 / 2
print 10 + 5
print 32 % 3
print 5 % 2
print 3 - 1
total = 5 + 3
print total

So we can do all sorts of math. NOTE: notice that Python rounds down if you divide whole
numbers, but does exact division if you give it at least one number with a decimal.6 Can you tell
what the % operator does? (It is related to division.)

3Remember, JES is an implementation of Python, kinda like you are a speaker of English
4For any code written in like the following, we really encourage you to type it in and make it work before continuing

on.
5To the screen, not to the printer
6Decimal numbers are called floating point numbers.

2

Variables are also useful as place holders. Can you guess what the following code does before
you type it in?

total = 5 + 3
total = total * 4
print total

2.1 Task

1. Write up a series of at least 10 steps, in English, of simple arithmetic. For example, “Start
with 4, multiply by 10, add 7, subtract 3, divide by 11, etc.”

2. What is the correct answer for your steps? Write it down and keep it to yourself.

3. Find a partner

4. Trade steps with your partner.

5. Code up your steps in JES

6. Do your answers match? Figure out who was right: your code or your partner’s math.

3

3 Images & Colors

OK, so you’re good with arithmetic and variables now. Let’s move on to something more interesting:
pictures.

First: how do we make a new picture? In JES you can use the function makePicture.

myPicture = makePicture("/home/csgrads/titus/jesPic01.jpg")
show(myPicture)

• The makePicture function takes in a string that is the path to a picture, and returns a new
picture. You can then store that picture in a variable, just like storing a string or storing the
result of some arithmetic.

• The show function takes a picture and displays it on the screen.

Since you may not always know the path to your pictures, you can also use the pickAFile
function to make a new window appear to let the user choose a file:

fileName = pickAFile()
myPicture = makePicture(fileName)
show(myPicture)

• The pickAFile function takes no parameters7 (but you do have to give it the ()’s!) and returns
a string. Since it returns a string and makePicture is expecting a string, we can actually make
this even easier:

myPicture = makePicture(pickAFile())
show(myPicture)

Also, if you don’t want to have a picture from a file, you can just use makeEmptyPicture8.

Creates an empty picture 200 pixels wide by 100 pixels high
myEmptyPicture = makeEmptyPicture(200, 100)

• The makeEmptyPicture function takes two parameters: the width and height of the new
picture to make. It returns a picture.

3.1 Task

1. Find a picture online using your web browser

2. Trade pictures with your partner either by giving them the address of the picture, or emailing
it to them

3. Use makePicture to create a new picture variable from that picture and store it

4. Call show on that picture
7Parameters are what goes inside the parenthesis after a function. If there are more than one parameter, they are

separated by commas.
8Also, any line in Python that starts with a # will be ignored. These are called comments, and are used to

communicate with a human reader rather than the computer

4

4 Drawing on Images

So we can display images, which is great, but how about actually manipulating them? Well, lets
start by making a red dot on a blank picture.

Make a new picture
newPic = makeEmptyPicture(200, 100)

Get a pixel from the middle of it
pixel = getPixel(newPic, 100, 50)

Make that pixel red
setColor(pixel, red)

Display the result
show(newPic)

This is nice, but drawing a single pixel at a time is gonna be a little tedious. We can also draw
lines, rectangles, ovals, and text.

Make a new picture
newPic = makeEmptyPicture(200, 100)

Make a white line running from upper-left to lower-right
newPic.addLine(white, 0, 0, 200, 100)

Make a blue 30x30 square whose upper-left corner is at 10, 20
newPic.addRect(blue, 10, 20, 30, 30)

Make a red oval centered at 80, 80
newPic.addOval(red, 80, 80, 20, 10)

Make a new color of mostly red and green, with a little blue
pukeColor = makeColor(196, 181, 84)

Print a friendly message in that new color
newPic.addText(pukeColor, 30, 80, "Hello UCR!")

Display the results
show(newPic)

Save the results to a new file
writePictureTo(newPic, "test.jpg")

5

Quite a few new functions here:

• The function addLine takes a color and four coordinates x1, y1, x2, y2, and draws a straight
line in that color. Note that you call this in a slightly different way than the other functions
we’ve seen so far. Don’t worry about the difference for now.

• The function addRect takes a color and four coordinates x1, y1, x2, y2, and draws a rectangle
with (x1, y1) and (x2, y2) as two opposite corners.

• The function addOval takes a color and four integers x, y, width, height. It draws an oval
whose left edge touches x, whose top edge touches y, and with the given width and height.
To make a circle, just make width and height equal.

• The function addText takes a color, two coordinates x and y, and a string. It then writes that
string starting at those coordinates in that color.

• The function makeColor takes three integers red, green, and blue, and returns a new color.
This way you can make your own colors if you know their red, green, and blue intensities! (0,
0, 0) is black, (255, 255, 255) is white, and (255, 0, 0) is red. (Note: you can also pick a color
using the pickAColor() function.)

• The function writePictureTo takes a picture and a filename and writes the picture to that file.
Be sure to include the extension “.jpg” so that other programs can recognize the file type.

4.1 Task

1. Write your name in blue in the lower-left corner of the picture your partner chose in the
previous section

2. Add a blue circle to the center of the picture. Think ahead: what do the x and y coordinates
for addOval mean?

3. Save your picture as “task4.jpg”

6

5 Loops

What if we want to do something to every pixel in a picture? For example, the following code
switches the red with the green, the green with the blue, and the blue with the red, in every pixel
in a picture.

This is how we make our own new commands (called "functions"), using
the "def" keyword. Now if we call colorSwap(newPic), it’ll make
"pic" another name for newPic, and do everything listed in this
new function.

NOTE: Indentation (spaces at the beginning of the line) are
important here!
def colorSwap(pic):
Do the following to every pixel in the picture
for pixel in getPixels(pic):

Get the color of the pixel
color = pixel.getColor()

Get the red, green, and blue values of that color
r, g, b = color.getRGB()

Make a new color that has swapped (r, g, b) for (g, b, r)
newColor = makeColor(g, b, r)

Make the pixel the new color
pixel.setColor(newColor)

newPic = makePicture(pickAFile())
colorSwap(newPic)

Type that in and test it out yourself. Do you see what it is doing?

5.1 Task

1. Load the image from the previous section as a new variable

2. Write a function that “inverts” the image: for each pixel, invert red, green, and blue. That
is, if the red is 255, it goes to 0, and if it is 0 it goes to 2559. It will look a lot like the sample
function.

9You should be able to calculate the new value for each component with a single subtraction: what is the formula
that takes 0 to 255 and 255 to 0?

7

6 Conditionals

So far, we have only written things that will always do the same actions. What if we want to have
a particular action happen only some of the time? For this, we use a conditional10.

a = 5
if a == 5:

print ‘‘A was 5!’’
else:

print ‘‘A was not 5!’’

Mostly simple. But one important note: if you are asking if something is equal, you use ==,
not just =. Remember that. So how about a graphical example:

This makes any pixel that is mostly green into black
def makeGreenBlack(pic):
Same as before: for every pixel, do this
for pixel in getPixels(pic):

Get the color of the pixel
color = pixel.getColor()
r, g, b = color.getRGB()

If there is more green than red and blue together, then make
it black
if g > r + b:

pixel.setColor(black)

6.1 Task

This is the hardest task of the night. If you can do this, you’re a champion programmer (and if
you finish, you just have to go help your classmates with your amazing skills!)

1. Pick a color: red, green, blue

2. Write a function that takes two parameters (pic and background). For each pixel, check if it
is the color you picked. If so, find its x and y coordinates using getX and getY. Then set its
color to the color of the pixel from background with the same coordinates.

3. This is very similar to early blue-screen techniques from major Hollywood movies!

10That is, there is a condition, and if that condition is true, then we do the thing

8

7 Freshman Programming Contest

Now that you’ve finished with our introduction, you’re ready to start thinking about the Freshman
Programming Contest. This year the contest is only open to you, the Computer Engineering
majors. Rather than giving you a closed problem with no creativity behind it, the contest this year
is actually an artistic one: you are to take all of the picture manipulation skills you’ve gained here
and write a Python program to create a collage.

You’ll want to hunt around online to find some source images, and then write a Python program
to put them together artistically into one image and display that image. You can (and should)
write some functions to manipulate those images before pasting them together. What you write is
totally up to you. We’ll be looking for two major things here: artistic merit, and technical merit.

7.1 Submission & Judging

We will email you instructions on submitting your collage programs a few days before the contest
ends. After you submit them, we will examine the entries and make sure everything is in order
(your file works, and your pictures all came through) the night of October 9th, and let you know
if there are any problems. (So check your email before bed that night.) The next day we’ll give
your submissions to our judging panel, and then from 5-6 pm on October 10th we will all meet to
demonstrate your submissions and see the winners.

More information will be sent out via email as the submission date draws nearer.

7.2 Hints & Suggestions

Here are some functions that you might want to implement when writing your collage program.
Don’t think of this as a complete list, this is just to get you started thinking about what is possible.
If you come up with an idea that isn’t here, try it out!

• Resize - Given an image, return a new image that is bigger or smaller by some amount. Easy
to do with integers (like twice as big or half as big), a little harder with floats.

• Paste - Given a large image and a small one, copy the pixels from the smaller one into the
larger one starting at some coordinate.

• Rotate - Given an image, return a new image that is rotated. Rotations by 90◦ increments
are pretty easy, you’ll need some trigonometry to do anything else.

• Alter color - You could write a collection of functions that take all the green out of an image
(set the green part of each pixel to 0), or double the red, or cut the blue in half, etc.11

7.3 More Information and Help

If you have questions, ask for help. Your friends and classmates are one of your best resources, but
they may be stumped too. If that happens, send email to titus@cs.ucr.edu and sjosef@cs.ucr.edu
and we’ll figure out your problem as quick as we can.

11If you are really clever you might even be able to write a single function that can replace any of the above.

9

If you are stumped on something, or just want to learn more, there are a lot of resources for
Python available for free online. Here are some of the better ones.

1. Python tutorial - http://www.python.org/doc/tut/ - The standard tutorial for learning Python.
This won’t teach you the graphical bits we’ve been talking about, but it will teach you more
things like looping, doing math, using variables, etc.

2. JES Media Source - http://www.cs.ucr.edu/ titus/media.txt - The Python source for JES’s
media functions. There are quite a few things that we didn’t introduce, you might be able to
find some good stuff by poking around here.

3. Dive Into Python - http://diveintopython.org - A more advanced Python tutorial, primarily
for people that have programmed in other languages before.

10

