
Enhanced Speculative Parallelization Via Incremental Recovery

Chen Tian, Changhui Lin, Min Feng, Rajiv Gupta

University of California, CSE Department, Riverside, CA 92521

{tianc, linc, mfeng, gupta}@cs.ucr.edu

Abstract

The widespread availability of multicore systems has led to an
increased interest in speculative parallelization of sequential pro-
grams using software-based thread level speculation. Many of the
proposed techniques are implemented via state separation where
non-speculative computation state is maintained separately from
the speculative state of threads performing speculative computa-
tions. If speculation is successful, the results from speculative state
are committed to non-speculative state. However, upon misspecu-
lation, discard-all scheme is employed in which speculatively com-
puted results of a thread are discarded and the computation is per-
formed again. While this scheme is simple to implement, one disad-
vantage of discard-all is its inability to tolerate high misspeculation
rates due to its high runtime overhead. Thus, it is not suitable for
use in applications where misspeculation rates are input dependent
and therefore may reach high levels.

In this paper we develop an approach for incremental recov-
ery in which, instead of discarding all of the results and reexecut-
ing the speculative computation in its entirety, the computation is
restarted from the earliest point at which a misspeculation caus-
ing value is read. This approach has two advantages. First, the
cost of recovery is reduced as only part of the computation is re-
executed. Second, since recovery takes less time, the likelihood
of future misspeculations is reduced. We design and implement
a strategy for implementing incremental recovery that allows re-
sults of partial computations to be efficiently saved and reused. For
a set of programs where misspeculation rate is input dependent,
our experiments show that with inputs that result in misspeculation
rates of around 40% and 80%, applying incremental recovery tech-
nique results in 1.2x-3.3x and 2.0x-6.6x speedups respectively over
the discard-all recovery scheme. Furthermore, misspeculations ob-
served during discard-all scheme are reduced when incremental re-
covery is employed – reductions range from 10% to 85%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization

General Terms Performance, Languages, Design, Experimenta-
tion

Keywords Speculative Parallelization, Incremental Recovery,
Multicore Processors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0119-0/11/02. . . $10.00

1. Introduction

Exploiting loop level parallelism is critical to improving the per-
formance of sequential applications on multicore processors. How-
ever, many sequential loops cannot be parallelized via static anal-
ysis based parallelization techniques due to the presence of cross-
iteration dependences. However, it has been observed that in many
applications such dependences, although potentially present, rarely
manifest themselves at runtime and thus despite the presence of
cross-iteration dependences these loops are a significant source
of parallelism [5, 15, 37]. To exploit such parallelism, specula-
tive parallelization has been proposed that employs thread level
speculation (TLS) to optimistically extract and exploit parallelism.
The compiler first assumes the absence of cross-iteration depen-
dences so that the sequential loops can be optimistically paral-
lelized. When the speculatively parallelized program is executed,
the runtime system or specialized hardware is used to detect mis-
speculation (i.e., manifestation of ignored dependences) and re-
cover from it. While hardware based TLS has been extensively
researched, the specialized hardware structures (e.g., versioning
cache [8], versioning memory [7] etc.) on which such techniques
rely have not been incorporated in commercial multicore proces-
sors. On the other hand, software-based TLS has also drawn atten-
tion of researchers and the advantage of this approach is that it can
be used to take advantage of multicore systems available today.

Software TLS uses runtime systems to detect misspeculations
and recover from them. However, the overhead imposed by the run-
time system must be reduced so that benefits of parallelism can be
realized. Many of the prior works on software TLS rely on state
separation where non-speculative computation state is maintained
separately from speculative state of threads that perform specula-
tive computation and thus recovery from misspeculation can be
performed by simply discarding speculative state [5, 13, 35–38].
All of these works have demonstrated the benefits of software TLS
for applications in which misspeculation events are infrequent (typ-
ically a few percent). As misspeculation rate rises, the benefits of
parallelism quickly evaporate due to the high recovery cost. This is
a serious problem in context of applications where the misspecula-
tion rate is input dependent as illustrated next.

We identified five applications in which the misspeculation rate
is input dependent. Figure 1 shows the performance of these five
programs for inputs which result in low (around 1%), medium
(around 40%), and high (around 80%) misspeculation rates. The
speedups are measured in comparison to execution time of the se-
quential version of the application and it is for the case where 4
cores are available for executing speculative threads. As we can see,
for medium and high misspeculation rates mostly execution slow
down is observed (i.e., speedup is less than 1). While prior works
have applied speculative parallelization to these applications, they
have only considered inputs with low misspeculation rates to illus-
trate the benefits. However, since the performance is a function of
input characteristics, it is unclear as to whether or not employing



1 . 522 . 533 . 544 . 5
S peed up 1 9 7 . p a r s e r1 3 0 . l i2 5 6 . b z i p2 5 5 . v o r t e xC R C 3 200 . 511 . 522 . 533 . 544 . 5

l o w m e d i u m h i g hS peed up
D i f f e r e n t i n p u t s

1 9 7 . p a r s e r1 3 0 . l i2 5 6 . b z i p2 5 5 . v o r t e xC R C 3 2
Figure 1. Misspeculation Rate vs. Performance.

speculative parallelization would result in benefit or loss. To over-
come this problem, in this paper, we develop an approach which
performs well even when misspeculation rates are medium to high.
Thus, speculative parallelization can be applied no matter the na-
ture of inputs.

The fundamental reason for the performance loss is that when
a misspeculation occurs, all speculatively computed results are
assumed to be incorrect and hence discarded. Thus, recovery is
expensive as the speculative computation must be repeated in its
entirety. We will refer to this strategy as discard-all. Some other
works employ rollback to recover from misspeculation [15, 18,
21]. The rollback cost is minimized by having the programmer
exploit application specific knowledge in providing the rollback
code. While state separation has been fully automated, the rollback
approach relies on the programmer to provide rollback code. The
goal of this paper is to extend the fully automated approach of state
separation so that it can handle high misspeculation rates.

We have observed that although discard-all strategy is simple to
implement, it is also wasteful. To recover from misspeculation, it is
often necessary to only reexecute part of the computation. This is
because while many values may be speculatively read by the specu-
lative computation, the misspeculation may be caused by only some
or even by only one of these values. Therefore a significant part of
the computation need not be reexecuted, only part of the compu-
tation that is dependent on the misspeculation causing value needs
to be rexecuted. Based on this observation, this paper presents an
approach for Incremental Recovery that mitigates the performance
loss caused by misspeculation recovery. The incremental recovery
strategy has two advantages. First, the cost of recovery is reduced as
only part of the computation is reexecuted. Second, since recovery
takes less time, the likelihood of future misspeculations is reduced.
While the benefits of incremental recovery are clear, designing an
efficient implementation of this strategy is a challenge. We develop
an implementation of incremental recovery as a natural extension
of state separation which allows results of partial computations to
be efficiently saved and reused. Our experiments show that incre-
mental recovery often yields speedups where discard-all produces
slowdowns. The key contributions of this work are:

• We demonstrate that there are two benefits of incremental re-
covery. First, the cost of recovery is lower as only part of the
speculative computation needs to be reexecuted when a mis-
speculation is encountered. Second, faster recovery reduces the
likelihood of future misspeculations. We observe that both these
factors play a significant role in performance improvement.

• We present the design and implementation of an efficient soft-
ware based incremental recovery algorithm that allows partial
results of a speculative computation to be saved and reused

upon misspeculation. The key feature of this implementation is
that it simply extends the use of state separation that is already
used to implement thread level speculation.

• For a set of programs, our experiments show that even with
inputs that result in high misspeculation rates of around 40%
and 80%, applying incremental recovery technique can achieve
1.2x-3.3x and 2.0x-6.6x speedups respectively in comparison
to the discard-all recovery scheme. Misspeculations during
discard-all are reduced by 10% to 85% by incremental recovery.

The rest of the paper is organized as follows. Section 2 describes
background on state separation based thread level speculation. Sec-
tion 3 provides an overview of our approach for incremental recov-
ery. Section 4 develops an efficient implementation of incremental
recovery. The experimental results are presented in Section 5. Sec-
tions 6 and 7 discuss related work and present conclusions.

2. Background

State Separation. Many prior research works have used State
Separation for realizing software based TLS (SS-TLS) [5, 13, 35–
38]. State separation causes the non-speculative state of the com-
putation to be maintained separately from the speculative states
of parallel computations being performed speculatively (e.g., loop
iterations). The first implementation of state separation proposed
in [5, 13] creates processes to perform speculative computations
– since each process has its own address space, state separation is
achieved. Another implementation of state separation, CorD, was
proposed by us in [37] and further used in [35, 36, 38]. In this
implementation multiple threads that operate is separate portions
of the application’s address space are used. In addition to parallel
threads that perform speculative computations, a main thread is
used to coordinate their activities. In particular, the main thread as-
signs speculative computations to parallel threads, speculatively
copies-in data into the memories allocated to parallel threads,
checks for misspeculations, and if no misspeculation occurs it
copies-out the speculatively computed results from memories of
parallel threads to the memory allocated to hold the non-speculative
computation state. Figure 2 summarizes how state separation is
achieved in CorD. In this paper we build upon the thread based
CorD model because thread based parallelization involves less run-
time overhead than process based implementation of state separa-
tion.

Figure 2. Computation State Under SS-TLS.

Discard-all Recovery. The advantage of using state separation to
support speculative execution is the low overhead of handling mis-
speculations. Since each thread has its own space, updates to the
same variable by different threads are performed on its copies in



Figure 3. An Example Of Misspeculation Detection And Recov-
ery Using Discard-all In SS-TLS.

different spaces, and thus non-speculative state memory is not af-
fected by any of the parallel threads. Once a misspeculation is de-
tected, the speculatively computed results can be simply discarded
and recomputed. Figure 3 illustrates the above using an example.
In Figure 3(a) we can see that the sequential loop has a possible
cross-iteration dependence due to variable var1 (dependence is be-
tween lines 3 and 4). Suppose this loop is speculatively parallelized
and executed by two threads T1 and T2. If var1 is updated in iter-
ation i, the value of var1 used by T2, which is executing iteration
i+1, is wrong, because T2 optimistically assumes no cross-iteration
dependences will manifest themselves. This dependence leads to a
misspeculation and can be captured by the SS-TLS runtime system.
To recover from this misspeculation, the system only needs to ask
T2 to discard the value of r1 that was speculatively computed, and
now non-speculatively reexecute the entire iteration with the latest
value of var1.

3. Incremental Recovery

Motivation. In SS-TLS, recovery from misspeculations is achieved
by discarding all speculatively computed results. This process is
shown in Figure 4. Before starting speculative execution of a com-
putation (e.g., a loop iteration), the input values or live-ins needed
for its execution are speculatively read from non-speculative state
and copied into the speculative state for the thread. The reads of val-
ues (v1, v2, v3, . . . vn) are speculative because the values are read
while execution of one or more earlier iterations is in progress; if
any of these values is changed by these earlier iterations, then mis-
speculation occurs. After reading, the computation is performed
and then the misspeculation check is executed. If the check fails,
misspeculation occurs. To recover from misspeculation, the values
of live-ins are now read again, this time non-speculatively, and the
entire computation is repeated. This strategy for recovery is called
discard-all as all results computed are discarded and computation
is performed again in its entirety. It should be noted that even if
the misspeculation occurs due to any one of the live-ins, all results
are discarded. While this approach is simple to implement, dis-
carding all speculatively computed results is a suboptimal solution.
It is possible that a subset of speculatively computed results may
be correct and thus there may not be a need to perform the entire
computation again. Discarding all results can be very wasteful, es-
pecially when the misspeculation rate is relatively high because the
cost of recovery begins to add up. However, under the above model
we lack the ability to identify the part of the computation that need
not be reexecuted.

It is worth noting that one update by a thread may cause multiple
misspeculations. If n parallel threads are simultaneously executing
n consecutive loop iterations, then misspeculation can occur in n-
1 threads due to a cross-iteration dependence between the first
iteration and n-1 later iterations. In other words, the first thread
may update the value of a variable that acts as a live-in variable

Figure 4. Discard-all Recovery in SS-TLS.

for n-1 later iterations. This is another reason why the overhead of
misspeculation can accumulate to significantly high levels leading
to net slowdowns from parallelization as opposed to speedups.

  0%

  20%

  40%

  60%

  80%

  100%

  120%

197.parser 130.li 256.bzip2 255.vortex CRC32

 In
st

ru
ct

io
n 

D
is

tr
ib

ut
io

n

No need to be reexecuted
Must be reexecuted

Figure 5. Wasteful Work by Discard-all Recovery.

Figure 5 shows the total waste during the recoveries from a mis-
speculations for five programs. The waste is measured in terms of
the number of instructions. In particular, when a live-in variable is
updated in an iteration, we measure the average percentage of in-
structions that are directly or indirectly dependent upon the updated
value within the next iteration. Since an update of a live-in variable
usually leads to misspeculations, these instructions have to be re-
executed during the recovery. The remainder of the instructions are
the ones that do not depend upon any updated value. Therefore,
there is no need to reexecute them. From the figure, we can see
that over 40% instructions are not affected when a live-in variable
is updated in the preceding iteration. In the case of 197.parser
and CRC32, less than 5% instructions are affected. This means the
results calculated by more than 95% instructions are still correct
even if a cross-iteration dependence arises and it is unnecessary to
reexecute the entire iteration.

Our Approach. Motivated by the above study we explore the
design of an incremental recovery scheme. There are two key
characteristics that must be considered in designing a recovery
scheme:

1. First is the granularity at which reuse is supported – the finer
the granularity the greater is the amount of reuse that can be
achieved; and

2. Second is the complexity of the scheme that identifies what
subset of computation can be reused during recovery.

As the granularity becomes finer, the degree of reuse increases
but so does the complexity of identifying subcomputation that



can be reused. An incremental recovery scheme that works at the
granularity of a single instruction will provide maximum reuse
but will have the highest complexity. On the other extreme is the
discard-all scheme which the simplest but does not allow any reuse.

Next we present our approach that balances the granularity and
complexity. Therefore it allows significant amount of computation
to be reused during recovery while at the same time it lends itself
to an efficient implementation. As shown in Figure 6, we delin-
eate the computation into many sections according to the points
at which the earliest reads of the live-ins are encountered. In the
figure we assume that the first speculative read of vi appears be-
fore the first speculative read of vi+1 for all i. Therefore, the
live-ins (v1, v2, · · · vn) cause the computation to be divided into
n + 1 sections. Now let us assume that of all the values among
(v1, v2, · · · vn) that cause misspeculation, vi is the one that is read
the earliest. In this case we can be sure that the entire computation
performed by the sections of code preceding the first read of vi can
be reused. Thus, the recovery can be performed by simply repeating
the execution of code starting from the point at which vi was first
read. If vi happens to be v1, the reuse achieved is minimum. On the
other hand, if vi happens to be vn, the reuse is the maximum.S p e c u l a t i v e e x e c u t i o n s t a r t sF i r s t s p e c u l a t i v e r e a d o f v 1F i r s t s p e c u l a t i v e r e a d o f v 2F i r s t s p e c u l a t i v e r e a d o f v n…C h e c k f o r m i s s p e c u l a t i o n s . I f m i s s p e c u l a t i o n o c c u r s o n v i ,R e a d v i n o n s p e c u l a t i v e l yR e a d v i + 1 n o n s p e c u l a t i v e l yR e a d v n n o n s p e c u l a t i v e l y …

Figure 6. Incremental Recovery in SS-TLS.

To implement the above strategy, we must address the problem
of implementing computation reuse. The approach we take restores
the speculative state of a parallel thread to the point at which it
must begin execution during recovery. For example, in Figure 6,
the speculative state must be restored to the point that immediately
precedes the instruction that represents the first read of vi. We can
implement this restoration simply by using the capability of state
separation that is already available as follows. At each point that
represents a potential first read of a speculative value, i.e. a value
from (v1, v2, . . . vn), we create a new version of the speculative
state. In other words, the speculatively computed results generated
by each of the executed sections of code in Figure 6 are separated
from each other. The misspeculation check is performed in the
order the first reads are performed and the first read that causes
misspeculation is found. The state prior to this point is available
and serves as the basis for performing execution of recovery code.

Thus the key idea we use is to decouple the creation of a parallel
thread that performs speculative execution from the creation of the
speculative space that it uses for saving results. At each point which
represents a first read of a speculative value, a new version or copy
of the speculative space is created. Figure 7 illustrates the idea. Fig-
ure 7 shows a parallel thread that creates three speculative spaces

Figure 7. Decoupling Space Allocation From Thread Creation.

S1, S2, and S3 instead of just one space during the speculative exe-
cution. Space S2 is created when the first access of live-in variable
a is encountered, and S3 is created when the first access of live-in
variable b is encountered. If a misspeculation is found to have oc-
curred due to a, the results stored in S2 and S3 are discarded and
recomputed using the correct value of a. However, if the misspec-
ulation is caused by b, only the results in S3 are recomputed. The
results in S1 are only computed once and are never discarded dur-
ing recovery because the computation does not use any speculative
variable.

Impact of Incremental Recovery on Misspeculation Rate. So far
we have discussed one direct benefit of incremental recovery, i.e.
reusing previously performed computation to reduce the code reex-
ecuted during recovery. Besides this benefit, the incremental recov-
ery technique has another advantage – it reduces the misspeculation
rate. In SS-TLS, variables modified by a parallel thread are stored
in the corresponding speculative state. Prior works have shown that
copy-in operation of a variable should be performed when the vari-
able is about to be modified, since it can avoid unnecessary copying
[36]. If the access to a variable is a read, then the parallel thread can
directly read the value from non-speculative state. This is known as
copy-on-write scheme, and has been discussed and used in most ex-
isting SS-TLS systems [5, 36, 37]. When such scheme is combined
with our incremental recovery technique, misspeculation rates can
be reduced. Figure 8 illustrates the reason.

Figure 8(a) shows the original recovery scheme. Suppose two
iterations i and j are executed in parallel and variable var is spec-
ulatively updated in iteration i and used in j. Further assume the
update to var is incorrect due to the presence of some other cross-
iteration dependence (step 1). As a result, a misspeculation is de-
tected for the thread that is executing iteration i (step 2). To recover,
this thread has to recompute everything including the value of var
(step 3) and then commit the correct results (step 5). If the value of
var is ever read by the thread executing iteration j before the results
of iteration i are committed (step 4), then a misspeculation certainly
occurs (step 6).

Figure 8(b) shows the situation where incremental recovery is
used. The thread executing iteration i still encounters a misspec-
ulation and has to recompute the value of var. However, during
the recovery if we only recompute the values that were incorrectly
computed earlier, then the recovery time is smaller and the results
can be committed much faster (step 4). Consequently, the chance
of reading the correct value of var in a later iteration is significantly
increased (step 5) and the misspeculation that had happened before
can now be avoided as shown (step 6).



Figure 8. The Effect Of Reducing Misspeculation Rate.

4. Realization of Incremental Recovery

4.1 Creating Multiple Subspaces

Previous section shows that to decouple the space allocation from
thread creation, a new subspace must be created when a speculative
value is first read. There are different ways to create subspaces. One
simple scheme is to dynamically allocate a contiguous memory re-
gion (e.g., through malloc call) as shown in Figure 9(a). However,
repeated allocation of subspaces may cause allocation to eventu-
ally fail when the size of subspace is very large. This is because
the memory allocator may not find a free memory chunk of the
requested size. This situation gets worse with the increase in the
number of parallel threads.

w

v

u
a

b

(a) Allocating Contiguous Subspace (b) Using State History To Maintain Subspace

Subspace 1

Subspace 2

Subspace 1 Subspace 2

State History

Figure 9. Allocating A Subspace.

To address this problem, we propose to maintain subspaces by
using the state history for each variable. In particular, the state of
an individual variable in a particular subspace is represented as a
pair of a space identifier (SID) and the variable’s value. A SID is
a unique integer assigned to each subspace created by the same
thread. The states of each variable are linked together in ascend-
ing order of space creation time as shown in Figure 9(b). With this
scheme, each subspace is not physically contiguous any more. Up-
dating a variable in a different subspace can be simply implemented
by adding a (SID, value) pair into this variable’s state history. For
example, in Figure 9(b), variable u and w have two different val-
ues in subspaces 1 and 2 respectively while v is only updated in
subspace 1. Thus, subspace 1 is the one that contains all the three
variables, subspace 2 only contains u and w. Since the values of
variables a and b are not affected by speculative values, these vari-

ables do not exist in any subspace. The benefit of this approach is
that the memory allocated is greatly reduced. Moreover, the mem-
ory allocation requests are now at the granularity of variable’s size
and hence more variables can be handled.

Since each subspace is identified by a SID, each thread main-
tains a thread local variable current SID (CSID) to represent the
latest subspace that has been created. When a speculative value is
first read, a new subspace is created. The creation can be simply im-
plemented as an increment of CSID. All variables that are defined
directly or indirectly using a speculative value are copied into the
new subspace. These operations are implemented through live-in
access checks and statement transformations as shown in Figure 10.

CSID: the current space ID, initialized to 0;
stmt: a statement dst = src1 op src2 executed by thread T

Insert the following live-in access check code before the stmt :
For every source operand s in stmt:
1: if (s is a live-in variable and is first read by T) {
2: saving CSID and the PC of the statement for recovery;
3: CSID++;
4: sid = CSID;
5: val = the value of s in D space;
6: append (sid, val) into the state history of s;
7: }

To ensure dst is updated in the current subspace, stmt is transformed
into the following:
8: sid = GetLastSpaceID(dst);
9: val = GetLastValue(src1) op GetLastValue(src2);
10: if (sid != CSID){ // copy is required
11: sid = CSID;
13: append (sid, val) into the state history of dst;
14: }
15: else {
16: update the last state history record of dst to (sid, val);
17: }

Figure 10. Live-in Access Checks And Statement Transformation.

From Figure 10, one can see that the live-in access check code
is inserted preceding each statement. For each source operand that



is a live-in variable and is first read by a speculative thread T (line
1), a new subspace is created by incrementing CSID by 1 (line 3).
As a result, each subspace corresponds to a speculative use of one
live-in variable, and later created space has a larger space ID. The
old CSID and the PC of current statement are stored and are used if
the recovery is needed at this point (line 2). The live-in variable is
also copied into this new subspace by appending the pair of CSID
and the variable’s value in the non-speculative state into its state
history (lines 4-6). Thus, the ID of the subspace created for a live-
in variable and the speculatively-read value of the live-in are always
stored in the first record of this live-in variable’s state history.

To update the destination operand dst, its subspace ID is first
computed (line 8) and the updated value is computed using the
latest values of its sources operands (line 9). Since the update
has to be performed on the current subspace, the space ID of
dst is compared with CSID (line 10). If they are different, the
(sid, val) pair is appended into dst’s state history. Otherwise, the
last record in the state history is updated with the new pair (sid,
val). Function GetLastSpaceID() and GetLastValue() are auxiliary
functions which retrieve the space ID and value respectively from
the last record in a variable’s state history.

Besides the live-in access checks and statement transformation
performed during speculative execution, a mechanism also needs
to be developed to identify the live-in variables that are accessed
during speculative execution. This is important because the values
of live-in variables are the ones that require validation and copy-out
operations after parallel threads finish their executions. Therefore, a
live-in table is maintained for each parallel thread to track the live-
ins accessed by the thread. The table has 3 fields as shown below.

NonSpecAddr SpecAddr WriteFlag

When a live-in variable is first accessed by a parallel thread T, an
entry for this variable is created in the table. The NonSpecAddr field
and SpecAddr field contain the live-in variable’s non-speculative
address and speculative address respectively. The WriteFlag field
shows whether the live-in has been ever updated during speculative
execution. Once a write access to this variable is encountered, this
field is set to true. Subspaces and the live-in table are maintained
during the speculative execution; they are crucial for performing
the misspeculation detection and copy-out operations which will
be described in the next two subsections.

4.2 Handling Speculative Results

After a parallel thread finishes its task, the main thread needs to per-
form misspeculation check to validate the speculatively computed
results. If the speculation succeeds, the results are copied back to
the non-speculative state. Otherwise, recovery procedure is initi-
ated so that the correct values can be recomputed. In our approach,
the results computed by parallel threads are handled in the same
order as the order in which the tasks assigned to them were created.
The in-order result-handling ensures the updates to non-speculative
state memory is consistent with the sequential program semantics.

A misspeculation occurs if a speculatively read live-in variable
has been updated during an earlier speculative task. On the other
hand, if a parallel thread updates a live-in variable, then all other
parallel threads that are using this variable to perform later tasks
should be considered as failed because they are using an incorrect
value. Based on this idea, a scheme is developed for the main thread
to perform the copy-out operations and misspeculation checks. This
scheme is presented in Figure 11.

Copy-out. Each parallel thread has a flag SpecFail indicating
if its speculation has failed. When a parallel thread finishes its
speculative task and the main thread determines that it is this
thread’s turn to commit its results, this flag is examined. If the flag
indicates that no misspeculation occurred (line 1), the main thread

T.LTable: live-in table of a parallel thread T;
T.SepcFail: the flag indicating a failed speculation of T;
T.FailedAt[]: the live-in variables which cause the
speculation of thread T to fail;

1: if (T.SpecFail != True) {
2: foreach entry e in T.Ltable {
3: if (e.WriteFlag == True) {
4: val = GetLatestValue(e.SpecAddr);
5: CopyBack(e.NonSpecAddr, val);
6: foreach thread t executing a later speculative task {
7: if (e.NonSpecAddr is in the t.LTable ){
8: t.SpecFail = True;
9: add e.NonSpecAddr into t.FailedAt[] ;
10: } //endif
11: } //end foreach
12: }//end if
13: }//end for each
14 }
15: else { //recovery
16: pc = GetRecoveryPC(T.FailedAt[]);
17: sid = GetRecoverySpaceID(T.FailedAt[]);
18: ask thread T to reexecute from instruction pc using

the latest values of live-in variables, and
the values stored in the latest subspace whose SID
is no more than sid for none-live-in variables ;

}

Figure 11. Misspeculation Checks And Recovery.

starts to copy back the results. Specifically, the main thread goes
through this parallel thread’s live-in table (line 2) and identifies
the modified live-in variables (line 3). The WriteFlag of a live-in
variable is set when an access to this variable is a write. For each
modified live-in variable, the main thread finds its latest value (line
4) and copies the value to the non-speculative state (line 4). The
non-speculative address of a live-in variable is available as it is
stored in the live-in table when the live-in variable is first accessed.

Misspeculation Check. The misspeculation check is performed
by executing lines 6 to 11. In particular, when a live-in variable is
committed, the main thread searches the live-in table of all other
threads that are executing later speculative tasks. If this variable is
found in another thread t’s live-in table (line 7), then thread t is
using a stale value because the value of this variable has just been
updated. As a result, the SpecFail flag of t is set to true (line 8).
This variable identified by its non-speculative address is also added
into another thread attribute FailedAt (line 9). The variables stored
in FailedAt are used to identify the starting point of reexecution
during the misspeculation recovery. Note that the use of WriteFlag
ensures that multiple writes to a live-in variable within one task will
not cause later tasks to be recovered multiple times.

Recovery. If the SpecFail flag of a thread t is set to True, then re-
execution is required for recovery. The FailedAt attribute of t indi-
cates which live-in variables caused the speculation to fail. Since,
when each live-in variable is first read, the instruction address of
the read and the space ID before the read are recorded (Figure 10,
line 2), the main thread can retrieve these two values of the first
accessed live-in variable by calling another two auxiliary functions
GetRecoveryPC and getRecoverySpaceID (lines 16-17). These two
values determine the starting point of the reexecution. The main
thread now asks thread t to reexecute from instruction pc. During
the reexecution, the latest value of every live-in variable is used.
For other variables, their values stored in the latest subspace whose
SID is no greater than sid are used. This can be done by searching
for the state history of each variable. In this way, the reexecution is
consistent with the sequential semantics and all incorrect specula-
tively computed results are simply discarded. More importantly, all



Iteration i Iteration i+1

Code executed:

var0 = …;

// cond1 is false

r1 = comp1(var0 var1);

while (…){

…

1 var0 = …;

Code executed:

var0 = …;

// cond1 is false
r1 = comp1(var0 var1);r1 = comp1(var0, var1);

// cond2 is true

var2++;

r2 = comp2(var1, var2, …);   

2 if (cond1) {

3 var1++;

}

4 r1 = comp1(var0 var1);

r1 comp1(var0, var1);

// cond2 is false

r2 = comp2(var1, var2, …);

lt 3( 1 2)

result = comp3 (r1, r2); 

4 r1 = comp1(var0, var1);

5     if (cond2) {

6 var2++;

}

result = comp3(r1, r2);

Memory trace: Memory trace:
}

7 r2 = comp2(var1, var2, …);

8 result = comp3 (r1, r2); 

…

var0: (0, a)

Store CSID=0, PC=4

var1: (1, b)

r1: (1, c)

St CSID 1 PC 6

var0: (0, a’)

Store CSID=0, PC=4

var1: (1, b’)

r1: (1, c’)

St CSID 1 PC 7
}

Store CSID=1, PC=6

var2: (2, d) *WriteFlag =True

r2: (2, e)

result: (2, f)

Store CSID=1, PC=7

var2: (2, d’)

r2: (2, e’)

result: (2, f’)

(a) Sequential Code (b) Iteration i executed by T1 (c) Iteration i+1 executed by T2

Figure 12. An Example Of Recovery.

correct speculatively computed results are reused because they are
stored in different subspaces.

Figure 12 shows an example. Figure 12(a) shows the sequential
code where two live-in variables var1 and var2 can be observed.
Consider iteration i and i+1, which are speculatively executed by
threads T1 and T2 in parallel. The executed code and memory op-
erations for these two threads are shown in figures (b) and (c) sep-
arately. During T1’s execution, T1 updates var2, and hence, the
WriteFlag of this variable is set to true. When the main thread per-
forms the misspeculation check, it searches for all other threads
that are currently using var2 and sets the corresponding flag Spec-
Fail to true (Figure 11). In this example, T2.SpecFail is set to true
and var2 is added to T2.FailedAt. When the main thread examines
T2’s results, it realizes that T2’s speculation has failed because of
var2. Hence, it retrieves the CSID and PC of the recovery point that
corresponds to var2 (CSID=1 and PC=7 in this case), and sends the
latest value of var2 to T2. With such information, T2 now can start
the incremental recovery. In particular, it reexecutes the code from
the instruction whose PC is 7, and uses the latest value of var2 and
the value stored in space 1 for all other variables.

Handling Exceptions. In certain situations, executing different
loop iterations in parallel may cause the program to exhibit abnor-
mal behavior. For instance, suppose an integer variable var is 0 ini-
tially. In the first iteration, it is updated to some integer that is larger
than 0 and then used as a divisor in the second iteration. If these
two iterations are speculatively executed in parallel, the thread ex-
ecuting the second iteration will throw a floating point exception,
which will terminate the program. To solve this problem, all sig-
nals that lead to an abnormal termination are captured and handled
by customized signal handlers. In these handlers, SpecFail flag of
the corresponding parallel thread is set to true and recovery point
is set to the beginning of the task. Therefore, during the recovery,
the parallel thread can reexecute its task with the latest values of all
live-in variables and exceptions will not take place any more. This
exception handling mechanism guarantees that the parallelized ap-
plication is strictly consistent with the sequential version.

5. Experiments

5.1 Experimental Setup

To study the effectiveness of our techniques we identified five
benchmarks shown in Table 1 for which misspeculation rate is in-
put dependent. The first three columns of the table give the name,
lines of source code, number of live-in variables for these programs.
Note that the outermost loops in these benchmarks can be specula-
tively parallelized. Exploiting such parallelism when certain inputs
are used yields good speedups, especially for program CRC32 [37].
Thus, CRC32 is selected in addition to the four SPEC programs for
comparison to previous work. For each benchmark in our exper-
iments, three different inputs were used which give rise to cross-
iteration dependences and thus misspeculations at a low (< 1%),
medium (around 40%), and high (around 80%) frequency as shown
by the last three columns. Experiments were conducted using these
different inputs to evaluate the effectiveness of incremental recov-
ery and its comparison to discard-all recovery.

Name LOC # of Cross-iteration Dep. Frequency
Live-ins low medium high

197.parser 9.7K 8 1% 49.3% 82.4%
130.li 7.8K 6 2% 40% 80%

256.bzip2 2.9K 9 0.5% 38.2% 79.2%
255.vortex 49.3K 11 0.5% 43.2% 81.3%

CRC32 0.2K 1 1% 40% 80%

Table 1. Benchmark Description.

In the experiments, the parallel version of every benchmark
program is generated through a source-to-source transformation.
Specifically, to support the space and thread decoupling scheme,
every basic type in C (e.g., int, char etc.) is redefined as a new class
in C++. The class contains not only the original type, but also the
type of state history in parallel spaces. When a variable is declared
to be of a class base type, its non-speculative storage is allocated
during the compilation and its state history for each thread is cre-
ated and dynamically maintained as shown in Figure 10. The par-
allel threads are created and controlled using a template similar to



123456
78S peed up 2 p a r a l l e l t h r e a d s 4 p a r a l l e l t h r e a d s 7 p a r a l l e l t h r e a d s
012345
678

l ow medi um h i gh l ow medi um h i gh l ow medi um h i gh l ow medi um h i gh l ow medi um h i gh1 9 7 . p a r s e r 1 3 0 . l i 2 5 6 . b z i p 2 5 5 . v o r t e x C R C 3 2
S peed up 2 p a r a l l e l t h r e a d s 4 p a r a l l e l t h r e a d s 7 p a r a l l e l t h r e a d s
Figure 13. Speedups: Incr. Recovery vs. Sequential Execution.

123456
7

S peed up 2 p a r a l l e l t h r e a d s 4 p a r a l l e l t h r e a d s 7 p a r a l l e l t h r e a d s
0 123456
7

l ow med i um h i gh l ow med i um h i gh l ow med i um h i gh l ow med i um h i gh l ow med i um h i gh1 9 7 . p a r s e r 1 3 0 . l i 2 5 6 . b z i p 2 5 5 . v o r t e x C R C 3 2
S peed up 2 p a r a l l e l t h r e a d s 4 p a r a l l e l t h r e a d s 7 p a r a l l e l t h r e a d s

Figure 14. Speedups: Incremental Recovery vs. Discard-all.

one described in [37], but written in C++. The runtime system that
detects the misspeculation and handles the speculatively computed
result described in this paper was also implemented in C++.

All the experiments were conducted under CentOS 4 OS run-
ning on a dual quad-core Xeon machine with 16GB memory. Each
core runs at 3.0 GHz. Since there are a total of 8 cores on this sys-
tem, we measured the performance when 2, 4, and 7 speculative
threads are created in addition to the main thread that coordinates
the activities of the parallel threads.

5.2 Performance Results

5.2.1 Speedups over Sequential Execution

The first experiment conducted measured the speedups resulting
from speculative parallelization that employs incremental recov-
ery for different inputs and different number of parallel threads.
Figure 13 shows the speedups when using 2, 4, and 7 speculative
threads in comparison to executions of sequential versions of the
applications. As we can see, for each benchmark, on any given in-
put, the performance of the benchmark improves as the number of
parallel threads spawned increases. When 7 threads are executed
on input-low, all benchmarks obtained the best speedups which
range from 3.3 to 6.8.

When input-medium and input-high are used, performance
gains can still be observed in most cases, but these gains drop
dramatically for 130.li, 255.vortex and 256.bzip. Especially
when running on input-high, the first two benchmarks experi-
ence slowdowns as misspeculations more than wipe out the bene-
fits of parallelism. However, for 197.parser and CRC32, speedups
can be observed even when input-high is used. In these two pro-
grams, only a small number of instructions need to be reexecuted
when a misspeculation occurs and hence the performance is not
limited by the misspeculation rate. The highest speedups achieve on
input-medium and input-high are 2.9 and 2.0 for 197.parser,
6.3 and 6.1 for CRC32 respectively.

5.2.2 Comparison With Discard-All Scheme

Speedup Comparison. Next we show the advantage of incremen-
tal recovery over discard-all. The speedups of incremental recov-
ery based speculative parallelization over discard-all based specu-
lative parallelization are shown in Figure 14. We observe that for
all benchmarks running with input-medium and input-high, in-
cremental recovery has much better performance than discard-all
scheme. It brings more benefit when more threads are used. As
shown in Figure 14, the speedups observed when 7 threads are used,
range from 1.2x (130.li) to 3.3x (CRC32) for input-medium and
from 2.0x (255.vortex) to 6.6x (CRC32) for input-high.

The reason is that the misspeculation rates become higher when
more threads are used, which significantly slows down the paral-
lelized version that uses the discard-all scheme. In contrast, when

incremental recovery is applied, only part of the speculatively com-
puted results need to be recomputed and the overhead of recovery
is greatly reduced. As a result, incremental recovery can still speed
up the sequential program in most cases as shown in Figure 13.
It is worth noting that for 255.vortex and 130.li running with
input-high, Figure 13 indicates that incremental recovery tech-
nique cannot speed up the sequential executions. However, the per-
formance of the original parallelized version is even worse. That
explains why the speedups are still obtained in this experiment.

In the case of input-low, the performance of using incremental
recovery is worse than the original scheme. The performance loss
is about 15% on an average. This is because of the overhead of
the recovery system. In particular, every load or store has to be
performed on a state history – a list of the pairs of space ID and
value. This is more expensive than operating on a single value.
The results of the experiment shows that incremental recovery is
much more effective if the misspeculation rate is very high and the
discard-all scheme is better otherwise.

Misspeculation Comparison. Another reason for incremental
recovery technique performing better on input-medium and
input-high is that it reduces the number of misspeculations. In
our scheme, copy-on-write scheme is applied (see Figure 10), and
using incremental recovery technique can increase the chance of
a later iteration reading the correct values of the variables that are
modified in an earlier iteration as discussed in section 3. The rea-
son is that our technique allows the recovery to be performed faster
and thus it speeds up the result-committing stage of every thread.
Experiments were conducted to measure this effect. In particular,
the misspeculation rate is collected for both incremental recovery
technique and the discard-all technique. The misspeculation rate
reduction is then computed based on these two numbers and the
results are shown in Figure 15. Note that the comparisons are only
made on input-medium and input-large.

2 0 %3 0 %4 0 %5 0 %6 0 %7 0 %8 0 %9 0 %
Mi sspecul ati onR at eR ed ucti on 2 p a r a l l e l t h r e a d s 4 p a r a l l e l t h r e a d s 7 p a r a l l e l t h r e a d s

0 %1 0 %2 0 %3 0 %4 0 %5 0 %6 0 %7 0 %8 0 %9 0 %
medi um hi gh medi um hi gh medi um hi gh medi um hi gh medi um hi gh1 9 7 . p a r s e r 1 3 0 . l i 2 5 6 . b z i p 2 5 5 . v o r t e x C R C 3 2Mi sspecul ati onR at eR ed ucti on 2 p a r a l l e l t h r e a d s 4 p a r a l l e l t h r e a d s 7 p a r a l l e l t h r e a d s

Figure 15. Misspeculation Rate Reductions.



From the figure, one can see that for 197.parser and CRC32,
up to 50% and 85% misspeculations are respectively eliminated.
As mentioned earlier, in these two programs, only one statement,
which defines the live-in variable, needs to be recomputed dur-
ing the recovery. With incremental recovery technique, the live-in
variable can be committed faster, which increases the chance of
later threads getting the correct version. As a result, performance
of these two benchmarks is significantly improved by our tech-
nique (see Figure 13). For other programs, the number of reexe-
cuted statements during the recovery is far greater, and hence the
observed misspeculation reduction is around 20% for 256.bzip,
10% for 130.li, and 10% 255.vortex on an average.

Recovery Time Comparison. To further understand the difference
between the speculative execution with and without incremental
recovery technique, we conducted another experiment to measure
the fraction of time that is spent in recovery mode (i.e., reexecution
of previously failed tasks) during the speculative execution. We
used seven parallel threads in this experiment and the fraction
numbers are averaged across all parallel threads. Figure 16 shows
the results.

1 0 %1 5 %2 0 %2 5 %3 0 %3 5 %4 0 %4 5 %5 0 %
R ecoveryTi meF racti on D i s c a r d A l l I n c r e m e n t a l R e c o v e r y

0 %5 %1 0 %1 5 %2 0 %2 5 %3 0 %3 5 %4 0 %4 5 %5 0 %
l ow medi um hi gh l ow medi um hi gh l ow medi um hi gh l ow medi um hi gh l ow medi um hi gh1 9 7 . p a r s e r 1 3 0 . l i 2 5 6 . b z i p 2 5 5 . v o r t e x C R C 3 2R ecoveryTi meF racti on D i s c a r d A l l I n c r e m e n t a l R e c o v e r y

Figure 16. Recovery Time Comparison.

From the figure, we can see that for input-low, less than 2% of
the execution time of each parallel thread is spent on recovery dur-
ing both executions. Thus, incremental recovery does not provide
any benefit. However, when input-medium is used, difference can
be noticed. With incremental recovery, the fraction of time spent in
recovery ranges from about 10%(CRC32) to 28% (255.voertex).
With discard-all scheme, this number is around 30% for all bench-
marks. This implies that very high misspeculation rates are encoun-
tered during the parallel executions of these benchmarks and about
one third of the time is spent on reexecutions. For input-high,
recovery takes about 45% of the execution time of each thread
when the original discard-all scheme is used in the parallelization.
With incremental recovery, however, each thread of parallelized
197.parser and CRC32 spent less than 30% of time on recovery.
In other programs, these numbers are around 35%, which are still
smaller than discard-all scheme.

Finally, recall that benefit of incremental recovery over discard-
all is due to two reasons – reduction in computation and reduction
in misspeculation rate. We breakdown the contributions of these
two factors in Figure 17. As we can see, although majority of the
savings result from computation reduction, when misspeculation
rates are high, significant savings result from reduction in misspec-
ulation rate.

5.3 Overhead Analysis

Execution Time Breakdown. The execution time spent by each
parallel thread can be broken down into three different categories:
communication, recovery, and speculative computation. Figure 18
shows the results. They are measured and averaged across all seven

  0%

  20%

  40%

  60%

  80%

  100%

  120%

m h m h m h m h m h

 O
ve

rh
ea

d 
R

ed
uc

tio
n 

B
re

ak
do

w
n

 197.parser  130.li  256.bzip2  255.vortex  CRC32 

Computation Reduction
Misspeculation Reduction

Figure 17. Breakdown: Reuse and Misspeculation Reduction.

parallel threads. As we can see, the time spent on the communica-
tion is only a small portion for all programs regardless of the input.
This implies that all parallel threads are busy performing computa-
tions. For all parallelized programs running on input-low, each
thread spends most of the time on speculative execution. When
the input changes, more misspeculations take place, and thus more
time is spent on the recovery. In the case of 256.bzip2, 130.li
and 255.vortex running on input-high, about 35% of the time is
spent on reexecuting the speculative computation.

  0%

  20%

  40%

  60%

  80%

  100%

  120%

l m h l m h l m h l m h l m h P
ar

al
le

l T
hr

ea
d 

E
xe

cu
tio

n 
T

im
e 

B
re

ak
do

w
n

 197.parser  130.li  256.bzip2  255.vortex  CRC32 

Communication
Recovery
Speculative Computation

Figure 18. Time Breakdown: Speculative Threads.

  0%

  20%

  40%

  60%

  80%

  100%

  120%

l m h l m h l m h l m h l m h P
ar

al
le

l T
hr

ea
d 

E
xe

cu
tio

n 
T

im
e 

B
re

ak
do

w
n

 197.parser  130.li  256.bzip2  255.vortex  CRC32 

Communication
Misspec. Check & Copy−out
Computation

Figure 19. Time Breakdown: Main Thread.

Figure 19 shows the time breakdown for the main thread. Three
categories are considered: communication, misspeculation checks
& copy-out, and computation. Different from parallel threads, the
main thread spent a large portion of the execution time on com-
munication. Another significant portion is spent on misspeculation



checks and committing results. When different inputs are used to
create more misspeculations, one can observe that communication
time increases, because parallel threads fail more often. As a result,
the main thread has to spend more time on waiting for the correct
results to be produced.

Space Overhead. Maintaining multiple spaces for one thread
consumes more space. An experiment is conducted to monitor
the peak value of memory consumption. The memory used by
the corresponding sequential program is considered as the base-
line. Figure 20 shows the space overhead. As expected, using more
threads consumes more space because each variable accessed by a
parallel thread takes more memory space in this technique. When
7 parallel threads are used, the largest overhead is observed which
ranges from 3.2 to 5.1 across all benchmarks. Note that the data in
this figure is for input-high only because the space overhead is
not sensitive to the misspeculation rate.

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7

S
pa

ce
 O

ve
rh

ea
d

Number of Parallel Threads

197.parser
130.li

256.bzip
255.vortex

CRC32

Figure 20. Space Overhead.

6. Related Work

A great deal of research has been carried out on hardware TLS
[6, 10, 14, 19, 31, 33]. While the compiler is responsible for specu-
latively parallelizing sequential code, hardware is provided to han-
dle the difficult tasks of detecting and handling misspeculations.
Specialized hardware structures are used, such as special buffers
[10, 23], versioning cache [8], or versioning memory [7]. Unfortu-
nately, none of these features are available in commercial multicore
processors of today. Therefore an attractive alternative avenue of
optimistically extracting parallelism from programs is based upon
a purely software realization of TLS.

Most of the software TLS systems use state separation to sup-
port speculations [2, 3, 5, 9, 13, 26–28, 35–38]. To identify specula-
tively parallelizable loops, some of these works rely on static anal-
ysis [2, 3, 9, 26], some require the complete trace of a program to
perform the parallelization [27, 28], and others use profiling tech-
nique to gather certain types of runtime information. As already
described, Ding et al. proposed using processes to achieve state
separation [5, 13] while in our prior work on CorD we proposed
thread based state separation [37].

In recent work we proposed the use of multiple value predic-
tions to reduce high misspeculation rate [35]. The idea is to pre-
dict the values of live-in variables that frequently cause misspecu-
lations. However, its applicability is determined by the prediction
accuracy. Moreover, due to the creation of multiple speculative ver-
sions for the same loop iteration, this work requires much more
processor resources – one core per version. Thus, it is even more
wasteful than discard-all as it always discards the results of all ver-
sions except the correct one. Our work, on the other hand, reduces
the cost of misspeculation recovery and thus is far less expensive.

Instead of state separation, Kulkarni et al. proposed a rollback
based speculative parallelization technique [15–18, 21]. They in-
troduce two special constructs that users can employ to identify

speculative parallelism. When speculation fails, user supplied code
is executed to perform rollback. In other words, users must define
the reverse computation in their programs. While the above work
requires help from the programmer, our approach accomplishes the
same tasks automatically.

Software pipelining is another parallelization technique that has
been greatly studied [1, 12, 25, 34, 39]. Different from DO-ALL
parallelization, these techniques partition each loop iteration into
several pipeline stages and each stage is executed on a different
core. While some of them focus on multicore processors [25, 39],
others target stream and graphic processors [1, 12, 34]. Hardware
versioning memory is used to separate non-speculative and specu-
lative results.

Transactional memory (TM) [4, 11, 22] has been an active area
of research. It is designed to enforce the atomicity of shared mem-
ory accesses in parallel programs and cannot be directly used to
parallelize sequential programs due to several reasons [20]. First,
STM needs special mechanisms to avoid or resolve dead-lock and
live-lock situations. Second, STM aims at achieving good through-
put and fairness. This requires STM to consider the priorities of
transactions [32]. Besides, STM internally uses locks to prevent
data races [33] and barriers to ensure strong atomicity [29, 30]
and in-order commit [20]. This results in high runtime overhead
for STM while providing a convenience for programmers writ-
ing parallel applications. Mehrara et al. proposed customized STM
for speculative parallelization [20]. Their work assumes dependent
variables can be identified at compile time and requires a set of spe-
cial registers to track such variables. Raman et al. also proposed the
use of multi-threaded transactions to support speculative execution
[24]. However, their work focuses on applying transactions on soft-
ware pipelining parallelization instead of DO-ALL parallelization.

7. Conclusion

In this paper we presented an incremental recovery technique to
reduce the overhead of misspeculation recovery in an existing im-
plementations of SS-TLS. The key idea was to decouple the cre-
ation of each parallel thread from the creation of speculative mem-
ory spaces. Use of multiple spaces during speculative execution al-
lows the speculatively computed results to be stored and reused
when a misspeculation occurs. Our experiments show that for a set
of programs with inputs causing around 40% and 80% misspecu-
lation rates, applying incremental recovery technique can achieve
1.2x-3.3x and 2.0x-6.6x speedups respectively in comparison to the
discard-all recovery scheme used in prior works.

Acknowledgments This work is supported by NSF grants CCF-
0963996, CCF-0905509, CNS-0751961, and CNS-0810906 to the
University of California, Riverside.

References

[1] I. Buck. Stream computing on graphics hardware. PhD thesis,
Stanford, CA, USA, 2005.

[2] M. Cintra and D. R. Llanos. Toward efficient and robust software spec-
ulative parallelization on multiprocessors. In PPoPP ’03: Proceedings

of the ninth ACM SIGPLAN symposium on Principles and practice of

parallel programming, pages 13–24, 2003.

[3] M. H. Cintra and D. R. L. Ferraris. Design space exploration of
a software speculative parallelization scheme. IEEE Trans. Parallel

Distrib. Syst., 16(6):562–576, 2005.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In ASPLOS-XII, pages 336–346,
2006.

[5] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In PLDI ’07: Proceedings



of the 2007 ACM SIGPLAN conference on Programming language

design and implementation, pages 223–234, 2007.

[6] M. Franklin and G. S. Sohi. Arb: A hardware mechanism for dynamic
reordering of memory references. IEEE Transactions on Computers,
45(5):552–571, 1996.

[7] M. J. Garzarán, M. Prvulovic, J. M. Llaberı́a, V. Viñals, L. Rauch-
werger, and J. Torrellas. Tradeoffs in buffering speculative memory
state for thread-level speculation in multiprocessors. Transactions on

Architecture and Code Optimization, 2(3):247–279, 2005.

[8] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative
versioning cache. In HPCA ’98: Proceedings of the 4th International

Symposium on High-Performance Computer Architecture, pages 195–
205, 1998.

[9] M. Gupta and R. Nim. Techniques for speculative run-time paral-
lelization of loops. In Supercomputing ’98: Proceedings of the 1998

ACM/IEEE conference on Supercomputing (CDROM), pages 1–12,
Washington, DC, USA, 1998. IEEE Computer Society.

[10] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. In ASPLOS-VIII: Proceedings of the eighth

international conference on Architectural support for programming

languages and operating systems, pages 58–69, 1998.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA’93: Proceedings of

the 20th Annual International Symposium on Computer Architecture,
pages 289–300, 1993.

[12] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson,
and J. D. Owens. Programmable stream processors. Computer,
36(8):54–62, 2003.

[13] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast track: A software sys-
tem for speculative program optimization. In CGO ’09: Proceedings

of the 2009 International Symposium on Code Generation and Opti-

mization, pages 157–168, 2009.

[14] V. Krishnan and J. Torrellas. The need for fast communication in
hardware-based speculative chip multiprocessors. In PACT ’99: Pro-

ceedings of the 1999 International Conference on Parallel Architec-

tures and Compilation Techniques, pages 24–33, 1999.

[15] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval.
How much parallelism is there in irregular applications? In PPoPP

’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 3–14, 2009.

[16] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter,
K. Bala, and L. P. Chew. Scheduling strategies for optimistic parallel
execution of irregular programs. In SPAA, pages 217–228, 2008.

[17] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew. Optimistic parallelism benefits from data partitioning. In
ASPLOS XIII, pages 233–243, 2008.

[18] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew. Optimistic parallelism requires abstractions. In PLDI ’07:

Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation, pages 211–222, 2007.

[19] P. Marcuello and A. González. Clustered speculative multithreaded
processors. In ICS ’99: Proceedings of the 13th international confer-

ence on Supercomputing, pages 365–372, 1999.

[20] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequen-
tial applications on commodity hardware using a low-cost software
transactional memory. In PLDI ’09: Proceedings of the 2009 ACM

SIGPLAN conference on Programming language design and imple-

mentation, pages 166–176, 2009.

[21] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan,
M. Kulkarni, M. Burtscher, and K. Pingali. Structure-driven optimiza-
tions for amorphous data-parallel programs. In PPoPP ’10: Proceed-

ings of the 14th ACM SIGPLAN symposium on Principles and practice

of parallel programming, pages 3–14, 2010.

[22] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Lib-
lit, M. M. Swift, and D. A. Wood. Supporting nested transactional
memory in logtm. In ASPLOS-XII, pages 359–370, 2006.

[23] M. Prvulovic, M. J. Garzarán, L. Rauchwerger, and J. Torrellas. Re-
moving architectural bottlenecks to the scalability of speculative par-
allelization. In ISCA ’01: Proceedings of the 28th annual international

symposium on Computer architecture, pages 204–215, 2001.

[24] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Spec-
ulative parallelization using software multi-threaded transactions. In
ASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on Archi-

tectural support for programming languages and operating systems,
pages 65–76, New York, NY, USA, 2010. ACM.

[25] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In CGO ’08: Proceed-

ings of the 2008 International Symposium on Code Generation and

Optimization, pages 114–123, 2008.

[26] L. Rauchwerger and D. A. Padua. The lrpd test: Speculative run-time
parallelization of loops with privatization and reduction paralleliza-
tion. IEEE Trans. Parallel Distrib. Syst., 10(2):160–180, 1999.

[27] P. Rundberg and P. Stenstrom. Low-cost thread-level data dependence
speculation on multiprocessors. In In Fourth Workshop on Multi-

threaded Execution,Architecture and Compilation, 2000.

[28] P. Rundberg and P. Stenström. An all-software thread-level data
dependence speculation system for multiprocessors. J. Instruction-

Level Parallelism, 3, 2001.

[29] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Adl-Tabatabai.
Dynamic optimization for efficient strong atomicity. In OOPSLA

’08: Proceedings of the 23rd ACM SIGPLAN conference on Object-

oriented programming systems languages and applications, pages
181–194, 2008.

[30] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
isolation and ordering in stm. In PLDI ’07: Proceedings of the 2007

ACM SIGPLAN conference on Programming language design and im-

plementation, pages 78–88, 2007.

[31] G. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
In ISCA ’95: Proceedings of the 22nd annual international symposium

on Computer architecture, pages 414–425, 1995.

[32] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A compre-
hensive strategy for contention management in software transactional
memory. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN sym-

posium on Principles and practice of parallel programming, 2009.

[33] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable
approach to thread-level speculation. In ISCA ’00: In Proceedings of

the 27th Annual International Symposium on Computer Architecture,
pages 1–12, 2000.

[34] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical ap-
proach to exploiting coarse-grained pipeline parallelism in c programs.
In MICRO 40: Proceedings of the 40th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 356–369, 2007.

[35] C. Tian, M. Feng, and R. Gupta. Speculative parallelization using state
separation and multiple value prediction. In ISMM ’10: Proceedings

of the 2010 International Symposium on Memory Management, 2010.

[36] C. Tian, M. Feng, and R. Gupta. Supporting speculative parallelization
in the presence of dynamic data structures. In PLDI ’10: Proceedings

of the 2010 ACM SIGPLAN conference on Programming language

design and implementation, pages 63–73, 2010.

[37] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard
execution model for speculative parallelization on multicores. In
MICRO ’08: Proceedings of the 2008 41st IEEE/ACM International

Symposium on Microarchitecture, pages 330–341, 2008.

[38] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Speculative paral-
lelization of sequential loops on multicores. International Journal of

Parallel Programming, 37(5):508–535, 2009.

[39] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August. Speculative decoupled software pipelining. In PACT

’07: Proceedings of the 2007 International Conference on Parallel

Architectures and Compilation Techniques, pages 49–59, 2007.


