
Avoiding Program Failures Through Safe Execution Perturbations

Sriraman Tallam
Google Inc.

tmsriram@google.com

Chen Tian, Rajiv Gupta
University of California at Riverside

{tianc,gupta}@cs.ucr.edu

Xiangyu Zhang
Purdue University

xyzhang@cs.purdue.edu

Abstract

We present an online framework to capture and recover
from program failures and prevent them from occurring in
the future through safe execution perturbations. The per-
turbations are safe as they respect the semantics of the pro-
gram. We use a checkpointing/logging mechanism to cap-
ture a program execution to an event log. If the execution re-
sults in a failure, the framework automatically searches for
perturbation of the execution by altering the event log and
replaying the execution using the altered log to avoid the
failure. If found, the perturbation is recorded as a dynamic
patch, which is later applied by all future executions of this
application to prevent the failure from occurring again. Our
experiments show that the proposed framework is very ef-
fective in avoiding concurrency faults, heap memory over-
flow faults, and malicious requests. The entailed overhead
for normal execution is very low (2-18%).

1. Introduction

A large number of failures that occur in today’s software,
including those causing system crashes or producing wrong
visible outputs, are due to the execution environment. In a
study by Chandra and Chen [9], 56% of failures in Apache
server are dependent on the environment. These failures
are often fixable by safe execution perturbations such as
changing thread scheduling, padding memory allocations,
and dropping user requests. These perturbations are safe as
they do not change the correct behavior of a software.

We present an online framework to capture and recover
from failures caused by execution environment and pre-
vent them from occurring in the future. As these failures
could be non-deterministic, we use a checkpointing/logging
mechanism to capture the execution in an event log. If the
execution results in a failure, the framework tries to fix the
faulty program execution through safe perturbation, which
is performed by altering the event log and replaying the ex-
ecution using the altered log. The perturbation, if found, is
recorded and later referred to and applied by future execu-
tions to prevent the failure or similar failures caused by the
same fault from occurring again. The framework has the

potential of improving system availability without waiting
for the official patches from the developer.

Previously, checkpointing/logging/replaying has been
used to deterministically replay shared memory programs
[12, 22] and also in recovery [14]. Most of these techniques
rollback execition to a previous checkpoint and replay with-
out any perturbation. While such schemes could avoid some
non-deterministic bugs, it cannot recover from determinis-
tic ones. Also, they cannot avoid similar failures from hap-
pening in the future. In our framework, we use the check-
pointing/logging scheme for two reasons. First, we use it to
capture the faulty execution to allow deterministic replay,
even in the case of non-deterministic failures. Second, we
try to avoid failures through safely perturbing executions
by changing the replay log. Rx [20] is a system designed
to help applications recover from failures due to the envi-
ronment, by removing the “allergen” that caused the bug to
manifest. When a failure occurs, the Rx system rolls back
the application to a recent checkpoint and executes it under
a modified environment. Repeated environment modifica-
tions and re-executions are done until the failure is avoided
or a time threshold is passed. If the failure is avoided, the
execution is resumed. However, since Rx re-executes the
program from a checkpoint with changes applied and with-
out following any log file, the perturbed execution might de-
viate from the original execution and incur wrong decisions
on whether the failure has been successfully avoided. To
apply changes, various aspects of the system environment,
such as the OS scheduler, need to be modified. Further-
more, lacking a script that dictates how the system should
behave in certain situations entails repeated searches for the
same fix for repeated failures. In contrast, our work relies on
logging. The perturbed execution is harnessed by a largely
unaltered log file. The framework resides completely in the
user space without the need of changing the OS because
perturbations are conducted through changing the log file
instead of the environment. Finally, the fix of a failure is
easily applied to future executions through the log file.

In our system, each application that runs goes through
three main phases: Logging Phase; Failure Avoidance
Phase; and Prevention-Logging Phase. Figure 1 shows the
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Figure 1. The various phases that an applica-
tion goes through in our system.

various phases that an application has to go through in our
system. The Logging Phase corresponds to the original pro-
gram run during which the checkpointing and logging in-
frastructure is turned on. This phase produces the record of
all the events, i.e., the event log. The set of logged events
can be used to exactly replay the execution when neces-
sary, like when a faulty execution is encountered. Once a
failure is detected at any point during the execution or at
the end, the application is taken to the Failure Avoidance
Phase. In this phase, the application is analyzed to correct
the failure. If the application was a long-running program
like a server, then the clients experience non-availability of
the application until the failure is corrected and the applica-
tion is moved out of this phase. In this phase, the framework
inspects the event log of the faulty execution and searches
for corrective perturbations, which results in altering the ex-
ecution environment while ensuring safety. For example, to
avoid atomicity violation errors, the system changes the or-
der in which threads are scheduled in the new execution by
shuffling the threads in the event log. If the failure does
disappear after a certain number of tries, the correspond-
ing perturbation is recorded in a Environmental Patch (EP),
which is indeed in the form of a log file. Such EP files are
enforced at runtime by the framework in the Prevention-
Logging Phase to avoid future occurrences of the same fail-
ure or similar failures of the same fault. Note that a fault
might result in multiple failures (e.g., a atomicity violation
fault may lead to wrong output at different places). In fact,
normal programs execution always happens in the logging
phase, and also the prevention-logging phase if the EP file
is not empty.

We consider three different types of faults: atomicity vio-
lation faults, avoided by changing the scheduling decisions;
heap buffer overflow faults, avoided by padding memory re-
quests; and malformed user request faults, avoided by drop-
ping the request. These faults were chosen as they are the
most common types of environmental faults [20, 9]. We
have applied our system to a set of bugs that belong to one
of the three types and found that our system can avoid fail-
ures caused by these faults in all the cases and the overhead
is very low. The key contributions of this paper are as fol-
lows:
• We present a scheme that can capture and avoid en-

vironment bugs by using a checkpointing/logging sys-
tem. The presence of logging enables the technique to
completely reside in the user space and have less com-
plexity. It also harnesses the perturbed execution and
focuses the changes on the faulty region.

• Our scheme also prevents the captured failure and
some failures of the same fault from occurring again
by supplying EPs, without requiring a developer to de-
bug the program. Our system can handle three differ-
ent types of faults, namely, atomicity violation, heap
buffer overflow, and malformed user request.

• We have tested our scheme on a set of real bugs. The
results show it to be effective and efficient.

2. Motivating Example

MySql ver. 4.0.12 has an atomicity violation bug [4]
which is as follows. A thread that tries to close and open
a new log file atomically in order to flush the previous log
gets interrupted just after closing the old log by another
thread that does an insert operation into a database. The
second thread does not find any open log files and does not
record the insert operation. These logs are used to restore
databases and incorrect logs can result in inconsistency.

Logging Phase. To begin with, the server is run with
light weight logging enabled, that is, the events are logged
and checkpoints are performed at fixed intervals. Figure 2
shows the events recorded in the original event log. T1,
T2, T3, and T4 refer to four unique threads that are created
during the execution. The event log also shows the points
where a thread is descheduled and another thread is sched-
uled. We refer to a region in the log corresponding to the
maximal set of consecutive events from the same thread as
a thread execution interval (TEI). The log in Figure 2 shows
9 thread execution intervals.

The queries and the activities of the corresponding
threads are as follows:
• Thread T1 is the startup thread that handles new con-

nections and creates threads to service requests.
• Thread T2 is created by T1 to handle signals.
• Thread T3 is created by T1 to handle a user. This user

issues a “flush log” command that closes the old mysql
log and opens a new mysql log file.

• Thread T4 is created by T1 to handle another user. This
user does an insertion operation into table ‘b’.

Figure 3 shows the code that is executed by Threads T3

and T4. T3 is interrupted at the point just after it closes the
binlog, corresponding to TEI 7 in the event log. At TEI
8, thread T4 performs the insert operation but does not find
any log open and hence does not record it. At TEI 9, a new
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Figure 2. Motivation - MySql Atomicity Violation Error. The figure shows the original log correspond-
ing to the failure and the modified log where the failure is avoided by switching the thread schedules.
The final log where the failure (or similar failures of the same fault) has been avoided is also shown.
The threads (T1,. . . ,T4) are shown and the TEIs(1,. . . ,9) are marked.

binlog is opened but the insert operation is not found to be
recorded in any of the logs. Hence, a failure is discovered
and the program is taken to the next phase of the frame-
work. The execution could have proceeded much further
before this failure is actually detected, like when an admin-
istrator runs sanity checks. However, since the event log
is present, the execution can be reproduced and the exact
point at which the failure occurred could be tracked. Notice
that this bug is non-deterministic as the scheduling deci-
sions could be different in another execution instance. Also
notice that the log captures the failure successfully.
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Figure 3. Source code of the mysql atomicity
violation fault.

Failure Avoidance Phase. In this phase, the system tries
to avoid the failure by safely perturbing the original execu-
tion. The faulty execution is first replayed. An oracle is
provided by the user to test if the failure occurs by testing
whether an insert operation is present in a TEI. TEI 8 was
identified as being faulty since the insert operation is done
at this point but is not recorded in the binlog. The system
tries to perturb the original execution by canceling some of
the scheduling actions. We note that TEI 8 corresponding to
thread T4 interrupted the execution of thread T3. Therefore,
canceling the scheduling at the boundary of TEIs 8 and 9
results in swapping TEIs 8 and 9 in the event log. Doing
so, the interruption disappears. The modified event log is
shown in Figure 2. Now, replaying the execution with the
modified log results in the insert operation being present in
the new binlog.

While replaying from the event log, executing the “insert
operation” corresponding to TEI 9 in the original log causes
the execution path to change. This is clear from Figure 3,
where, originally, the condition in the if statement evaluated
to false, it now evaluates to true. Hence, the events neces-
sary to replay this is not present in the log of the original
execution. So, when this happens, we switch the execution
mode from replay to normal execution (and recording). The
final log shows the set of captured events for the correct ex-



ecution. Notice that there is an entry now in the final event
log corresponding to logging the insert operation.

Now that the failure has been avoided, let us show how
the failure or similar failures of the same fault are prevented
permanently in the future. From the log, the system iden-
tifies that thread T3 was interrupted by T4 just when it was
performing the close() event of the old bin log, whose PC
value is 0xBB as shown in Figure 3. A safe perturbation
is to avoid scheduling at this code location which has the
effect of enlarging the atomic region of the code. Hence,
an entry of the form “< 0xBB > : Don’t Schedule out”
is added to the Environment Patch (EP) file. We will show
how this helps in avoiding future failures. Now, the server is
ready to move to the next phase and start servicing requests
normally as the failure has been avoided.

In Rx [20], logging is absent and changes are enforced
by changing the OS, which is more complex. A mechanism
to enforce the fix in the future is also lacking.

Prevention-Logging Phase. In this phase, the application
runs normally with logging turned on just like in the logging
phase. When each event is being logged, control is trans-
ferred from the application to the logging system. At this
point, the EP file is checked to see if the PC of the currently
executing event corresponds to a faulty region. For instance,
if some thread Ti is executing the piece of code correspond-
ing to PC 0xBB, the logging system detects that it is a po-
tentially faulty region by looking up the environment patch
and also sees that no scheduling must happen at this point.
Hence, the priority of the executing thread is raised before
the application gains further control. Now, this thread con-
tinues executing past this event without being scheduled out
and the failure is prevented from happening. The priority of
the thread is reset after a predetermined number of events
have been executed. Since the logging infrastructure is ac-
tive, any new failures can still be captured in the log. When
a new failure occurs, the application moves back to the fail-
ure avoidance phase.

3. Faults and the Corresponding Perturbations

We identify three types of faults which are described in
detail in the section. We discuss how we discover the point
at which the environment changes must be made to avoid
failures. We also show how we use the information we have
gathered to prevent future occurrences of the fault in each
case. Note that in order to use the methods, classification of
observed failures must be carried out. Our system first gath-
ers information about the application – is it multithreaded,
should it satisfy certain invariants, and how does it termi-
nate when it is successful. Now, if the execution results in a
failure, the system uses the information gathered to classify
the failure and apply the appropriate avoidance technique.
If a program is multithreaded, all three techniques will be
tried one after another till one technique succeeds. Specifi-

cally, if an invariant violation is observed, rescheduling and
dropping user requests will be tried by our system in that or-
der. In the case of single threaded programs, the reschedul-
ing does not apply and hence the system will try to avoid
the failure by dropping requests. In the case of abnormal
termination, the system will try to avoid the failure by us-
ing buffer overflow techniques first and if necessary follow
that by dropping user requests. In this work we consider the
scenario in which applications, single or multithreaded, are
executed on a uniprocessor.
3.1. Handling Synchronization Faults

To avoid failures due to synchronization errors among
threads, like the example in Figure 2, threads that are in-
volved in the failure are first detected. A synchronization
error occurs because the execution of a thread, which we
call interuptee, is interrupted by another thread, which we
call interrupter, while atomicity is expected. For instance,
in Figure 2, thread T3 is the interuptee and T4 the inter-
rupter. After the interuptee thread is descheduled, the thread
that is executed next is the interrupter.

Now let us discuss the conditions which must be satis-
fied for a thread to be considered interrupted. Event bound-
aries at which thread scheduling decisions take place could
be synchronous or asynchronous. A thread is interrupted
if and only if it is scheduled out after it executed a syn-
chronous event. For example, if a thread after performing
a file read event (synchronous) is scheduled out, it is con-
sidered interrupted, whereas, a thread which was scheduled
out when executing a polling event (asynchronous) is not
considered interrupted. The latter case is because the asyn-
chronous event can block the thread for an arbitrarily long
interval of time, depending on when the polling is success-
ful, and hence a different thread must be scheduled if ex-
ecution of the application must proceed. Note that all in-
terruptions do not lead to synchronization errors but we use
this as the basis to decide if a synchronization error could
have taken place. In Figure 2, thread T4 did interrupt thread
T3 at TEI 8 as the event at which T3 was scheduled out cor-
responded to closing a file, which is synchronous. Also at
TEI 5 in Figure 2, thread T1 did not interrupt T3 as polling
is an asynchronous event.

In the failure avoidance phase, once the TEI where the
failure occurred is identified, the system starts searching for
a safe perturbation by eliminating interruptions. The strat-
egy is to search backward from the failure residence TEI
and let a interruptee execute further by combining it with
the next TEI from the same thread. The process is iterative
until the synchronization error is avoided or all combina-
tions are exhausted. Again, in the example in Figure 2, the
failure occured in TEI 8, which correspond to thread T4.
Extending TEI 7 by combining it with TEI 9 avoids the fail-
ure. Note that if we change the scheduler in such a way that
all threads execute without interruptions until blocked by an



asynchronous event, the error would go away. Doing so is
however not desirable in terms of performance as threads
stuck in expensive I/O operations are not scheduled out.
3.2. Handling Heap Buffer Overflow Faults

Upon the occurrence of system crashes that are poten-
tially caused by a heap buffer overflow fault, the execution
enters the failure avoidance phase, in which the heap buffer
that has been overflowed is detected. In order to do so, a
dynamic memory checker is used, which is built upon the
valgrind instrumentation engine. A hash table is used to
maintain for each virtual memory address the EIP of the in-
struction that performed a memory allocation. The program
is instrumented at each heap memory allocation instruction
that allocates a range of addresses to update the correspond-
ing entries in the hash table with its EIP. The program is
then replayed from the event log. During execution, for ev-
ery load and store to a heap address, the memory checker
checks if the accessed address has a corresponding hash ta-
ble entry. If an entry is not present, an unallocated address
is touched. Now, neighboring addresses are searched to see
if they have an entry in the hash. If so, this, very likely,
corresponds to the EIP of the instruction that allocated the
heap buffer which has overflowed.

Once the EIP of the instruction that allocated the heap
buffer, denoted as EIPmem, is obtained. The system enters
the failure avoidance phase. In this phase, the program is re-
played again but with a safe perturbation, which is to pad the
memory returned to the overflowed heap buffer by doubling
it. If the failure is avoided, an entry will be added to the
EP file with the form : “< EIPmem : Double Memory>”.
Now, the application enters the final phase and all future
executions avoid failures caused by this fault permanently
as follows. During a memory allocation call, the EIP of
the instruction is checked to see if it matches an entry in
the environment patch. If so, the memory to be allocated is
padded by doubling it. The decision to double the memory
to be padded is a heuristic based on the faults we looked at.
3.3. Handling Bad User Request Faults

Faults belonging to this category could be malicious user
requests that are intended to expose a bug in a server and
not do anything useful otherwise. It could also be a set
of user requests that are malformed. These faults usually
end up crashing the server by overflowing a stack buffer or
even a heap buffer. Our strategy to avoid failures caused
by these faults is to ignore such requests. This is the last
resort as dropping requests that are not malicious is a form
of denial of request. However, it is still better than starving
all the users by bringing down the server. Before dropping
a request, the system checks if the failure can be avoided
by padding a overflowed heap buffer or modifying thread
schedules. If they all fail, the system starts to drop requests
one by one in the backward order. If the failure can be
avoided, the EIP of the instruction where this request was

accepted, EIPread, along with the user request, req, are
recorded in the environment patch file as : “< EIPread, req

: Drop Request>”. In the prevention-logging phase, when
the same request turns up at this EIP, it is not serviced and
the failure is averted.

4. System Description

In this section, we describe the implementation of our
system that incorporates checkpointing/logging and a dy-
namic instrumentation capability. We have used this system
to avoid repeated occurrences of environmental faults in dif-
ferent applications.
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Figure 4. Implementation of our system
showing each step of the framework

Logging and Checkpointing Infrastructure. We have
used the jockey user level library [23] to perform check-
pointing and logging for replay. Jockey works on most
single and multiple threaded programs. We have modified
jockey to pass the EIP of each system call and malloc in-
struction in the application as an argument to the jockey
system call and malloc handler, respectively. This informa-
tion will be used by jockey in the prevention-logging phase
to determine if an entry in the EP is applicable.
Dynamic Instrumentation Engine. The dynamic instru-
mentation tool is used in the failure avoidance phase. It is
used to instrument the application and control its execution
so that the system can detect when a failure happens. For
synchronization faults, the user has to provide a small or-
acle function to decide if the output is correct – such as a
particular entry needs to present in the binlog. This compo-
nent is built upon the valgrind [18] system. It is capable of
replaying a program execution from the log file generated
by jockey. It also detects illegal heap memory accesses.

5. Case Studies
5.1. Atomicity Violation Fault in mysql

According to the bug report [2], MySql ver. 3.23.56 has
an atomicity violation error which is as follows. For some
table ‘t’ in the database, when one thread does a row delete
from it and another thread does an insert into it in quick
succession, though the operations take place in the order
they are called, they are logged in the mysql binlog as done
in the reverse order. The mysql binlog does not reflect the
true sequence of operations on the same table and hence it



is inconsistent with the state of the table as shown below.
—– Log File —–
SET TIMESTAMP=1151980120;
insert into b values (1);
SET TIMESTAMP=1151980107;
delete from b;
—– End of Log File —–
Notice that although the delete operation is done first it gets
logged after the insert operation. The reason is that line
109 in Figure 5 which performs the write to the binlog is
not inside the critical section. So, the thread corresponding
to the insert operation gets scheduled before this point and
hence, this inconsistency occurs. Figure 5 shows the event
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Figure 5. Mysql atomicity violation fault.
log corresponding to the faulty execution. When we replay
the program using the log, we can easily detect that TEIs 1
and 2 are directly involved in the failure as the delete and
insert operations take place during these points. We can
also detect that TEI 2 interfered with the execution of thread
T1. We now extend the execution of thread T1 by swapping
TEIs 2 and 3 and the failure is avoided. We also note the
PC at line 108, which is 0x81023AC, in the environment
patch with the command not to schedule at this point. The
patch is hence “< 0x81023AC : Don’t schedule>”. In the
prevention-logging phase, when the execution reaches this
point, the thread’s priority is raised so that it does not get
descheduled. After applying the patch, we run the server
and perform the same sequence of operations to ensure that
failures caused by the fault are indeed prevented.
5.2. Heap Buffer Overflow Fault in mutt

Mutt [8] is a text based mail user agent (MUA) for Unix
based Operating Systems. It has many features including
customizability, POP3 and IMAP support, and ability to
handle multiple mailbox formats. According to the bug
report[5], mutt version 1.4 has a known memory bug which
is as follows. The Mutt Mail User Agent (MUA) has sup-
port for accessing remote mailboxes through the IMAP pro-
tocol. When mutt has to convert the name of the folder from
its internal UTF-8 representation to UTF-7 it calls the func-
tion utf8 to utf7 in module imap/utf7.c. When this function
does the conversion, it miscalculates the length of the out-
put string, line number 152 in Figure 6. To form a faulty
execution, we execute mutt for some time and then supply

a UTF-8 folder name that contains some special characters.
The heap buffer is overflowed and a segmentation fault is
flagged. The jockey event log captures all the events nec-
essary to replay the failure. We then take the application to
the failure avoidance phase.
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Figure 6. Mutt -
heap buffer over-
flow.
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Figure 7. Pine -
bad user request.

We detect the heap buffer overflow, line number 199 in
Figure 6, using valgrind. We also detect the allocation point
for this heap buffer, line number 152. We capture the PC
of the malloc call at this point, 0x80A9FBA. When we
replay the program doubling the memory allocated at this
point, the failure goes away. We record this in the envi-
ronment patch with the entry : “< 0x80A9FBA : Pad
Allocation>” and now continue the program execution with
the failure avoided. We run the application for some time
and again present the failure-inducing request. The jockey’s
malloc wrapper successfully makes the environment change
and prevents the fault from happening again.

5.3. Bad User Request Fault in pine

According to [6], pine ver.4.44 has a bug that when trig-
gered can overflow a heap buffer causing a crash. This
can occur when pine processes the “From” field of email
headers. Certain special characters in the header can cause
the bug. Figure 7 shows the source code where the bug is
present. The heap buffer dest overflows in line 260 in func-
tion rfc822 cat() as the amount of memory allocated to it
is miscalculated in line 7269 in function est size(). After
capturing the event log corresponding to this fault, we first
try to avoid the failure by padding memory. We track the
heap buffer that was overflown and double the memory at
this point but the bug does not disappear. Hence, we detect
the request that caused the bug to occur and observe that
the request is unusual as it is full of special characters in it.
Hence, we decide to drop such requests and add an entry to
the environment patch with the contents, “<0x3A976422,



Table 1. Overheads involved in each of the three phases - logging, avoidance and prevention-logging.
Bug Logging Phase Failure Avoidance Phase Prevention-Logging Phase

Orig. Logged Logged / Trials Valgrind Jockey Environment Potential Logged Prevention Prev. /
(secs.) (secs.) Orig. (secs.) (secs.) Change Trials (secs.) (secs.) Logged

mysql-1 15.5 15.9 1.03 1 116 15.8 Scheduler 186 16.0 16.1 1.01
mysql-2 7.8 8.0 1.03 1 58 8.0 Scheduler 36 8.0 8.5 1.06
mysql-3 7.2 7.4 1.04 1 59 7.3 Scheduler 138 8.7 8.9 1.02
mysql-4 7.9 8.1 1.02 2 454 15.2 Ignore Req. 284 8.7 9.0 1.03
pine-1 6.1 6.8 1.11 2 314 13.2 Ignore Req. 55 8.1 8.4 1.04
pine-2 4.3 4.9 1.14 2 262 9.0 Ignore Req. 2624 6.1 6.2 1.02
mutt 6.7 7.9 1.18 1 197 7.7 Pad Mem. 11653 9.0 9.2 1.02
bc-1 6.5 7.4 1.14 1 285 7.4 Pad Mem. 6555 10.1 10.1 1.0
bc-2 4.3 4.5 1.05 1 190 6.2 Pad Mem. 533 6.2 6.3 1.02

pattern-string : Drop>”, where the pattern string is the
string of special characters that caused the failure.

6. Experiments
Table 2 shows the list of buggy versions of programs that

we have used to evaluate our system. Each of the bugs
belongs to one of the three possible types of environment
faults we have looked at. We took the buggy version of each
program and created an execution that runs for some time,
between 4 and 15 seconds, and then introduced the failure.
For example, in mysqld, we created a few clients and pro-
cessed a set of standard requests from each client and then
triggered the failure by issuing the failure inducing request.
Since the executions were not too long, checkpointing was
not triggered. After patching the failure by applying the
appropriate environment change, we then run the applica-
tion again for some time and try to introduce the failure as
before. We ensure that the failure is indeed avoided by con-
tinuing execution beyond the point for a couple of seconds
before terminating it. Now, let us describe the various ex-
periments we have conducted.

Table 2. Benchmarks and the bugs
Program Description LOC Description of bugs used
mysqld Database 508 K a) Atomicity bug[4] (mysql-1)

(ver. 4.0.12) b) Atomicity bug[2] (mysql-2)
(ver. 3.23.56) c) Atomicity bug [3](mysql-3)
(ver. 4.00) d) Bad Req. bug [1] (mysql-4)

pine Mail client 212 K a) Bad Req. bug [6](pine-1)
(ver. 4.44) b) Bad Req. bug [7](pine-2)

mutt Mail client 454 K a) Heap Overflow [5](mutt-1)
(ver. 1.4)

bc Calculator 14 K a) Heap Overflow [15] (bc-1)
(ver. 1.06) b) Heap Overflow [15] (bc-2)

Logging Phase. In Table 1, under Logging Phase, we
present the running time of the application without logging
(Original) and with logging (Logged). The overhead of log-
ging, shown under Logged/Orig., is between 2% and 18%
and this shows that the logging mechanism is lightweight
enough to be run along with the application at all times.
Failure Avoidance Phase. Under the Failure Avoidance
Phase in Table 1, the number of tries to avoid each bug, un-
der the column Trials, is also shown where each try corre-
sponds to a different environmental change. All failures that
were triggered by malformed requests needed more than

one trial as we first checked if we could fix the failure by
padding memory or changing thread schedules. We failed,
and hence dropped the request. The column jockey shows
the total time spent to replay the program using jockey,
with the environment changed, to detect if the failure was
avoided. The data shows that the jockey time for one trial
is almost equal to the original time. The column valgrind
shows the time taken to replay the program in valgrind to
detect the regions corresponding to the failure and the time
taken to perform analysis, like detecting the allocation point
given a heap overflow. This incurs a slowdown of 7x-44x
per trial. Note that this cost is incurred only in this phase
due to the expensive analysis that is performed using val-
grind. This overhead will not be present in the prevention-
logging phase when the application runs normally. The
column Environment Change shows the patch that avoided
the bug and used to prevent it from occurring again. The
column Potential Trials shows potentially the number of
changes that have to be tried by an ad-hoc scheme. For in-
stance, for mysql-1, 186 different scheduling decisions were
made during the execution. In the case of mutt, memory was
allocated at 11653 different points in the execution. Hence,
an ad-hoc scheme that does not use any technique to find
the region of the error has to potentially try all 186 schedul-
ing points before the atomicity violation can be nailed. This
number of possible trials could be overwhelming for such
a system. Since our system focuses the failure to a region,
only a few trials are needed.

Prevention-Logging Phase. Finally, we present the over-
heads, of performing logging and preventing failures, that
are incurred in this phase. Table 1 shows these costs under
Prevention phase. The column Logged shows the overhead
of logging the execution in this phase with the bug fixed
in the source code and the prevention mechanism turned
off. The column Prevention shows the time taken to per-
form logging and prevention on the application with the
bug present. The additional overhead of preventing fail-
ures beyond the logging overhead is shown under the col-
umn Prev./Logged. The overhead, which ranges from 0% to
6%, is low and is due to the fact that we could successfully
merge the operation of checking the environment patch with
the logging. The combined overhead of the logging with



prevention mechanism is between 2% and 19% and is low
enough that it can be run alongside the application always.

7. Related Work
Logging techniques for applications executing on a mul-

tiprocessor have been proposed [17, 24] which use hard-
ware support to capture shared memory dependencies of
threads executing simultaneously. These techniques are
very lightweight and can be used in our system to further
reduce the overhead of logging. Our techniques can be ap-
plied to the event logs of these systems thereby making our
system feasible even for applications running on muticore
systems.

Recently, an execution fast forwarding (EFF) system
was proposed [25] that uses logging to capture non-
deterministic faulty executions, like our system. The EFF
system then prunes the event log, to remove portions of ex-
ecution that did not contribute to the failure, and applies
expensive techniques like program tracing to the shortened
execution to reduce the cost of debugging. Since our tech-
nique produces the log of the faulty execution, the log can
be given to the EFF system to debug the program off-line.

A number of dynamic fault detection techniques [10, 11,
13, 19] exist that instrument the program to check for illegal
memory accesses, deadlocks and data races at run-time and
also have reasonable overhead. Such techniques can be used
in our system to flag a fault when it occurs.

Avio [16] is a technique to detect atomicity violation
bugs in programs. The main idea of the technique is to
use a number of correct runs, with different interleavings in
each run, of the application on the same input and discover
atomic regions of the program. Once we have detected the
point at which atomicity is possibly violated, we can pass
this information to such a system that can use it to detect if
an invariant exists.

Failure-Oblivious computing [21] is a technique that by-
passes failures in applications by altering the behavior of the
application when it detects accesses to unallocated memory.
It manufactures values for incorrect reads and ignores ille-
gal writes to let the application continue further execution
without crashing. This approach needs modifications to the
application and the correctness of the application cannot be
guaranteed.

8. Conclusions
In this paper, we have presented a scheme that uses log-

ging and environment patching to capture and avoid envi-
ronment failures as and when they occur and prevent them
from occurring again. We have also shown through case
studies that our scheme can be successful against three types
of environment faults and we have verified this on nine
known bugs in real-world applications. We have also pre-
sented data which shows that the overhead of the logging
and prevention mechanism is low enough, 2% to 19%, to
justify it being run alongside the application at all times.
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