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Memory accesses account for a large percentage of total power in microprocessor-based
embedded systems. The increasing use of microprocessor cores and synthesis, rather
than prefabricated microprocessor chips, creates the opportunity to tune a memory
hierarchy to the one program that will execute in the embedded system. Such tuning
requires fast and accurate estimation of the power and performance of different memory
configurations. We describe a general three-step approach to developing such estimators,
based on our experiences on several different projects. Each step is increasingly fast, using
the previous step to gauge accuracy. The first step uses high-level functional simulation,
the second step uses trace simulation, and the third step uses equations. A tool developer
can follow these three steps to create a powerful environment for core users to support
synthesis of the best memory hierarchy for a particular embedded system. The approach
can be applied to components other than memory also.
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1. Introduction

Accesses to instruction and data memory in a microprocessor-based system can

consume a significant amount of total system power, nearly 50% for several

common processors.1,2 Thus, increased attention has been placed on reducing

memory-related power. Various efforts have focused on designing low-power cache

architectures,3–9 on introducing tiny filter10 or loop,11–14 caches to reduce accesses

to the regular memory hierarchy while executing small loops, on encoding bus

traffic to minimize dynamic bus power,15–17 on compressing instructions18–20 and

data21–23 to reduce storage requirements and bus traffic, on compiling to reduce

memory accesses,24 and more. Memory access is also a key contributor to overall

system performance.25

Meanwhile, modern core-based design methods enable designers to tune an ar-

chitecture to a given program. In a typical embedded system, such as a set-top
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box or a digital camera, the program running on a microprocessor is fixed, or

at least the program’s general characteristics are well known. Ideally, a designer

would be able to tune a microprocessor system to best execute that fixed program,

or at least to a set of typical programs that might run on the microprocessor.

Core-based design methods enable such tuning. In core-based design, a designer

integrates processor-level components, like a microprocessor, memory, and periph-

erals, in an HDL (hardware-description language) environment. Once satisfied with

the design, the designer fabricates an integrated circuit (IC). Core-based design

contrasts sharply with standard design practice in the past, in which designers pur-

chased existing ICs. Those existing ICs were designed to perform best for a large

set of programs, but not for any one program in particular.

With the advent of core-based design, much recent research and commer-

cial tools have focused on tuning the microprocessor instruction set to one fixed

program.26–31 In our work, we focus on the complementary problem of tuning the

memory hierarchy to a fixed program.

Several related efforts demonstrate the benefits of tuning the memory hier-

archy to a particular program. Dutt and Panda used an exploration strategy to

find the best configuration of on-chip scratchpad memory size and certain cache

parameters.32,33 Kavvadias et al. created additional layers of small memories to

store frequent data to reduce power.34 Nachtergaele et al. presented an explo-

ration environment that utilizes a two phase memory exploration scheme along

with system level transformations to reduce memory size and power.35 Shiue and

Chakrabarti reduced power consumption by reducing memory traffic using mem-

ory optimizing transformations, storing frequently accessed variables in register files

and on-chip cache, reducing misses by configuring the cache size correctly and by

good data placement.36

In this paper, we define the problem of memory tuning and discuss the need

for a memory tuning tool, we describe the three steps to developing a fast memory

tuning tool, and we highlight results of various experiments.

2. Memory Tuning

We have investigated the problem of developing a memory tuning environment

in the context of a parameterized platform. A platform is a pre-integrated de-

sign of processor-level components, components such as microprocessors, caches,

memories, coprocessors, peripherals, and buses. We focus on the platforms that

come in the form of intellectual property (IP), typically captured in an HDL, re-

ferred to as IP platforms. An IP platform may come in a synthesizable HDL form

or a lower-level form, such as a gate-level HDL form, or even a layout form. A

parameterized platform is a platform whose components come with configurable

features that can be set to one of a limited number of values in order to set the

component’s operating mode, as shown in Fig. 1. For example, a cache may have

several configurable features, including total size, line size, and associativity. A

bus may have a configurable data encoder that can be activated or deactivated.
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Parameter Description Configuration

A Cache capacity 1 – 256K byte

B Cache line size 32, 64, 128 byte

C Data block size 32, 64 byte

D Memory size 1-16M

E Tiny cache size 8 – 256 entries

F Tiny cache type filter, loop, preloaded loop

G Ethernet transfer rate 10M, 100M, 1G - bit

H 802.11 transfer rate 1M, 2M, 11M – bit

I Bus encode/decode
scheme

T0, bus invert, none

J Supply voltage 1.5 – 2.5 Volts

K Clock Frequency 50 – 300 MHz
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Fig. 1. Parameterizable platform and the corresponding configurations.

A voltage source may be configurable to several voltage levels, while a clock may

be configurable to different frequencies. A peripheral may have configurable buffer

sizes, resolutions, or operating modes. A particular parameter setting for a compo-

nent may result in a new customized HDL or layout representation being generated

for that component. For example, a cache of a particular total size, line size, and

associativity may be generated. In particular, the parameterization of the platform

will not exist in the final version of the platform — instead, a particular customized

instance of the platform will be generated.

IP platforms typically come with numerous configurable components. However,

platform developers typically leave the platform user on his/her own to choose the

best configuration of the platform’s parameters. Instead, platform developers typ-

ically provide, in addition to basic software design tools, simulation support for

the platform. The lowest-level design of platform, such as a gate-level design, can

typically be simulated in an HDL environment. Likewise, the synthesizable version

of the platform, if provided, can also be simulated in an HDL environment. Be-

cause such simulations are extremely slow, platform developers often provide even

higher-level simulators, such as non-synthesizable high-level behavioral HDL mod-

els, or even functional simulators written in perhaps C or C++. These higher-level

simulators are functional only — while mirroring the lower-level representations,

one cannot automatically derive an efficient lower-level implementation from these

higher-level models.

In addition to simulation models, the platform developer may provide a menu-

driven tool for selecting a particular configuration of parameterized components.

This tool typically does not provide any guidance as to what the best configuration

might be, but does eliminate the need for the platform user to modify HDL code.

Such a tool may even generate customized software drivers for the particular plat-

form configuration. Thus, the details of creating a customized platform instance

are hidden.
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However, the platform user must still determine the best configuration of the

platform for a given program. The user is on his/her own in this respect — the

user typically takes an educated guess as to the best configuration, or may run a

few high-level simulations to compare some configurations he/she considers likely

candidates. Unfortunately, finding the best configuration is a difficult task. There

may be billions of possible configurations, with delicate relationships among the

various parameters. For example, cache line size can have a tremendous impact

on system performance depending on a particular program’s behavior, and that

line size can heavily impact bus traffic and hence has a relationship with any

bus parameters. We use the term tuning to refer to the task of selecting the best

configuration, in terms or power, performance, area and other metrics, of a plat-

form’s parameters considering the relationships of these parameters to a program’s

behavior and the relationships among parameters. A properly selected set of pa-

rameters can yield perhaps order of magnitude differences in terms of power and

performance, while having a big impact on system area, compared to un-tuned

parameters.37

Based on the above, we see a need for an automated tuning tool for parameter-

ized platforms. Such a tool would take a given program, and find the best parameter

configuration for that program’s behavior and a particular set of design constraints.

Such a tool has two main parts — exploration methods, and estimation methods,

as shown in Fig. 2. Exploration methods guide the search through the huge configu-

ration space, narrowing the space down to the best set of candidate configurations.

Exploration methods differ with respect to runtime and quality — longer running

methods typically yield better quality. Ideally, the exploration tool will output a set

of Pareto-optimal configurations — configurations such that no other configuration

is better in all design metrics. That set represents the set of configurations with

meaningful tradeoffs among the metrics.

Exploration requires methods of evaluating candidate configurations. Those

methods are estimation methods. The estimation methods return information on

power, performance, size, and other design metrics, for a given program executing

on a given configuration. As with exploration, estimation methods differ with re-

spect to runtime and quality — longer running estimation methods typically yield

better accuracy.

However, in the case of both types of methods, quality does not only come

from longer runtimes, meaning more complex algorithms. Instead, careful design

of a method can also yield better quality. Thus, careful design of an exploration

method that incorporates problem knowledge into the algorithm can often yield

excellent results in short runtimes (e.g., carefully designed algorithms for solving the

complex and well-known traveling salesman problem can solve very large problem

sizes quickly).

Just as effort can be placed on developing problem-specific exploration methods

to obtain quality results in reasonable runtimes, effort can be placed on developing

estimation methods. A platform developer can focus on creating increasingly fast



October 15, 2002 11:15 WSPC/123-JCSC 00057

Power Estimator Development for Embedded System Memory Tuning 5

Automated Tuning Tool

EstimationExploration

Platform
Parameters

C File

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600 1800

Execution Time (us)

P
ow

er
 (u

W
)

Pareto-optimal
Configurations

Fig. 2. Design methodology.

but still high-quality means for quickly determining the power, performance, and

size of platform configurations.

In our work of developing parameterized memory components in the context of

platforms, we have developed a general three-step approach that platform develop-

ers can follow to build increasingly fast estimators for their platforms.

We have looked at two types of parameterized memories. One type is a param-

eterized regular (level 1) cache architecture, with the cache parameters including

total size, line size, and associativity. The other type includes parameterized filter

and loop cache architectures, with the parameters including selecting between filter

and loop cache styles, cache sizing, and selecting the number of supported loops. A

filter cache10 is an extremely small level 0 direct-mapped cache (e.g., 32 to perhaps

512 instructions) that will have a high miss rate, but an extremely low power per hit

that in turn results in reduced overall energy for program execution. A loop cache13
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is also a small level 0 cache, but is only filled when a simple loop is detected in the

instruction stream. By using a simple controller that detects loop entries and exits,

tag comparisons can be completely eliminated in a loop cache, and misses are also

completely eliminated.

Our three step approach consists of high-level functional simulation, trace-based

simulation, and equation-based estimation, providing increasingly fast methods for

estimating power and performance. The approach is summarized in Fig. 3. We now

describe each step, and describe how we applied each step to our two types of

parameterized memories.

3. High-Level Functional Simulation

A key idea of tuning is that the best parameter configuration for a platform depends

not only on static constraints on the design metrics of power, performance, size,

etc., but also on the dynamic behavior of the particular program mapped to the

platform.38 Thus, to determine the design metric values for a particular configura-

tion, some form of simulation will be necessary. Though a platform typically comes

with a gate-level or register-transfer level HDL representation, performing gate-level

or even register-transfer level simulation for each configuration is very slow. Simu-

lating even just one second of real time may take tens of hours or even days for any

reasonable-sized platform. (Size can usually be determined from the configuration

alone without simulation, but power and performance require simulation).

Thus, a platform developer should provide (and typically already does pro-

vide) a high-level simulation tool for a platform, as illustrated in Fig. 3. Though

behavioral-level HDL code is faster than register-transfer or gate level, even faster

are C/C++/Java simulators. Such simulators may execute 1 second of real time in

just tens of minutes. Those simulators are typically created to verify functional-

ity and to provide performance data. They typically consist of a program module

for each platform component. For example, Fig. 4 shows a simplified high-level
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Fig. 3. Three step approach for developing fast tuning methods: Step 1 — High-level functional
simulation; Step 2 — Trace-based simulation; Step 3 — Equation-based estimation.
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Step 1 Step 2 Step 3

High-Level Simulator

int M[64k];

while (1) {

   if (rd==’1’)

      out = M[ad];

   else if (wr==’1’)

      M[ad] = in;

High-Level Simulator

int M[64k];

while (1) {

   if (rd==’1’) {

      out = M[ad];

      pwr +=

RdPwr(H);

Trace-Based Simulator

while (1) {

   instr =

RdNextInstr();

   if (instr == Rd) {

      pwr +=

RdPwr(H);

Equation-Based Estimator

pwr += num_rds*RdPwr(H);

pwr += num_wrs*WRPwr(H);

Fig. 4. Power estimator example for a memory M with one simple parameter H that selects
between high performance/power mode and low power/performance mode.

simulator for a basic memory. The simulator declares a variable representing the

memory, and then based on input read and write signals, the simulator either reads

or writes the memory variable. Thus, the simulator preserves the functionality of

the memory. We refer to such simulators as functional simulators.

In Step 1 of our approach, the platform developer extends such a high-level

simulator to also evaluate power, as shown in Fig. 4, using back-annotation. The

developer first determines the basic operations of the component for which power

must be measured.

For a memory, those operations may include reads and writes. For a cache mem-

ory, those operations may be broken down further into read hits and read misses,

and write hits and write misses. The developer must then determine the power

for each such operation, for each possible parameter configuration. Such power

determination may be done through an understanding of layout issues, through

multiple simulations for different configurations, or through a combination of these

two approaches.

In our efforts for regular caches, we deduce a physical model based on the

cache parameter settings and technology feature size, similar to the approach used

in CACTI models.39 The physical model allows estimation of bit-line, word-line,

comparator, storage transistors, and address decoding logic capacitive loads. Then,

switching activity from the simulation phase is applied to obtain average power

consumption of the cache for its various operations. We then annotated a high-

level cache simulator with this power data.

We also applied the back annotation approach for our filter and loop caches. A

filter cache is essentially a very small level 0 direct-mapped cache, and thus we sim-

ply used the same approach as for regular cache. However, loop caches are quite dif-

ferent from regular caches. Loop caches come in several varieties.12 A dynamic loop

cache13 detects a short backwards branch in the instruction stream; such branches

usually represent the end of a small loop. Hence, the branch triggers the filling of

the loop cache during the second iteration of that loop (note that no processor stall

occurs during this fill — instructions are simply copied from the instruction bus
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during execution). On the third iteration, instruction fetching switches from the

power-costly instruction memory, which may be cache or a regular memory, to the

very small low-power loop cache. Fetching continues from the loop cache until a

control of flow change within the loop is executed. Another variety of loop cache,

known as a preloaded loop cache,12 gets preloaded with the most frequent loops

as determined through profiling. Such preloading has the advantage of supporting

control of flow changes within the loop (dynamically-loaded loop caches only fill

what they saw on the second loop iteration, so cannot handle flow changes), thus

supporting a wider range of loops and hence reducing power further. A hybrid loop

cache40 combines dynamic and preloaded loop caching, by only preloading those

loops that do execute control of flow changes, and dynamically loading the rest,

thus increasing the effective size of the preloaded loop storage.

We developed a functional loop cache simulator able to simulate any of the

above loop cache varieties. Additional configuration information that the simulator

could take included the size of the loop cache, the number of loops supported (for

a preloaded or hybrid type), and miscellaneous options for each loop cache type.

We then proceeded to back-annotate the loop cache simulator with power in-

formation, by also deducing a physical model for the storage, as done for regular

cache above. Furthermore, we had to determine the power for the loop cache con-

troller. To do this, we first synthesized a variety of controllers and examined the

power consumed by their various parts. We then determined the dependence of that

power on the various configurations of the loop cache, including number of loops

supported, fill strategy, etc.

The platform developer extends a high-level functional simulator by adding in

calls to power estimation routines, as shown in Step 1 of Fig. 4. Each determined

operation of the component will have its own routine. Each routine will have the

current parameter configuration passed to it. The routine will then return a power

value, and the simulator simply accumulates these power values as it executes.

The high-level simulator can now compute power and performance as it executes

a program. The simulator can be incorporated with a configuration selector as

shown in Fig. 5, which selects candidate configurations to evaluate. Such selection

may be done manually by the platform user, or using automated search heuristics.

However, such heuristics are limited in their search by the slowness of evaluation —

executing a program using a functional simulator for a given configuration may take

tens of minutes or even hours. Thus, those heuristics can only try tens of possible

configurations.

We can also apply our approach to other components in a platform, such as pro-

cessors, peripherals and buses. For a processor, an instruction based power modeling

is applied that is based on models developed in Refs. 41 and 42. Similarly, for each

bus segment, a rough layout is inferred that is based on the chip technology, chip

area, bus widths, and relative size of the various cores, in order to obtain the aver-

age bus capacitance. Then, switching activity from the simulation phase is applied
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Fig. 5. Evaluating configurations.

to obtain average power consumption of various buses. Average accuracy of a high-

level simulation based technique was experimentally shown to be 5% to 15% of

gate-level measurements.37 We apply a similar method for peripherals.43

4. Trace-Based Simulation

Although high-level functional simulations are far faster than lower-level simula-

tions, the tens of minutes or hours required per simulation limits exploration meth-

ods to examining only a few configurations. Thus, we sought to develop a method

that would provide reasonable accuracy in less time.

Most of the execution time of a high-level simulator is spent emulating the

functionality of the platform. For example, in Step 1 of Fig. 4, reading and writing

of the memory variable takes time. Simulating more complex functionality, such as

cache fills, or loop cache control, takes even more time. However, notice that the

simulation of that functionality is not really necessary for determining the power or

performance. For those metrics, we really just need to know how many times each

operation is carried out.

Developers of cache simulators have long recognized this principle. Hence, they

developed trace-based cache simulators.44,45 In such an approach, a functional sim-

ulator generates a trace of memory address references as the simulator executes.

Once this trace is generated, the trace-based cache simulator can be executed mul-

tiple times with different configurations of common cache parameters, such as line

size, associativity, total size, replacement policy, write policy, etc. The trace-based

cache simulator does not maintain the actual data stored in the cache. Instead, it

merely maintains the tags of items in the cache, and thus can determine whether

an access would represent a hit or a miss. Not only is such trace-based simula-

tion faster than a functional cache simulation, but trace-based simulation does not

require re-simulation of the rest of the system for different cache configurations.

We therefore developed a trace-based cache simulator that could support all the

parameters we needed for our platform.
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For example, Step 2 of Fig. 4 shows how the earlier functional memory simulator

would be modified to become a trace simulator; notice that the functional aspects

of the simulator have been removed, while the power estimation aspects remain.

Thus, we can obtain power and performance data for each cache configuration

in minutes or tens of minutes, as illustrated in Step 2 of Fig. 5. Notice that the

time-consuming functional simulation is only done once, and is not in the main

configuration exploration loop as is the case for Step 1, shown in Fig. 5.

We also developed a trace-based simulator for our loop cache. In this case, we

modified the functional simulator to generate a trace of the instruction opcodes and

addresses, rather than just the addresses as for the regular cache simulator. The

trace-based loop cache simulator processes each instruction and determines for that

instruction whether the loop cache will be idle, or will perform a detect operation,

a fill operation, or a fetch operation. Using the back-annotated information, the

trace-based loop cache simulator computes power.

Further methods can be applied to speed up such trace simulators, such as trace

compaction,46 trace stripping,47 or evaluating multiple configurations in a single

trace simulation.45 For our loop cache, a simple method of reducing trace size was

to only include branch instructions in the trace — the loop cache simulator could

determine how many instructions existed between branches simply through address

calculation.

Despite methods to reduce trace file size, one of the main disadvantages of a

trace-based approach is that the trace files can become extremely large — many

gigabytes in the Mediabench benchmarks we tried.

We have also developed trace-based simulators for the bus and processing com-

ponents of a platform.37,43 However, care must be taken to regenerate trace files

when a configuration change demands such regeneration. For example, changing a

cache’s parameters will change the bus traffic between cache and memory, requir-

ing a new bus traffic trace to be generated. Likewise, changing the resolution of a

JPEG encoder will change the memory access patterns. A platform developer must

carefully consider the impact of different configurations on the system’s execution,

and may have to regenerate new traces for certain classes of configurations. Our

Platune environment allows a designer to capture the interdependency among pa-

rameter information as a directed graph,48 and then automatically generates new

traces when necessary during exploration. This does bring high-level simulation into

the configuration exploration loop, but thus far in our experiments, the number of

such occurrences has been manageable.

5. Equation-Based Estimation

Trace-based simulation can reduce estimation time to just minutes, enabling ex-

ploration tools to examine perhaps hundreds of configurations. However, we would

really like to explore thousands or tens of thousands of configurations to find the

best configuration. In order to reduce estimation time further, we sought a method
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for eliminating all or most of the time-consuming simulations from the exploration

loop. For this purpose, we developed equation-based estimators.

The basic idea of equation-based estimation is to statistically characterize the

trace, such that we can combine those statistics with a particular configuration’s

values in an equation or function to compute power. For example, Step 3 of Fig. 4

shows an equation-based estimator that makes use of statistics on the number of

reads and writes in the trace.

Such equation-based estimation is extremely fast, but may lose accuracy, since in

many cases the statistical characterization loses information necessary for accurate

prediction. Notice in Step 3 of Fig. 5 that functional simulation is executed once to

generate a trace, and trace-based simulation is executed once to generate statistics.

Neither of those simulations are in the configuration exploration loop.

For our regular cache, we determined that we actually needed to run the trace-

based simulator six times, not just once, to generate statistics for six key cache

configurations. From those six, we could interpolate remaining configurations with

reasonably accuracy. We define the equation-based cache estimation problem as

follows. Given a trace of memory references, we are to compute the number of

cache misses,a denoted N , for all different caches. Two caches are different if they

differ in their total cache size S, line size (block size) L or degree of associativity

A. We limit each of these three distinguishing parameters to a finite range:

S = {2i, i = Smin · · ·Smax} , L = {2i, i = Lmin · · ·Lmax} ,

A = {2i, i = Amin · · ·Amax} .

Note that, for practical purposes, we consider only values that are powers of two

for each of these parameters. Given a trace-file, we must define a function:

f : S × L×A→ N .

To compute the number of cache misses N for any cache configuration. We

assume that, with the aid of a cache simulator, we are able to compute the above

function, for any value from the sets S, L and A, in linear time with respect to

the size of the trace-file. Intuitively, our approach works as follows. We know that

at low cache sizes, higher line size and associativity have a greater positive effect

than they do at high cache sizes. For example, doubling the line size when cache

size is 512B may reduce cache miss rate by 30%, but when the cache size is 8 K,

it may not reduce the miss rate at all. Thus, we are interested in finding these

improvement ratios at both low and high cache sizes, so that, by line fitting, the

improvement ratio for any cache size can be estimated. This assumes a smooth

design space between these points. We next describe our approach for estimating

this function for all range values.

aOther metrics, e.g., number of write backs, can be estimated, using our approach, in a similar
manner.
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Our approach consists of three steps. First we simulate the trace-file for some

selected S, L and A values and obtain the corresponding cache misses. Then we

calculate a linear equation, using the least square approximation method. Last we

use our linear equations to compute N for all cache parameters. We first simulate

the following points in our domain space:

f(Smin × Lmin ×Amin) = N1 , f(Smax × Lmin ×Amin) = N2 ,

f(Smin × Lmax ×Amin) = N3 , f(Smin × Lmin ×Amax) = N4 ,

f(Smax × Lmax ×Amin) = N5 f(Smax × Lmin ×Amax) = N6 .

Then we compute the following ratios:

R1 = N1/N3 , R2 = N1/N4 , R3 = N2/N5 , R4 = N2/N6

Here, R1/R2 denotes the improvement we obtain by using maximum line-

size/associativity when cache size is at its minimum. Likewise R3/R4 denote the

positive improvement we obtain by using maximum line-size/associativity when the

cache size is at its maximum. Given these ratios we estimate N for a given cache

size S, line size L, and associativity A as follows:

s = (Si − SMin)/SMax , l = (Lj − LMin)/LMax , a = (Ak −AMin)/AMax ,

t1 = s(N2 −N1) +N1 , t2 = l(R3 −R1) +R1 , t3 = a(R4 −R2) +R2 ,

f(Si, Lj, Ak) ≈ t1(1− t2 − t3) .

The first three equations, s, l and a, normalize our parameters to be within a

unit range. The next equation, t1, estimates cache misses using lowest line size and

associativity, by computing a linear line through the points N1 and N2. If more

simulation data is available, the least square approximation is used to compute t1.

The next two equations, t2 and t3, estimate the expected improvement gained from

higher line size or associativity. The last equation combines the previous equations

to estimate cache miss rate.

Further details of our equation-based cache estimation can be found in Ref. 49.

We can apply a similar method for filter caches. However, loop caches require

a very different approach. In our approach, we developed a tool to parse the trace

file and generate a statistical characterization of the loop behavior of the program.

For every loop, we compute statistics (average, minimum, maximum, and standard

deviation) of the number of visits to this loop, the number of iterations of this loop

per visit, and the number of instructions executed by this loop per iteration. The

tool also examines the program code itself to determine the static size of each loop

and the number of branch statements within the loop.

We then developed an estimation tool that tries to estimate the behavior of

the various loop cache configurations based on the generated loop statistics. For

example, suppose a loop’s statistics indicate that the loop iterates 100 times per

visit, with a standard deviation of 0. Suppose that loop executes 10 instructions per
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iteration, with a standard deviation of 0. We can see that this is likely a loop with

a fixed iteration count and containing straight-line code. For a dynamically-loaded

loop cache, we know that for each visit, this loop will generate 10 fill operations

(during the second iteration), and then for the remaining 98 iterations, the loop

will be fetched from loop cache, resulting in 98∗10 = 980 fetch operations from the

loop cache. For a preloaded loop cache, each visit will result in 100∗10 = 1000 fetch

operations.

We apply a similar process for all loop cache variations. We consider additional

details, such as detect operations necessary for preloaded loop caches.

Note that the above approach can result in inaccuracy. For example, when the

standard deviation of a loop’s instructions per iteration is nonzero, we do not know

how the iterations look across loop visits. We must make some assumptions.

To improve the accuracy, we can try to find additional statistics that would

help — these are highly-dependent on the loop cache style, and thus this step

requires careful attention by the platform developer.

6. Results

The three steps outlined above provide increasingly fast power estimation at the

expense of some accuracy loss. We now highlight some data showing the speed and

accuracy of the methods we developed for regular cache and for loop cache.

Figure 6 provides performance and energy (power times time) estimation data

for our trace-based cache simulation approach compared with our equation-based

estimation approach, for a regular cache executing a diesel engine controller exam-

ple. That data also includes a configurable bus, for which trace and equation-based

simulators were also developed.50 We evaluated over 45 000 different configurations

of the cache/bus system — the figure shows 10 of those configurations, selected to re-

flect worst, average and best case estimates. Notice that the equation-based method

is quite accurate. For two different examples and all 45 000 configurations, average

error was only 2%, and worst case error was 18%.49,50 Obtaining these values for

all possible cache/bus configurations using equation-based estimation required only
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Fig. 6. Performance (left, in sec.) and energy (right, in mJ) estimates from trace-based simu-
lation (white bars) versus equation-based estimation (black bars) for ten different regular cache
configurations, using a diesel engine controller example running on a MIPS processor.
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Fig. 7. Instruction-fetch power savings estimated by trace-based simulation (white bars) ver-
sus equation-based estimation (black bars) for 72 different loop cache configurations, executing
the JPEG benchmark on a MIPS processor. Loop caching does not impact performance, so no
performance estimates are shown.

84 minutes, instead of 7 days for the trace-based simulation approach — a speedup

of 120 times.

Figure 7 summarizes power savings estimations for a JPEG decoder bench-

mark using a variety of loop cache configurations. We examined 72 different con-

figurations, including different sizes and types of dynamically-loaded loop caches

(configurations 1–16), of preloaded loop caches looking for a loop’s starting ad-

dress (configurations 17–32), and preloaded loop caches looking for a loop’s ending

address (configurations 33–72). The white bars represent the trace-based simula-

tor results, while the black bars represent the equation-based estimator results,

for each configuration. Notice that the equation-based method is extremely accu-

rate — averaging only 1% error. We applied these methods to the PowerStone set

of benchmarks,2 and obtained an average error of only 2%. The trace-based loop

cache simulator required an average of 300 seconds per configuration, while the

equation-based estimator took less than 0.01 seconds — a speedup of 30 000.

In both of the above cases, we examined all configurations of the parameterized

components. Related to the above work is work we have done to more efficiently

search the configuration space, using knowledge of the parameter interdependencies

to enable extensive search space pruning.37,48

Results thus far have focused on individual memory components and on cer-

tain combinations of processor, bus and memory. We plan in the future to create a

comprehensive exploration tool based on the three step methodology, that simulta-

neously considers all of the parameters of Fig. 1.

7. Conclusions

A need exists for platform developers to provide tuning tools that assist platform

users to select the best configuration of platform parameters. Platform developers

can follow the three-step approach described in this paper to create fast yet accurate

tuning tools. The first step involves creating high-level functional simulators (really,

just extending existing such simulators) accumulate for each operation the power
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and performance data that has been back-annotated from low-level simulations. The

second step involves modifying a high-level simulator to output instruction traces for

every component, and developing trace simulators for each component. The third

step involves developing equations that can predict the power and performance

data from statistical summaries of the traces. With this third type of estimator,

the platform developer can develop exploration methods that thoroughly search the

configuration space, enabling the platform user to effectively tune the platform to

a specific program. The net result is a lower power, higher performing, more size

efficient synthesized platform implementation.

We are continuing to develop parameterized memory and bus components that

provide good power/performance tradeoff capability for core-based systems. We

are also investigating the idea of heavily parameterized pre-fabricated platforms,

whose parameters would be configured by setting bits in registers on the chip. In

particular, we are developing new highly parameterized memory components for

such platforms, along with methods for tuning such components to a program.
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