A Comparison of Suffix Tree based Indexing and Search Techniques

for Querying Protein Structures

Sanjay Kulhari
University of California, Riverside
skulhari@cs.ucr.edu

March 2010

Abstract

Biological research comes across different protein structures inside a cell which may be required to
map to known proteins to quickly determine their functionality. Efficient techniques for searching
a protein structure in a database containing all the known proteins are needed to classify the
protein and predict its function. Comparing the structure of unknown protein individually with
every protein in the database can be highly inefficient. Database indexing methods are therefore
best suited for matching an unknown protein structure with the existing set of proteins. Various
indexing techniques have been proposed till date that uses various features of protein structure.
Indexing techniques based on suffix tree data structure are of prime importance as they provide
efficient querying algorithms. In this report we are going to do a comparison of three such
techniques that extracts features from protein structures, encode them to create a sequence, build
a suffix tree index and provide algorithm to query the index for unknown protein.

1 Introduction

Computational methods are widely used to analyze biological data. Identifying proteins is one of
such task that requires comparing a protein structure against a database that contains structures
of known proteins. Proteins are chain of amino acids that are arranged in three dimensions. The
distance between carbon atoms, angles formed between different atoms in the amino acid forms the
three dimensional structure. This three dimensional structure then determines the functionality of
the protein that the main purpose of protein classification. Simply comparing the sequence of amino
acids in a protein to another protein may not help to classify it and determine its functionality. It
may also happen that the two proteins having similar sequence have totally different functionality
because they have different three dimensional structure.

Indexing techniques for proteins need to take into account the structure which is also called as
feature of the protein. Feature of a protein includes the geometry that cannot be represented as
a single entity, so before indexing, this geometry has to be converted to concrete data type like a
string or a numeral that can be indexed. In this report we are going to see three approaches that

use structural information to build suffix tree for proteins. The three approaches are called PSIST
(Protein Structure Indexing using Suffix Trees) [1], Geometric Suffix Tree (GST) [2] and Protein
Similarity Algorithm (PROSIMA)[3]. Since these approaches are different in extracting the features,
the information stored in the index, query techniques and efficiency will be different. Accuracy for
the three techniques will be different as it depends on what information is used to do build the index.
In further sections, we are going to do a comparison based on feature extraction, suffix tree creation,
querying, accuracy and time complexities.

2 Preparing data

As previously mentioned the general methodology is quite similar and all the techniques converts
structural information into a suffix tree, but the information stored in the tree can be substantially
different. PROSIMA and PSIST are considered efficient to GST, but less accurate. GST is based
on calculating Root Mean Square Deviation (RMSD) and it constructs a suffix tree where the edges
represent 3-D substructures as compared to sequence of strings in the other two approaches.In this
section we are going to see how the features are extracted and data is prepared for construction of
suffix trees. From the chain of carbon atoms PSIST uses a sliding window to extract local feature
vector that records the Euclidean distance between the alpha carbon atoms and the angle formed
by planes that contain those carbon atoms. Since the relationship between two amino acids can be
described by its dihedral angles, as compared to PSIST, PROSIMA just encodes the three dihedral
angles into a string and then uses a dictionary to encode them again into a positive integer. We see
that PSIST uses sliding window, distance between carbon atoms, and angles between the planes of
carbon atoms, in contrast PROSIMA just uses the three angles and consider just the two adjacent
carbon atoms in the chain. Thus we can say the information contained in PSIST is more than the
information contained in index created by PROSIMA. GST on the other hand, based on the 3D
coordinates of the carbon atoms calculates RMSD and uses that information for tree creation. GST
considers all the carbon atoms and thus is a global approach as compared to PSIST and PROSIMA
that uses just the local information from a number of carbon atoms in the amino acid chain. Since
preparing the data has its own complexity, let us now look in more detail how these techniques differ
in the way data is prepared.

In PSIST, Euclidean distance between two alpha-carbon atoms is directly calculated using 3D
coordinates and the angle between the planes is calculated by finding the angle between the normal
of the two planes. Since this techniques uses a sliding window, the distance and angle is calculated
between the alpha-carbon atom of consideration and the carbon atoms of other amino acids present
in the window. If the window size is w, the dimension of each feature vector is 2(w — 1) because
we are considering the distance as well as the angle. After getting these values, they are normalized
and binned to an integer in the range [0, b-1]. The sequence of normalized values is called structure-
feature sequence. Since each normalized value is in range [0, b-1], the structure-feature sequences

are over an alphabet of size b2(w=1),

Each normalized feature vector is assigned a unique identifier
as a label and thus structure-feature sequence for a protein is nothing but a sequence of labels for

which a suffix tree is constructed.

Table 1. Examples of normalized feature vec-
tors forw =3 and b= 10

Feature vector

d |cos@|d | cosb
original 355029 |54 —0.23
normalized | 4 6 6 3
original 404 | 0.11 | 5.75 | —0.25
normalized | 5 5 7 3
original 3.60 | 045 | 5.29 | 0.21
normalized | 4 7 6 6

GST for sequences S; = zabza and Sa = babzba

Figure 1: Structure feature vectors and it’s generalized suffix tree

PROSIMA uses the dihedral angle information (¢, ¥ and w) from the adjacent amino acids. It
gets all the protein files from PDB database and encodes the amino acid chain into a sequence of
integers. Since ¢ and ¥ takes values from -180 to 180, an interval of 10 is created and the range of
possible values is broken into 35 parts. If the angle is say -21 then it can be mapped to nearest discrete
value of 20 and normalized to a value of 02. This way the two angles can be encoded as strings. w
on the other hand can take values of either 0 or 180, so it is encodes as A or B. As an example if we
have a protein with backbone consisting of 6 amino acid residues MVLSEG, the resulting encoded
sequence can be A3202, A2401, A2603, B2401, A2422. This way each protein is encoded as sequence
of words, which can be converted to sequence of integers by building a dictionary on these words.
Thus we get a protein as sequence of integers for which a suffix tree can be constructed.

Geometric Suffix Tree is considerably different from the other two techniques as it does not index
just some important features of structures. From the set of available proteins, it calculates the pair-
wise root mean square deviation (RMSD) between the corresponding atoms of the protein structure.
Since this is like a holistic approach, it is going to be more accurate but considerably slow. Also
unlike PROSIMA, it works for only a small set of proteins, otherwise it can be highly inefficient.
Depending on the RMSD values and minimum RMSD limit between two structures, addition of
nodes in the suffix tree is determined. In the next section we are going to see how the prepared data
in these techniques is used to construct the suffix tree.

3 Indexing

Structure-feature sequences for each protein structure obtained for PSIST in data preparation phase
is a sequence of labels. Given such sequences for all the proteins, a generalized suffix tree is con-
structed.

As an example, in Figure 1, there are three feature vectors with a window size of three. We see
that each feature vector is a sequence of normalized values. Vector 1 is 4-6-6-3; similarly vector 2

is 5-5-7-3 and vector 3 is 4-7-6-6. The label assigned to the three vectors is a, b and x respectively.
If the two sequences are S1 = zabxa and S2 = babxba, a generalized suffix tree is constructed as
shown in figure 1.

In case of PROSIMA, protein structure was encoded as sequence of positive integers. As PROSIMA
builds the suffix tree for all the proteins in the PDB database, an encoding of all the protein struc-
tures is done and a generalized suffix tree is created. As a simple example, consider three protein
structures with a chain of six amino acids encoded as 01213, 23162, and 12423 respectively. These
sequences of integers are used to construct a generalized suffix tree. In this technique as we said,
generalized suffix tree is created using sequences of all the proteins in the database.

Suffix tree construction for Geometric suffix tree requires all the carbon atoms to be considered
and RMSD is calculated for each protein structure against all available protein structures that are
to be indexed. Suffix substructure is a sequence of suffixes in the chain of carbon atoms that
represents the 3-D coordinates of the carbon atoms in the sequence. During suffix tree creation,
suffix substructures are inserted into the suffix tree as compared to sequence of labels and numbers
in PSIST and PROSIMA respectively.

In the next section we are going to see how the information stored in the suffix tree index is used
to compare the structure of query protein with the encoded structures of protein in the database.

4 Querying

In PSIST, query’s feature vectors are extracted in the same way and converted to structure-feature
sequence as it was done while indexing proteins. The complete querying process is divided into three
phases - searching, ranking and post processing. Search here is not an exact match in contrast to
usual suffix tree maximal unique matches. It takes into consideration two parameters that are e,
which is the maximum possible distance between matched strings and the minimum length [of the
maximal match. Since we are interested in finding matches that are with a small distance, every
subsequence of the query can be traced in the suffix tree, but this may cause common prefix of two
subsequences to be searched twice. Thus to avoid the unnecessary comparisons, a suffix tree is built
on the suffixes of the query sequence. A set of all maximal matches is created and if a maximal
match is found it is added to it. The next step is to chain the matches as to identify the protein
sequences with high matching scores so that we can narrow down to smaller number of proteins to
perform alignment with the query. Chaining the maximal matches is based on greedy algorithm
that chooses the match with the highest score and all the overlapping matches are removed and the
process is repeated for next match with highest score. Finally proteins sequences with top scores are
selected and aligned with the query using Smith-Waterman algorithm. The protein with the highest
score is reported to the user.

PROSIMA evaluates the similarity in proteins using standard information retrieval way of build-
ing a vector model and a similarity matrix. To build the vector model it needs to query the suffix
tree index to obtain maximal phrase cluster which is nothing but the longest common substructure.

The protein vector model is analogous to document model represented by terms. In the protein
model, the document is the encoded chains of amino acids and the terms are the maximal phrase
clusters. A protein is represented by the maximal phrase cluster in which it is contained. Similar
to the weight of terms in document model, weights of phrase clusters is calculated. Thus the vector
model for proteins is generated and similarity matrix is created by using cosine similarity measure.
The similarity matrix can report the most similar protein to a protein present in the vector model
by finding the protein with highest similarity score in its row. This approach indexes all the proteins
in the database and finds the similarity matrix for them. This technique can also be employed to
find the most similar protein to the protein in the query by indexing the query protein along with
the database proteins.

In case of GST, query takes the form Q[1..m], where Q is the sequence of carbon atoms with its
3-D coordinates. We know that instead of extracting the feature and converting them to a sequence
of labels, edge in a GST represents the substructure itself. Given a query Q, GST can return all
maximal substructures whose RMSD is within some bound 'd’. Representative structure is defined
as prefix substructure of the node structure in the geometric suffix tree. To identify the maximal
substructures for a given query, all the maximal representative substructures are found whose RMSD
to query Q is within \/b/m + d where b is the bound used for constructing the geometric suffix tree.
All the suffixes to leaves that are descendent to the edges of representative substructure will be
reported to the user

5 Accuracy, Space and Time complexities

In this section we are going to compare complexities and accuracy of the three approaches. Let the
number of proteins to be indexed is N and the sum of the lengths of the protein chains is L and
the length of query protein is M. The techniques that we have described in the report make use
of suffix tree to index the available set of proteins. PROSIMA works on the entire PDB database,
and extracts the features using the three dihedral angles and the adjacent carbon atoms. Data
preparation phase requires converting protein structures in the database to sequences, complexity
of which is of the order of sum of the lengths O(L) of the protein chains. Suffix tree creation
algorithm used in PROSIMA is quadratic and is O(L?). Querying the suffix tree for longest common
substructure is O(L), complexity of building the similarity matrix is O(N?). Therefore the total
complexity is O(L? + N?). This complexity is for finding similarity of every protein in the database
to every other protein. Thus if we use this technique for finding similarity of just the query protein,
complexity can be reduced to O(N). Also an efficient implementation of suffix tree construction can
reduce the construction cost to O(L) i.e linear in the sum of the lengths of the protein chains. The
space complexity for PROSIMA is O(L) for index creation, but the over all space complexity for
building the similarity matrix is O(N?). It is least accurate compared to the other two techniques.

Data preparation phase in PSIST is also of the order L if each protein chain is processed with a
window size 2. It will be O(wL) for a window size w. Since the window size w is not expected to be a
big number, complexity can be assumed to be O(L). PSIST uses linear time suffix tree construction

algorithm. Since each protein will be represented by a sequence of labels whose count is same as
the length of the protein chain, the suffix tree creation algorithm is linear to the sum of lengths of
all proteins. Therefore creation of sufix tree is O(L). Complexity for querying the suffix tree for
maximal matches is O(M + k), where k is the number of matches. These matches are ranked and
using greedy algorithm it takes O(k) time to delect top matches. Assuming that a very small number
of proteins say c are selected as top matches, post processing step of using dynamic programming
method to find the alignment will be O(c * (I; * M)), where [; is the length of one of the protein
selected as top match. Assuming the size of protein chain to be of the same order as size of the
query, post processing step can be viewed as O(M?). Suffix tree construction algorithm for PSIST
has space complexity of O(L). The experimental results show the accuracy of 97.8%.

Data preparation phase in geometric suffix tree can be viewed as calculation of RMSD between
the protein structures. RMSD calculation and insertion of a protein structure in the suffix trie
requires time proportional to the sum of size of the structures and the number of proteins. Thus this
step has time complexity of O(L+ N?). Construction of suffix tree is O(L%+ LN?). Query execution
to find maximal substructures takes time proportional to sum of the lengths of the protein chains.
So the complexity of finding the mathed result is O(L). Also the space complexity for GST is O(L).
GST is the most accurate among these indexing techniques.

6 Conclusion

In this report we compared three indexing techniques that are based on suffix trees. GST is inefficient
compared to other two techniques but is more accurate as it constructs the index based on pair wise
comparison. PROSIMA uses minimal feature information thus is expected to be less accurate. PSIST
is the most efficient among these and is also more accurate than PROSIMA as it takes a number of
residues in the window to create the feature vector. The decision of selecting a technique depends on
required accuracy and efficiency. We have not studied other index based techniques that do not use
suffix trees, so these techniques are not compared to them in this report. Taking into consideration
just these three techniques, if the unknown protein is compared to a reasonably small subset of
proteins, GST can be used otherwise for querying against the complete PDB database PSIST should
be the preferred technique.

References

[1] Feng Gao,Mohammed J. Zaki PSIST: Indexing Protein Structures Using Suffix Trees. In IEEFE
Computational Systems Bioinformatics Conference, August 2005.

[2] Tetsuo Shibuya Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures. In
Annual Symposium on Combinatorial Pattern Matching, July 2006.

[3] Tomas Novosad, Vaclav Snasel, Ajith Abraham, Jack Y Yang PROSIMA: Protein Similarity
Algorithm. In Nature and Biologically Inspired Computing, December 2009.

