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The Evolution of the Internet:Topology and Routing
Georgos Siganos Michalis Faloutsos Christos Faloutsos

Abstract—In this paper, we study the evolution of the In-
ternet topology over the last three years. We study the evo-
lution at three different levels: a) each node individually, b)
the network as a whole, c) the path level. First, we find
that the degrees of the nodes increase in a “rich get richer”
fashion: the increase is proportional to the degree of the
node. Second, we identify that new edges prefer nodes that
have high degree of connectivity. Third, we observe a “small
world” phenomenon: the network grows exponentially, but
distances remain the same. Fourth, we find that the routing
inflation increases over time.

Keywords— internet topology, power-laws, topology evo-
lution, path inflation

I. INTRODUCTION

In this paper, we study the evolution of the Internet
topology at the Autonomous System or inter-domain level
over the last three years. We try to understand the dy-
namics of the growth of the network and its routing. Fur-
thermore, we identify causal relationships in these proper-
ties. We relate microscopic phenomena at the node level
with the macroscopic properties of the network as a whole.
Understanding the Internet topology and its dynamics can
have significant impact in interpreting its behavior and im-
proving its performance.

The motivation for this work is the limited understand-
ing of the Internet topology and its evolution. This lack
of understanding is a significant factor of “Why We Don’t
Know How To Simulate The Internet” [21], [9]. In prac-
tice, researchers need the topology in their efforts to a) de-
sign efficient protocols [27], [6], b) interpret measured and
simulated data [8], c) detect and resolve distributed Denial
of Service attacks [20]. d) calculate the routing inflation
of the paths. Therefore, network analysis and management
without topological knowledge is similar to trying to solve
the traffic problem of a city without looking at the street
layout.

There are a lot of aspects of the Internet topology evo-
lution that we do not understand. The size and the con-
stant change are factors that make such a study very chal-
lenging. In the last few years, some aspects of topology
have been studied, but there does not seem to be a com-

U.C. Riverside, Dept. of Comp. Science, {siganos,
michalis}@cs.ucr.edu

Carnegie Mellon Univ. Dept. of Comp. Science chris-
tos@cs.cmu.edu

prehensive evolution study. By comprehensive, we mean a
study of the topology that examines the evolution at mul-
tiple levels (network, nodes, and routing) and with an ef-
fort to understand the co-evolution and co-dependencies of
these levels. Over the last few years, several efforts have
studied the topology in a static manner [19], [12], [5], [7].
Some recent efforts provide some analysis of the evolu-
tion, but typically focus on properties at the network level
[14] [15] [11]. In the most recent effort, the authors ana-
lyze the evolution of major topological properties [16].

The most popular model for the growth mechanism of
the Internet is an elegant theoretical approach based on
preferential attachment of new nodes to nodes with high
degrees [2]. Recent work raises doubts whether the model
is verified by the empirical data [4]. Using a different and
much simpler approach we conclude that even though the
model doesn’t capture exactly the evolution of the growth,
it can be a good approximation. Finally, there are very few
studies of the routing paths and topological paths. They
used one instance and examined the topology at the router
level [25] and at the router level and AS level [26].

The purpose of this work is to highlight the major trends
in the Internet growth and to provide novel insight on the
relationships of growth-phenomena at different scales. We
analyze the topology daily from November 1997 to March
2001 for a total of 916 instances. We study the evolution
of three different levels: a) each node individually, b) the
network as a whole, c) the routing and topological paths.
Furthermore, we attempt to explain the macroscopic prop-
erties of the network through the microscopic phenomena
at the node level. A secondary goal is to examine the valid-
ity of the theoretical model [2] for the Internet growth. Our
main findings can be summarized in the following points:

• The “rich-get-richer” phenomenon: Nodes obtain new
edges with rate proportional to their existing degree.
• New nodes attachment is preferential. We study how
new nodes attach to the network. We observe that the
”popularity” of an existing node among new nodes is a
function of it’s degree, but this relation isn’t linear as the
theoretical model proposes [2]. Note though that it could
be a good approximation.
• Internal edges generation is preferential. We find that
a significant part of the edges appears between nodes that
existed in the topology. Again a preferentiality exists but
it is not linear [1].
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Fig. 1. The structure of Internet

• The degree distribution remains the same. The exponent
of the power-law of the degree distribution, remains prac-
tically constant. Furthermore, the topological power-laws
observed in [7] hold for all our instances.
• Exponential growth but distances remain the same: a
“small world” phenomenon. The topology is compact and
it becomes more compact over time. More than 99% of
nodes are within 6 hops over all our instances. This means
that with the same hops we reach more and more nodes
given the growth.
• Routing inflation increases with time. The ”inflation” of
the routing paths compared to the topological distances at
the Autonomous system level seems to increase over time.
The percentage of routing paths that were inflated started
from 25% for November 1997, and by March 2001 has
increased to 32%.

Our work in perspective. Our goal is to identify general
growth trends, find relationships between growth mecha-
nisms, and capture the “expected” behavior of the network
and its node. Naturally, the behavior of a large complex
system shows some deviations. Furthermore, any real data
are bound to suffer from inaccuracies and internal incon-
sistencies. We explain the methods we use to filter arti-
facts, and present the consistency of our results with that
of related research efforts.

The rest of this paper is structured as follows. In sec-
tion II, we present some definitions and previous work. In
section III, we describe the Internet instances that we use.
In section IV, we analyze the time evolution at the node
level. In section V, we study the evolution of the network
as a whole. In section VI, we analyze the paths and their
evolution in time. In section VII we identify relationships
between our observations and relate micro and macro phe-
nomena. In section VIII, we conclude our work.
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Fig. 2. RCDF: Plot of the percentage of nodes which have
degree higher than a degree versus that degree.

II. BACKGROUND AND PREVIOUS WORK

We study the topology of the Autonomous System or
inter-domain level. Autonomous Systems or domains are
connected subnetworks that are under separate administra-
tive authorities, as shown in Figure 1. This way, the topol-
ogy of the Internet can be studied at two different levels.
At the router level, each router is represented by a node.
At the inter-domain level, each domain is represented by a
single node and each edge is an inter-domain interconnec-
tion. The study of either level is equally important, since
different protocols are employed inside a domain and be-
tween domains.

Given a graph, the degree of a node is defined as the
number of edges incident to the node. The rank of a node
is defined as the index in the order of decreasing degree.
The node with the highest degree has rank 1, the node with
the second highest has rank 2 and so on. The distance
between two nodes is the number of edges of the shortest
path between the two nodes. For the path level study, we
define as topological path between two nodes the shortest
path based on the topology. The routing path between two
nodes is the actual path that a packet will follow. This is
the path that is being advertised in the BGP routing table.
Due to policies at the BGP level the routing paths may not
be the topological shortest paths. We define as inflation of
a routing path to be the difference between its length and
the topological distance in hops, and relative inflation the
ratio of its length and the topological distance.

For data fitting, we use linear regression based on the
least-square errors method [22]. The accuracy of the ap-
proximation is indicated by the absolute value of the corre-
lation coefficient, which is a number between 0 and 1. An
ACC value of 1 indicates perfect linear correlation, i.e.,
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the data points are exactly on a line. Typically, values over
0.97 are considered very good fits.

Related work. Several interesting static studies of
the topology exist [19], [12], [5], [7]. Govindan and
Reddy [11] study the growth of the inter-domain topology
of the Internet between 1994 and 1995. The authors ob-
serve an increase in the connectivity over time. In recent
studies, Huston [14] and Jin et al. [15] study the evolution
of the network as a whole during overlapping time inter-
vals, and identify exponential growth. For completeness
and consistency, we conduct our own study.

A very elegant growth model has been proposed by
Barabasi and Rekka [2]. Their model grows a graph by
adding nodes. The probability of a new node connecting
with node i of degree di is proportional to its degree: di∑

dj
,

where
∑
dj is the sum of the degrees of all current nodes.

We call this model linear preferentiality. In a more recent
work, the same authors propose a more general model that
includes generation of edges between existing nodes [1].
This growth mechanism, which we call internal edge gen-
eration, is also suggested to follow the linear preferential-
ity.

Regarding paths and routing, Tangmunarunkit et
al. [25], [26] examine how BGP policy makes the rout-
ing paths longer than the shortest paths. They examine 2
different data instances and report that 80% of the paths at
the router level are inflated by at least one router hop. They
also check the inflation of one instance at the AS level and
they find that 5% of the paths are inflated by at least one
AS hop.

Power-Laws of the Internet topology. Faloutsos et
al. [7] introduced the use of power-laws to describe the
Internet topology1 . Power-laws seem to describe several
topological properties such as the degree distribution. The
exponents of these power-laws can characterize concisely
the topology, and they have already been used in assessing
the realism of graph generators [2] [17] [24] [15] [28].
Here we study the degree exponent2. We use the Reverse
Cumulative Distribution Function or RCDF of a degree.
RCDF is the percentage of nodes that have degree greater
or equal to a given degree. We plot the RCDF versus the
degree in log-log scale in Figure 2. The fit is spectacular
with a correlation coefficient of 0.996.

1Power-laws are expressions of the form y ∝ xa, where a is a con-
stant, x and y are the measures of interest, and ∝ stands for “propor-
tional to”.

2The law we present here is slightly different than the one presented
in [7], which uses the probability distribution function (PDF) of the
same distribution. The two power-laws are equivalent, but the exponent
differs by one, given the integral-derivative relationship of PDF and
RCDF.

III. DATA INSTANCES

In our study, we wanted to use a data set that has an ex-
tensive spatial coverage and long time span. To the best
of our knowledge, these criteria are best met by the data
repository of the National Laboratory for Applied Network
Research [10]. Furthermore, the main thrust of our anal-
ysis is the evolution, therefore, the minimal requirements
for the data are the following:
• the data should be a representative subset of the total
• the measurements should monitor the evolution in a con-
sistent way
Therefore, we do not argue that our data is the complete
AS map topology [3]. But, we argue that the data meets
the above two requirements: it is representative and con-
sistent.

We present the origin of the data we use in our experi-
ment [10]. The data is the union of a number of real routing
tables used in cooperating routers. The data is collected by
a route server at Oregon Route Views Project [18], from
BGP3 routing tables of multiple geographically distributed
routers with BGP connections to the server. For 97% of the
instances, there are 15 or more routers contributing to the
graph.

We examine the inter-domain topology of the Internet
from 8th of November 1997 till 16th of March 2001. We
represent the topology of the inter-domain by an undi-
rected graph. We filter the initial data to remove incom-
plete data files that they do not represent correctly the
topology. For example, on the 29th of August 1999, the
size changed from 5627 to 103 nodes and became 5633
nodes the next day.

We highlight our arguments for the representativeness
and the consistency of the data in our study. Naturally,
such a task is ill-defined and open-ended and any such time
evolution study is bound to suffer. Whenever possible we
compare our work with similar research efforts.

Data representativeness. Our graph instances seem to
have the same qualitative properties as graphs obtained by
other sources and tools. Tangmunarunkit et al. [25] use a
graph that they obtain from translating a router-level graph
to the corresponding AS graph. They find that their AS
graph and the NLANR graphs are qualitatively the same.

Data consistency. We want to verify that the collected
data is a consistent representation of the topology. For this
reason, we conducted two studies with different numbers
of contributing routers: one using all the reported routers
each time, and one using only nine routers that appeared
consistently over a two-year period. The results of both

3BGP stands for the Border Gateway Protocol [23], and is the inter-
domain routing protocol.
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Fig. 3. New degree versus old degree, in linear linear plot

analysis are consistent. Given the agreement of the two
studies, here we present the study using all the routers,
which spans a larger interval. This strengthens greatly our
confidence in the consistency of the collected data. Fur-
thermore, the authors in [16] conducted some similar ex-
periments using only a subset of routers for their analysis
and their observations are in agreement with ours.

As we already mentioned, we do not argue that the data
is complete. The graph includes most of the AS, but we
can not quantify the percentage of the edges that are ac-
counted for. More specifically, our graph captures the vast
majority of the Autonomous Systems. Intuitively, this is
to be expected to ensure the connectivity of the network.
However, for the edges, things are not as straightforward.
In appendix A, we study the increase in the number of ob-
served edges as we add more routers in the observation
group.

IV. THE EVOLUTION AT THE NODE LEVEL

In this section, we focus on the evolution at the node
level. We examine how the degree of a node changes over
time, and observe a rich-get-richer phenomenon. Then,
we try to find the causes of this phenomenon. We exam-
ine how new nodes attach to the network, and how new
internal edges appear between existing nodes. We find
that our empirical data does not agree with the theoretical
growth model. According to the model, both these pro-
cesses obey the linear preferentiality. We find that they do
not, although linear preferentiality could be considered as
a rough approximation.

A. Degree Evolution

Observation 1: The degree increase of a node is pro-
portional to it’s degree (rich-get-richer phenomenon).
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Fig. 4. Average new degree versus old degree, in log-log plot

We examine the degree evolution of the nodes in time.
Given a time interval, we plot the final degree of the node
versus its initial degree. In Figure 3, we show the degree
evolution as above for a three month period, from August
3rd till September 1st of 2000. We approximate the plot
using linear regression and the correlation coefficient is
0.99. The slope of the plot c90 = 1.093 characterizes how
nodes change degree. More specifically, the degree of a
node, d, in two instances in time t, and t+ ∆t is given by:

d(t+ ∆t) = c∆t d(t) (1)

In other words, the increase of the degree is proportional
to the existing degree of a node. High-degree nodes in-
crease their connectivity faster than low-degree nodes. We
find that this equation holds for all time intervals we tested,
all the slopes are within 1.07 − 1.10 with an average of
1.085. We used also one and six month intervals and found
consistent results.

Intrigued by the simplicity of this rule, we wanted to
verify this property in an alternative way. We find the av-
erage final degree of all nodes with the same initial degree.
In Figure 4, we plot this average final degree versus the
original degree in log-log scale4. The plot has an excellent
linear fit with a correlation coefficient of 0.99. Note that
the slope is one in log-log space, which indicates that the
x and y quantities have a linear relationship. This verifies
the first observation.

We can go even further and validate the accuracy of the
parameter c∆t. We find that the estimation of parame-
ter c∆t with both methods is sufficiently consistent. In

4Note that we plotted both this graph and the previous in both log-
log and linear-linear scales with similar results. In general, in log-log
scale, points with high values affect less the linear approximation. Due
to space limitations, we decided to show one graph for each case.
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Fig. 5. New-node count of every node in order of non-
increasing count. New-node count is the number of new
nodes connecting to a node

more detail, we can relate the two approaches starting from
equation 1. We can take the average degree d̄t over each
set of nodes with equal degree, and then take the logarithm
of the resulting equation:

d̄(t+∆t) = c∆t d̄(t),⇒ log d(t+∆t) = log c∆t+log d(t)

The slope in the linear plot must be equal with the in-
tercept (x=0) in the logarithmic scale. The slope in the
linear plot is equal to c90 = 1.093, and the estimate using
the intercept is equal to 1.14, which gives us less than 5%
error.

In conclusion, the degree increase can be characterized
by a “rich-get-richer” phenomenon. Naturally, there are
nodes that deviate from this rule, but this rule captures the
average and expected behavior of the nodes with very high
accuracy.

B. New Edges and Preferentiality

We want to study how new edges appear in the graph.
The edges of the network are altered with one of the fol-
lowing processes:
• added edges between new nodes and existing nodes
• removed edges between dead nodes and existing nodes
• added edges between existing nodes
• removed edges between existing nodes

Studying the evolution of edges is more challenging that
the evolution of nodes. Intuitively, this is because a rout-
ing table is more likely to be aware of all possible ASs
than it is to know all possible ways to reach an AS. This
makes the task of finding all possible edges between ex-
isting ASs complicated. A positive note here is that find-
ing the edges between one-degree nodes is not as difficult,
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Fig. 6. Average new-node count of nodes with the same initial
degree versus this degree

since a routing table will have to have at least one edge for
each destination. New nodes or dying nodes have typically
low number of edges and therefore we believe that we can
capture their edges with more accuracy than the edges be-
tween existing nodes. Note that our study with nine only
routers gave qualitatively similar results as the study with
all the routers, and therefore we present only the latter.

Observation 2: New nodes prefer higher degree
nodes but not with linear preferentiality. First, we want
to establish the existence of preferentiality. For every node
in the graph, we count how many new nodes have con-
nected to it, which we call new-node count. We do this
for the duration of the three years. In Figure 5 we plot
the new-node count for each node in the order of non-
increasing new-node count. For example, point (1,1000)
means that the first most popular node connected with
1000 new nodes. It is interesting to observe that we can
approximate the plot using linear regression with a cor-
relation coefficient of 0.983. The distribution of the fre-
quency is skewed. This preferentiality is one of the factors
that cause the ”rich get richer” phenomenon we saw in the
previous section. Note that in this plot, each node changes
many degrees, so we can not easily relate its popularity
with its degree. We describe our effort to do this in the
next paragraph.

Node attachment does not follow the linear preferential-
ity. It is not easy to relate the preferentiality of the new
nodes, and the degree of the existing nodes, and for this
we resort to an approximate method. In a nutshell, the dif-
ficulty lies in that we can not measure something without
altering its initial state. More specifically, as new nodes
join, they change the degree of the existing nodes. Thus,
on the one hand, we need to get enough new nodes for sta-
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Fig. 7. New-edge count of every node in order of non-
increasing count. New-edge count is the number of new
edges between existing nodes.

tistical purposes, on the other hand, we do not want a large
degree change. We pick a time instance and we record the
degree of every node in the graph, and we assume that the
degree stays constant during this interval. Then, we find
the new-node count for each node, and relate the new-node
count with the initial degree of the node. We choose to use
an interval of three months, in which we have an increase
of approximately 10%. We also tried intervals of 1 month
and 6 months and we found similar results.

In Figure 6, we plot the average new-node count of
nodes of the same initial degree versus that degree. We
plot both the result from the real data and the expected re-
sult from the linear preferential model [2]. Although there
exists a preferentiality based on the degree, the data does
not agree with the linear model. It seems like nodes with
higher degree are preferred more, and nodes with lower
degree are preferred less, than what the model suggests.

Note that nodes that disappear from the network also
follow a similar preferentiality. More dead nodes are adja-
cent to high degree nodes than that of lower degree nodes.
The relationship again is not linear. The plots are omitted
for brevity.

Observation 3: New internal edges prefer higher de-
gree nodes but not with linear preferentiality.

We study how new edges appear between existing nodes
in the graph. We use a similar approach to the one we used
to assess the preferential connectivity of the new nodes.
We pick two instances of the domain topology. We remove
from these two instances the nodes that are not common in
both of them. In this way we have removed the new and
dead nodes from the graphs and now both of the graphs
have the same nodes. We compare the neighbors of a node
in both times. We define as new edges the edges that exist
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Fig. 8. Average new-edge count of nodes with the same initial
degree versus this degree.

only in the second instance, and we refer to their num-
ber by new-edge count. We also define as dead edges,
the edges that exist only in the first instance, and we de-
note their number as dead-edge count. For our analysis
we used a time interval of 40 days, from August 3rd till
September 12th of 2000.

First, we find that there exist some preferentiality in the
way new edges are added between nodes. In figure 7, we
plot the new-edge count of every node that obtained at least
one edge in order of non-increasing count. The distribu-
tion is not uniform and some nodes obtain more edges. We
want to investigate whether the new-edge follow a prefer-
entiality according to the degree. We use the same method
we employed for the node attachment preferentiality. For
the given interval, we consider that the degree of a node
does not change significantly. In figure 8, we plot the av-
erage new-edge count of all nodes with a given initial de-
gree. We can see that the preferentiality is a function of
the degree, but it is not a linear relationship.

We observed similar plots also for the edges that disap-
pear between existing nodes. There exists preferentiality
but the preferentiality is not linear.

C. Degree of New and Dead Nodes

In this section we study the dynamics of the nodes that
appear or disappear from the network. We are interested
in the degree with which they appear and disappear. We
make the following definitions. We define as birth the
first time we see a node. We define as death the last time
we see a node. Naturally, the first and last day are handled
appropriately.

We are interested on the number of births and deaths we
have per day. In order to consider one day in our study, the
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Fig. 9. Percentage of new nodes that have degree higher than a
degree versus that degree.

exact previous day must exist. If we didn’t force that rule
there would be days where instead of measuring one day
we would measure multiple days since it’s not uncommon
to have gaps between measurement days.

Observation 4: The distribution of the degree of new
and dead nodes is skewed. In Figure 9, we plot the Cu-
mulative distribution of the degrees of the nodes when they
first appear in the Internet. The distribution is skewed and
we can observe that the majority of the nodes connect to
the network with degree 1. The percentage of nodes that
connect with degree 1 is 87% and for degree 2 the percent-
age is 12%, which leaves only 1% for all the other degrees.
The distribution of the final degree of the nodes when they
die is similar to the one of the new nodes. The majority of
the nodes that die have degree 1, with a percentage of 81%
and 15% for degree 2, and 4% for the rest of the degrees.
From these results we can see that most of the changes
happens on the edge of the network.

V. EVOLUTION OF THE NETWORK AS A WHOLE

In this section, we study the time evolution of the prop-
erties of the inter-domain topology as a whole. First, we
observe that the number of nodes and edges grow super-
linearly. We find that the growth could be approximated
best by an exponential function, but we also find that cubic
or quadratic approximation can also describe the growth
very well. Then, we observe that the degree power-law [7]
holds for every instance, and examine the evolution of it’s
exponent.

Observation 5: The number of nodes grows exponen-
tially. Specifically, we find that the number of nodes dou-
bles every two years approximately. In Figure 10, we plot
the number of nodes versus the time in log-linear scale.
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Fig. 10. The time evolution of Number of Nodes
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Fig. 11. The time evolution of Number of Edges

The number of nodes N(t) seem to be exponential with
time t:

N(t) = Kn e
at, Kn, a ∈ < (2)

The values of the constants are Kn = 2874 and a =
10.2 10−4. For the calculation, we use linear regres-
sion and the correlation coefficient is 0.998. We can ap-
proximate the growth with a cubic or a quadratic function
with excellent correlation coefficient, 99.5% and 99.6%,
respectively. We prefer to go with the exponential model,
since the correlation coefficient is slightly better.

The number of nodes doubles every two years approx-
imately. It is easy to calculate the amount of days x in
which the number of nodes doubles: N(t + x) = 2 N(t).
Using equation 2, we can solve for x and we get: x = 680
days, which is approximately two years.

Observation 6: The number of Edges grows expo-
nentially. In Figure 11, we plot the number of edges ver-
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sus the time in log-linear scale. The number of EdgesE(t)
seem to be exponential with time t:

E(t) = Ke e
bt, Ke, b ∈ < (3)

The values of the constants are Ke = 5614 and b =
11.494 10−4. For the calculation, we use linear regres-
sion in the log-linear plot, and the correlation coefficient is
0.998. Again here we find that the growth can be described
with a cubic or quadratic function, but with a slightly
smaller correlation coefficient.

Note here that the exponent of edges is larger than the
exponent of the nodes. This suggests that the number of
edges grows faster than the number of nodes, which agrees
with the observed increase of the average degree.

A. Persistence of Power-Law exponents in Time

The power-laws reported in [7] hold for all the instances
from November 1997 till March 2001. Due to space lim-
itations, we examine the evolution of the slope of one of
the power-laws, the degree power-law. First, the striking
observation is that the power-law holds for every instance.
Second, the slope of the power-law seems to remain prac-
tically constant.

Observation 7: The degree exponent remains practi-
cally constant. We study the slope of the degree exponent
and its evolution in time. In Figure 12, we plot the degree
exponent versus time. The correlation coefficient for every
instance is always higher than 0.99. We observe from the
graph that the slope is always between −1.2± 3%. There-
fore, we claim that the slope has remained approximately
constant during these three years5.

5Actually, the last few months the slope seems to have an increasing
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Fig. 13. Percentage of nodes reached versus time for the topo-
logical paths. Each line represents the percentage for dif-
ferent number of hops.

VI. THE EVOLUTION OF PATHS

We study the evolution of the paths and distances of the
network. For the topological distances, we use the topol-
ogy as we described before. For the routing paths, we
use the unprocessed BGP tables of the routers from Ore-
gon. Our data is over 107 Gbytes and contain over one
billion paths which correspond to 411,766 unique source-
destination pairs over a period of more than three years.
These paths are the actual paths that a packet at the re-
porting router would follow towards a given destination,
at some point in time. Each BGP table has entries which
specify a path for a specific IP range of the destination ad-
dress. This means that there are several paths for the same
end-points and a packet follows a path according to the
destination IP. This is a manifestation of traffic engineer-
ing and multihoming [13].

In a nutshell, we find that the topological distances re-
main the same, while the routing paths become longer.

A. Topological Paths

Observation 8: The distribution of the topological
distances has remained practically the same. We find
that the distances in the network do not change in the time
period we examine. This is somewhat surprising, if we
think that the network size increases exponentially.

In Figure 13, we plot the percentage of nodes we can
reach for a given number of hops versus the day that each
instance was collected. Each line corresponds to a differ-
ent number of hops. We see that the neighborhood of a

tendency, but the increase and the duration of this increase is too small
to distinguish between an actual long term trend from a temporary phe-
nomenon or measurement noise.
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node is roughly a constant percentage of the total nodes.
For example, we find that 99% of the pairs are within six
hops, and 45% of the pairs are within three hops. Given
that the network increases, it is clear that the size of the
neighborhood in absolute size (not as a percentage of the
total nodes) is increasing. In other words, the network is
dense and it becomes denser over time.

We also examine the evolution of distances between
specific pairs of nodes. In the previous analysis, we com-
pare the distribution of distances from different snapshots
with possible different nodes. We examine the evolution of
the distances of specific node pairs to factor out the effect
of new and dead nodes. We conclude that the distances
still remain the same. Among all possible pairs of nodes6,
we choose the 411,766 pairs of nodes that appear as end
points of routing paths, and report the change between the
first and last time they appear in a BGP table. We found
that on average the lengths remained the same. In more de-
tail we found that 63.4% of the paths have the same length,
16.8% are longer and 19.6% are shorter. The change in
size, both for the increase and the decrease, follow similar
distributions and were comparable.

The significance of the observation is that the Internet
follows a “small world” structure: the distances do not in-
crease with size. In contrast, if the topology was a two
dimensional grid, as it was often modeled before, the dis-
tances would scale roughly according to the square root of
the size. This is a qualitative shift in the way we view the
Internet topology and its evolution.

B. Routing Paths

Observation 9: Routing inflation becomes worse
with time. First, we find that the evolution of inflation
is fairly smooth and stable. In Figure 14, we plot the per-
centage of the routing paths for a given inflation versus
time. Each line corresponds to a different inflation. We
show only the inflation from 0 to 4 hops. The percentage
of paths that have inflation more than 4 hops is marginal
with a percentage of less than 0.04%.

Given the relative stability of the inflation, we can focus
on the first and last instance to quantify the evolution of
inflation. In Figure 15, we plot the cumulative distribution
of the relative inflation for the first and last instance. We
see that the line of the last instance is always below the
line of the first instance. The percentage of paths that are
inflated increased from 25% to 32%. Also the percentage
of paths with relative inflation more than 1.5, increased
from 2.5% to 5%.

6The possible pair of nodes is close to 50 million, so it is apparent
that we need to sample that.
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We want to examine which paths are more inflated. We
group routing paths according to the distance of their end-
points and calculate the average relative inflation. In Fig-
ure 16, we plot the average relative inflation versus the
length of the equivalent shortest path. We can see that the
worse inflation happens for the medium length paths of
lengths 3 and 4. In this Figure we see again that inflation
over time became worse for all categories of paths.

The inflation at the AS level seems less than at the router
level. We want to compare the inflation at the AS level
with the routing inflation at the router level as reported
in [25]. They find that 80% of the paths are inflated on
the router level, while for the same time period we found
that only 30% are inflated on the AS level. In a nutshell,
the router level seems to suffer from more inflation than
the AS level. However, this comparison should be consid-
ered only as an indication, since the graphs and the sets of
paths we compare are different.

VII. DISCUSSION

Our observations provide novel insight into the dynam-
ics of the Internet growth. A first step in this direction is
to identify dependencies and causal relationships between
these observations. Here, we show how the phenomena at
the node level can explain partly the evolution properties
at the network level.

Rich-get-richer phenomenon leads to exponential
edge evolution. The rich-get-richer phenomenon is a fun-
damental property of the network growth. We can show
that this property “leads” to the exponential growth of the
edges. In other words, we want to link the two behaviors
one at the node level and one at the network level: if node
degrees increase in a rich-get-richer fashion, then the total
number of edges increases super-linearly and in our case
exponentially. More specifically, we can prove the follow-
ing lemma.

Lemma 1: If the degree increase of the nodes of a graph
is proportional to their degree d(t): d(t+ ∆t) = c∆t d(t),
with c∆t > 1 then we can prove that we have
1. exponential edge growth: E(t) = Ke e

bt

2. and c∆t = eb ∆t

PROOF. First clause. Let us consider a time interval
t, t+ ∆t. We take the sum over all nodes.

∑

i∈nodes(t)
di(t+ ∆t) = c∆t

∑

i∈nodes(t)
di(t) (4)

We have that:
∑

i∈nodes(t)
di(t) = 2E(t)

Observe that the left side of equation 4 corresponds to
the number of Edges in time t + ∆t, except the edges
from nodes that attach after time t, which we define as
ENewNodes.

∑

i∈nodes(t)
di(t+ ∆t) = 2E(t+ ∆t)− 2ENewNodes

If time period ∆t is small, we can assume that
ENewNodes ' 0. This way, we get:

c∆t =
E(t+ ∆t)

E(t)
(5)

Let us assume that ∆t = 1, and E(t0) edges at time
t0. By using induction, we can prove that the edges grow
exponentially in time as follows

E(t+ ∆t) = c t1 E(t0) (6)

Thus, we have exponential growth with Ke = E(t0), and
b = loge c1.

Second clause. Let us consider an interval (t, t + ∆t).
We have already shown that the edges grow exponentially.
Therefore, for the given interval we get:

E(t+ ∆t)

E(t)
= eb ∆t (7)

Comparing equations 5 and 7 we get the following re-
lationship for b and c∆t: c∆t = eb∗∆t.

Experimental Verification. The measured data is in ac-
cordance to the theoretical expectations of lemma 1. Let
us consider an interval of approximately three months:
∆t = 90. From section IV-A, we substitute the measured
values in the left hand side of the equation: c90 = 1.09
and b = 0.00116687. We find that the estimated value of
c90 = eb∗90 = 1.11 which is within 2% of the measured
c90.

Rich-get-richer phenomenon helps preserves the de-
gree distribution. The rich-get-richer phenomenon ex-
plains partly the persistence of the degree distribution and
its power-law. If we take the logarithm in equation 1, we
can get:

log d(t+ ∆t)− log d(t) = log c∆t

This means that for every node, the difference of the
logarithms of the degree change is the same, since c∆t is
independent of the node.

We can observe this graphically. In Figure 17, we plot
the degree of each node in the order of non-increasing de-
gree7. We plot the degrees of two instances in time: the

7This corresponds to the rank power-law of [7], and it is an alternative
way to see the degree distribution. Actually, the degree power-law and
this power-law are equivalent. We prefer this power-law because it
depicts more clearly the point.
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first and last day. The degrees appear as line in the log-log
plot [7]. The lower dataset corresponds to the first day and
the higher dataset corresponds to the last day. It looks as if
the two lines has shifted as it was expected.

VIII. CONCLUSIONS

We present a large scale evolution study of the Internet
topology and routing at the Autonomous Systems level.
We analyze 916 daily instances from November 1997 un-
til March 2001 and study more than 1billion routing paths.
We study the AS dynamics at three different levels: a)the
node level, b) the network as a whole, and c)the paths both
topological and routing ones. We identify a number of
phenomena that give us a clearer understanding of the dy-
namics of the Internet evolution.

Our work leads to the following observations:
1. The degree increase of a node is proportional to it’s de-
gree (rich-get-richer phenomenon).
2. New nodes prefer higher degree nodes but not with lin-
ear preferentiality.
3. New internal edges prefer higher degree nodes but not
with linear preferentiality.
4. The distribution of the degree of new and dead nodes is
skewed, with very small degree.
5. The number of nodes grows exponentially, doubling ev-
ery year approximately.
6. The number of Edges grows exponentially.
7. The degree exponent remains practically constant.
8. The distribution of the topological distances has re-
mained practically the same.
9. Routing inflation becomes worse with time.

We note a small paradox: on the one hand we have ex-
ponential growth, and on the other hand, we have some
invariant topological properties. Intrigued by this, we

study how phenomena at the node (micro) level can ex-
plain phenomena at the network (macro) level. We show
that the rich-get-richer phenomenon leads to the exponen-
tial edge increase. We also show how the rich-get-richer
phenomenon contributes to the preservance of the degree
distribution and the related power-law.

Future work. Our observations bring us closer to under-
standing the dynamics of the Internet growth. We want to
incorporate our observations into a realistic graph gener-
ation model. Such a model would give us two main ben-
efits: a) we would be able to generate realistic graphs for
simulations purposes, b) we could estimate and predict the
evolution of the Internet. Overall, understanding the laws
that the topology and routing obey can help us design bet-
ter protocols and utilize the Internet more effectively.
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APPENDIX

I. THE SIGNIFICANCE OF ROUTING TABLES

Here we study the effect of using more routing tables on the
coverage of the data. We find that the graph does not change sig-
nificantly, if we add more similar in nature routing tables. We
start with a graph based on the routing table of only one router.
As we add the routing tables of other routers, we measure what
is the combined number of nodes and edges. The results are
illustrated in fig. 18, for the nodes, and fig. 19, for the edges.
In fig. 18, we plot the number of nodes in the graph versus the
number of router tables that are used to create the graph. Note
that we have ordered the routing tables in order of decreasing
number of nodes. We can see that the first router captures the
majority of the nodes in the network. The consequent routing ta-
bles add less than 2% new nodes. In fig. 19, we plot the number
of edges in the graph versus the number of routers that are used
to create the graph. We observe that the importance of having
more routers decreases fairly quickly, though slower than for
the nodes. We see that 15 routers capture approximately 95%
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Fig. 18. Number of nodes in the graph versus the number of
routers used to create the graph.
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Fig. 19. Number of edges in the graph versus the number of
routers used to create the graph.

of all the edges. Note that the last router adds only 0.01% of
new edges. Note that this result does not imply that with 15
routers we can capture the whole of the AS map topology. It
could very well be that some links are very difficult to observe.
The routing tables that are used are more likely routing tables
at the backbone, and it is possible to miss links at the periph-
ery. A consolation is that these links are most likely not major
backbone links.
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