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Abstract - In this paper, we develop a conceptual visual model
for the Internet inter-domain topology. Recently, power-laws
were used to describe the topology concisely. Despite their
success, the power-laws do not help us visualize the topology i.e.
draw the topology on paper by hand. In this paper, we deal with
the following questions:

• Can we identify a hierarchy in the Internet?
• How can I represent the network in an abstract graphical

way?
The focus of this paper is threefold. First, we characterize nodes
using three metrics of topological “importance”', which we later
use to identify a sense of hierarchy. Second, we identify some
new topological properties.  We then find that the Internet has a
highly connected core and identify layers of nodes in decreasing
importance surrounding the core. Finally, we show that our
observations suggest an intuitive model. The topology can be
seen as a jellyfish, where the core is in the middle of the cap, and
one-degree nodes form its legs. *

1. Introduction
In this paper, we examine several topological properties of
the Internet topology at the Autonomous system (AS level)
and synthesize them in an intuitive conceptual model. Our
goal is to facilitate researchers in visualizing the topology.
We want a model that a human can draw on paper. We
believe that such a conceptual representation can help
researchers approach the complexity of the topology and lead
to a better more intuitive understanding. Note that we will use
topology to refer to the AS graph unless otherwise specified.
The networking community does not have a simple
conceptual model of the Internet topology despite the recent
attention that topology modeling has attracted. First, the
topology is large and complex. Despite the recent
measurement studies, we do not know which properties to
look for and how to quantify them [10][5]. Second, we cannot
define hierarchy in a straightforward way, although the
Internet is assumed to be hierarchical by construction. It is
too densely connected for an obvious hierarchy. Third,
several efforts to visualize the topology have been made
[11][9], but they attempt to show all the available
information. We find that these visual models are
overwhelming for a human. Therefore, there is a need for a
high-level simple to understand model that will hide the
overwhelming details.
The contribution of this paper is threefold. First, we suggest
three metrics for the importance of a node. We later use these
metrics to identify a sense of hierarchy in the network.
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Second, we identify several properties that we use to create
our model. Third, we integrate our observations in a
conceptual topological model. The main results of our work
can be summarized in the following points:
• The Internet has a core of nodes that form a clique and

this clique is located in the “middle” of the network.
• The topological importance of the nodes decreases as we

move away from the center.
• The distribution of the one-degree nodes across the

network follows a power-law.
• The network is very sensitive to failures of the important

nodes, while it is insensitive to random node failures
• The Internet topology can be visualized as a jellyfish. The

value of the model lies in its simplicity and its ability to
represent graphically important topological properties.

The rest of this paper is structured as follows. In section 2, we
present definitions and previous work.  Section 3 explains the
node metrics used to classify a node according to importance.
In section 4 we present three important topological properties
of the Internet. In section 5 we develop and present a
conceptual model for the Internet topology. We conclude our
work in section 6.

2. Background
We study the topology of the Internet at the inter-domain or
Autonomous Systems level. The network is represented by a
graph with each node representing a domain and each edge
representing an inter-domain interconnection.
Metrics: We use the following standard graph definitions.
The degree of a node is defined as the number of edges
incident on the node. The distance between two nodes is the
number of edges on a shortest path between the two nodes.
The rank of a node is its index in the order of decreasing
degree.
Recall that a power-law is an expression of the form y �  xa,
where a is a constant, x and y are measures of interest and �

stands for “proportional to”.
 Previous Work: Faloutsos et al. [1] studied the Internet
topology and identified several power laws that concisely
describe skewed distributions of graph properties such as the
node degree. Govindan and Reddy [3] study the growth of the
inter-domain topology of the Internet. They however classify
nodes into four classes based on degree and not according to
importance of the node. Gao [14] classifies nodes according
to their AS relationships, we however focus on topology.
Pansiot and Grad [5] study the topology of the Internet in
1995 at the router level. Barabasi et al. [4] explore the fault
tolerance of the network using the diameter as a metric.
Topology generators have been developed for simulation
purposes, which create topologies from scratch [6][7][8].



Some of the more recent generators make graphs that obey
the observed power-laws. However, all this previous work
does not help us visualize the topology in an abstract high-
level way.
Real Graphs: We use three instances of the inter-domain
Internet topology from the end of 1997 until the middle of
2000, which correspond to approximately three yearly
intervals. The National Laboratory for Applied Network
Research [9] provided the data.
1. Int-11-97: 3015 nodes and 5156 edges.
2. Int-10-98: 5896 nodes and 11424 edges.
3. Int-10-99: 7864 nodes and 15713 edges.

3. The Topological Importance of a Node
In this section, we present three metrics that capture the
topological importance of a node. We will later use these
metrics to define a hierarchy.
Degree of a node is the number of incident edges of a node as
we have already mentioned. The higher the degree, the higher
the importance of the node.
Effective Eccentricity ecc (v) of node v is the minimum
number of hops required to reach at least 90% of the nodes
that are reachable from that node. For connected graphs each
node reaches all other nodes. The lower the eccentricity, the
higher the importance of the node. The eccentricity has
already been used successfully to analyze graphs [12]. 
Significance of a node intuitively, captures not only how
many but how important are the neighbors of a given node.
The definition is recursive, and can be calculated by a
recursive algorithm. Initially, all nodes have equal
significance. At each step, the significance of each node is set
to the sum of the significance of its neighbors. Then all
values are normalized so that their sum is one. We stop when
the significance converges. In our experiments, the
convergence was quite fast.
A similar definition of significance is used by Kleinberg [2]
for graphs representing the connectivity of WebPages.
Note that in this paper we use the term Significance as
defined above, while we use the term importance to refer to
all three-node metrics.
In our effort to explore the meaning of these metrics we make
the following observations. First we observe that the effective
eccentricity of adjacent nodes cannot differ by more than one.
Lemma 1.  Let G=(V, E) be a connected undirected graph
and (u, v) an edge in E, then the effective eccentricity of node
u ecc (u), is bounded by:
ecc (u) ≤ ecc (v) + 1   or   |ecc (u)-ecc (v)| ≤ 1
Intuitively this lemma tells us that the difference of one
corresponds to the case where we have a “center” and the
node having lower eccentricity is closer to the center than the
adjacent node. For example all one-degree nodes have an
eccentricity that is one more than their adjacent nodes. This
observation will help us evaluate the model we develop.
Second we compare effective eccentricity and Significance.
Figure 1 shows a plot between Significance (y-axis) and
effective eccentricity (x-axis). We observe that significant

nodes have low effective eccentricity indicating very good
correlation between Significance and effective eccentricity.

4. Topological properties of the Internet
In this section, we study novel topological properties of the
Internet. First we study nodes of degree one and find that
their distribution follows a power-law. Second, we look at
alternate paths between a pair of nodes. We find that we can
approximate the relationship between number of paths for a
pair of nodes and the length of the paths by a power-law.
Third we study the robustness of the network and we find that
the network is vulnerable to targeted failures but is robust to
random failures.

4.1 Distribution of One-Degree Nodes
Here we give a power-law that states that the number of one-
degree nodes directly connected to a particular node is related
to the rank of the number of one-degree nodes hanging from
that node. We sort the nodes in decreasing order of one-
degree dv and plot the (rv, ov) pairs on log scale (rv is the rank
of the node, ov stands for the number of one degree nodes
directly connected to a node v). The results are shown in
figure 2. The scale is double logarithmic with the y-axis
showing the number of one-degree nodes connected to a
particular node and the x-axis showing the rank of that node.
This leads us to the following power-law.
Power Law 1 : The number of one degree nodes (o v)
connected to a node v is proportional to the rank of the node
rv (in order of decreasing one-degree nodes connected to a
node) to the power of a constant R

ov  
�    rv 

R

The correlation coefficients are good ranging from 97.69 to
98.32. Intuitively this tells us that there does not exist a
connectivity scheme via which the highest degree nodes only
connect to other high degree nodes and so on with the one-
degree nodes connecting to the boundary of the network.
Rather, the one-degree nodes connect to all types of nodes.
Note that the rank we use here is different from the rank used
in the power law for degree [1] i.e. the number of one-degree
nodes is not a straightforward percentage of the degree of the
node [13].

4.2 The Length of the Alternate Paths
In this section, we give a power-law that approximates the
relationship between the number of node disjoint paths and
path length between a pair of nodes. Figure 3 shows the
relationship between the RCDF (Reverse Cumulative
Distribution Function) distribution of node disjoint paths v/s
the path length for a pair of nodes. We ignore edges (paths of
length 1).  Note that this approximation is more interesting
for pairs of nodes that have several distinct path lengths.
Approximation Power Law 2 : The RCDF distribution of the
number of paths Rnv of length l v between a pair of nodes is
inversely proportional to the length of that path l v to the
power of a constant b.

Rnv 
�  lv 

-b



As we will see later, this observation can be attributed to the
existence of a super-concentrated center.

4.3 Robustness
We show that the Internet is vulnerable to targeted failures
but is robust to random failures. Previous work used diameter
as a measure of robustness, however we don’t find diameter
to be an accurate metric. We use two metrics pairs of nodes
and largest connected component as a more accurate measure
of robustness. Here we present results using the largest
connected component. Figure 4 shows the graph of random
v/s targeted removal of nodes. We observe that the
connectivity is good when nodes are removed at random but
connectivity suffers when the nodes of higher degree are
removed in order. This behavior occurs because the
heterogeneous distribution of nodes in the network. A
significant percentage of nodes of nodes have a degree of one
or two and therefore there is a high probability that a random
selection can choose low degree nodes. Therefore, the
connectivity of the network is not affected. The network is
however held together by a few highly connected nodes.
When these nodes are removed the connectivity is affected.

5.  A Conceptual Model for the Internet Topology
In this section, we develop a conceptual model for the
Internet topology. First, we use the metrics for the importance
of a node, and we define a sense of loose hierarchy. Then, we
use this hierarchy and our other topological observations to
develop a simple conceptual model for the Internet topology.

5.1 Hierarchy through node Classification
Our first goal is to examine whether there exists a central
point in the network. We observe that the highest degree
nodes are strongly connected forming a clique.  We define
this clique to be our core. In other words, the core is the
maximal clique that contains the highest-degree node. Then,
we define the first layer to contain all the nodes that are
neighbors of the core. Similarly, we define layer two to be the
neighbors of layer one except for the core. By repeating this
procedure, we identify five layers. Table 1 shows the
distribution of the nodes for the three Internet instances. We
can trivially refer to the core as layer-0.

Int-11-97 Int-10-98 Int-10-99
Core/Layer-0 8 9 13
Layer-1 1354 2491 3628
Layer-2 1202 2440 3055
Layer-3 396 843 1077
Layer-4 43 108 81
Layer-5 12 5 10

Table 1: Distribution of nodes in layers.

We now show that this classification is meaningful. We use
our metrics to show that each layer differs in importance.
Figure 5 shows the natural logarithm of the average degree
distribution, effective eccentricity and Significance (*100 for

ease of viewing) for all the layers.  All metrics suggest that
the importance of the nodes of each layer decrease as we
move away from the core. Note that for the average degree
distribution the scale is logarithmic so the drop from 5.5 to
1.2 from core to layer-1 is fairly significant. We also see that
the average effective eccentricity increases as we go away
from the core and this increase is nearly linear (with slope 1).
The increase in effective eccentricity of approximately one
per layer indicates that each layer is approximately one link
further away from the “center” of the network as suggested
by lemma 1.  Intuitively, nodes at the layers need to go
through the core for the majority of their shortest path
connections. This strongly suggests that our selection of the
core is successful. Next we find that the average Significance
of the layers decreases rapidly as we go away from the core
which has an average significance of 21.4 followed by layer 1
with only 1.58 and big decreases after that for the other
layers. This indicates that our layers manage to cluster the
nodes according to their Significance.

5.2 The Internet Topology as a jellyfish
In this section, we integrate all previous observations to
create a simple conceptual model of the topology. We
visualize the Internet topology as a jellyfish.
Intuitively, the core is the center of the cap of the jellyfish
surrounded by layers of nodes that we call shells. Figure 6
shows a graphical illustration of this model. The one–degree
nodes connected to each such shell is shown hanging forming
the legs of the jellyfish. We make the length of the legs
longer to graphically represent the concentration of one-
degree nodes for each shell (number of one-degree nodes per
node of the shell). We can color each shell according to its
importance, and this way add more topological information to
the model.
 More formally, we define the core or Shell-0 as before.
Then, we define the one-degree nodes that are attached to the
core as hanging nodes of level zero or Hang-0. We define the
neighbors of the core except the Hang-0 nodes to be the next
shell Shell-1. Hang-1 has the one-degree nodes that are
attached to Shell-1 and so on. Table 2 shows the size of each
group of nodes in our new classification.

Int-11-97 Int-10-98 Int-10-99
Core/Shell-0 8 9 13
Hang-0 465 514 808
Shell-1 889 1977 2820
Hang-1 623 1022 1243
Shell-2 579 1418 1812
Hang-2 299 526 683
Shell-3 97 317 394
Hang-3 41 95 67
Shell-4 2 13 14
Hang-4 12 5 10

Table 2: Distribution of nodes in Hanging layers and shells



It is easy to see that there is a clear correspondence between
this classification and the previous one. Namely:  
Layer-k = Shell-k + Hang- (k-1)
From table 2 we can calculate the average number of one-
degree nodes per node for each shell. (For e.g. Int-11-97 has
an average number of 58.125 for shell-0, 1.42 for shell-1,
1.93-for shell-2, 2.36 for shell-3 and 6 for shell-4).
From this we can make the following two observations.

• One-degree nodes are 40-45% of the network.
• The concentration of hanging one-degree nodes is the

highest in the core, which is something we expected
from Power-law-1.

In this representation, we separate the one-degree nodes and
classify them as “hanging”. This discrimination is justified if
we think that the one-degree nodes are useless in terms of
connectivity. They are “dead-ends” and do not provide any
value to the rest of the network. In contrast, even a two-
degree node may be useful as it can reduce the distances
between other nodes.       

6. Conclusion
The goal of this paper is to develop a simple and intuitive
topological model for the inter-domain Internet topology.
Our effort had three components. First, we introduce metrics
to quantify the importance of nodes. Second, we identify
some new topological properties.  Third, we analyze and
model the topology.

• We define a notion of loose hierarchy in the network. We
show that the Internet has a highly connected core and
identify layers of nodes in decreasing importance
surrounding the core.

• We show that our observations suggest an intuitive
model. The topology can be seen as a jellyfish, where the
core is in the middle of the cap, surrounded by layers of
nodes of decreasing importance. Finally, the one-degree
nodes form the legs of the jellyfish.

Why is the “jellyfish” a good model? Apart from its
apparent cuteness, our model provides a useful visual
representation of the topology. It illustrates several
topological properties and can help us explain empirical
observations.

• The topology has a core, which is represented, by the
center of the jellyfish cap.

• There is a gradual reduction in node importance as we
move further away from the core. We can illustrate this
by using appropriate coloring of each shell i.e. from
lighter to darker.

• The middle long legs and the decreasing length of the
subsequent legs (of the hanging nodes) represent the
observed concentration of one-degree nodes i.e. our
power-law 1.

• The network is robust to random failures and the model
provides an intuitive explanation for this. There is a high
probability that we select pick one of the hanging nodes,

as they account for approximately 40% or some node in
the outside shells. Therefore, connectivity is not affected.

• Focused failures are devastating for the network
connectivity. This case corresponds to the removal of
nodes starting from the core and then each shell in order
of importance.

• Our model provides an intuitive explanation for the
approximation power-law 2. Connectivity exists in or
towards the center, which is densely connected, so we do
not find many long wondering paths.

We would like to stress again the intent of our Internet model.
It is supposed to provide an intuitive visual representation
and not an accurate mathematical model. In addition, the
topological properties presented in this paper have
independent stand-alone value.
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Figure 1: Plot of Significance (y-axis) v/s Effective
Eccentricity (x-axis). (Int-11-97)

Figure 2:  Log-Log plot of one-degree nodes connected to a
node v/s the rank of that node based on one-degree. (Int-10-
99,Correlation coefficient = 98.07%)

Figure 3 : Log-Log plot of the RCDF distribution of the
number of paths v/s path length for a node (Int-11-97, degree
590-524, Correlation coefficient = 99.8%)

Figure 4: Random v/s Targeted (Int-11-97)

Figure 5 Plot of the average importance of each layer: natural
log of the average degree, average effective eccentricity and
average Significance (*100 for ease of viewing)

Figure 6:  The jellyfish as a model for the AS Internet
topology.

0

5

10

15

20

25

Core Layer-1 Layer-2 Layer-3 Layer-4 Layer-5

Natural Log
of Average
Degree
Destribution

Effective
Eccentricity

Significance
* 100

0

500

1000

1500

2000

2500

3000

3500

0
300

600
900

1200
1500

1800
2100

2400

Iterations

# no of nodes in the
largest connected
subGraph for random
removal

# of nodes in the largest
connected subGraph for
highest degree first
removal


