
Combining Winnow and Orthogonal Sparse
Bigrams for Incremental Spam Filtering

Christian Siefkes1, Fidelis Assis2,
Shalendra Chhabra3, and William S. Yerazunis4

1 Berlin-Brandenburg Graduate School in Distributed Information Systems�

Database and Information Systems Group, Freie Universität Berlin
Berlin, Germany

christian@siefkes.net
2 Empresa Brasileira de Telecomunicações – Embratel

Rio de Janeiro, RJ, Brazil
fidelis@embratel.net.br

3 Computer Science and Engineering
University of California, Riverside

California, USA
schhabra@cs.ucr.edu

4 Mitsubishi Electric Research Laboratories
Cambridge, MA, USA

wsy@merl.com

Abstract. Spam filtering is a text categorization task that has attracted
significant attention due to the increasingly huge amounts of junk email
on the Internet. While current best-practice systems use Naive Bayes
filtering and other probabilistic methods, we propose using a statisti-
cal, but non-probabilistic classifier based on the Winnow algorithm. The
feature space considered by most current methods is either limited in
expressivity or imposes a large computational cost. We introduce or-
thogonal sparse bigrams (OSB) as a feature combination technique that
overcomes both these weaknesses. By combining Winnow and OSB with
refined preprocessing and tokenization techniques we are able to reach
an accuracy of 99.68% on a difficult test corpus, compared to 98.88%
previously reported by the CRM114 classifier on the same test corpus.

Keywords: Classification, Text Classification, Spam Filtering, Email,
Incremental Learning, Online Learning, Feature Generation, Feature
Representation, Winnow, Bigrams, Orthogonal Sparse Bigrams.

1 Introduction

Spam filtering can be viewed as a classic example of a text categorization task
with a strong practical application. While keyword, fingerprint, whitelist/black-
list, and heuristic–based filters such as SpamAssassin [11] have been successfully
� The work of this author is supported by the German Research Society (DFG grant

no. GRK 316).

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 410–421, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Combining Winnow and Orthogonal Sparse Bigrams 411

deployed, these filters have experienced a decrease in accuracy as spammers
introduce specific countermeasures. The current best-of-breed anti-spam filters
are all probabilistic systems. Most of them are based on Naive Bayes as de-
scribed by Graham [6] and implemented in SpamBayes [12]; others such as the
CRM114 Discriminator can be modeled by a Markov Random Field [15]. Other
approaches such as Maximum Entropy Modeling [16] lack a property that is im-
portant for spam filtering – they are not incremental, they cannot adapt their
classification model in a single pass over the data.

As a statistical, but non-probabilistic alternative we examine the incremental
Winnow algorithm. Our experiments show that Winnow reduces the error rate
by 75% compared to Naive Bayes and by more than 50% compared to CRM114.

The feature space considered by most current methods is limited to individual
tokens (unigrams) or bigrams. The sparse binary polynomial hashing (SBPH)
technique (cf. Sec. 4.1) introduced by CRM114 is more expressive but imposes
a large runtime and memory overhead. We propose orthogonal sparse bigrams
(OSB) as an alternative that retains the expressivity of SBPH, but avoids most
of the cost. Experimentally OSB leads to equal or slightly better filtering than
SBPH. We also analyze the preprocessing and tokenization steps and find that
further improvements are possible here.

In the next section we present the Winnow algorithm. The following two
sections are dedicated to feature generation and combination. In Section 5 we
detail our experimental results. Finally we discuss related methods and future
work.

2 The Winnow Classification Algorithm

The Winnow algorithm introduced by [7] is a statistical, but not a probabilistic
algorithm, i.e. it does not directly calculate probabilities for classes. Instead it
calculates a score for each class1.

Our variant of Winnow is suitable for both binary (two-class) and multi-class
(three or more classes) classification. It keeps an n-dimensional weight vector
wc = (wc

1, w
c
2, . . . , w

c
n) for each class c, where wc

i is the weight of the ith feature.
The algorithm returns 1 for a class iff the summed weights of all active features
(called the score Ω) surpass a predefined threshold θ:

Ω =
na∑

j=1

wc
j > θ.

Otherwise (Ω ≤ θ) the algorithm returns 0. na ≤ n is the number of active
(present) features in the instance to classify.

The goal of the algorithm is to learn a linear separator over the feature space
that returns 1 for the true class of each instance and 0 for all other classes on
this instance. The initial weight of each feature is 1.0. The weights of a class

1 There are ways to convert the scores calculated by Winnow into confidence estimates,
but these are not discussed here since they are not of direct relevance for this paper.

412 Christian Siefkes et al.

are updated whenever the value returned for this class is wrong. If 0 is returned
instead of 1, the weights of all active features are increased by multiplying them
with a promotion factor α, α > 1: wc

j ← α×wc
j . If 1 is returned instead of 0, the

active weights are multiplied with a demotion factor β, 0 < β < 1: wc
j ← β×wc

j .
In text classification, the number of features depends on the length of the

text, so it varies enormously from instance to instance. Thus instead of using a
fixed threshold we set the threshold to the number na of features that are active
in the given instance: θ = na. Thus initial scores are equal to θ since the initial
weight of each feature is 1.0.

In multi-label classification, where an instance can belong to several classes
at once, the algorithm would predict all classes whose score is higher than the
threshold. But for the task at hand, there is exactly one correct class for each
instance, thus we employ a winner-takes-all approach where the class with the
highest score is predicted.

This means that there are situations where the algorithm will be trained even
though it did not make a mistake. This happens whenever the scores of both
classes2 are at the same side of the threshold and the score of the true class is
higher than the other one – in this case the prediction of Winnow will be correct
but it will still promote/demote the weights of the class that was at the wrong
side of the threshold.

The complexity of processing an instance depends only on the number of
active features na, not on the number of all features nt. Similar to SNoW [1],
a sparse architecture is used where features are allocated whenever the need to
promote/demote them arises for the first time. In sparse Winnow, the number
of instances required to learn a linear separator (if exists) depends linearly on
the number of relevant features nr and only logarithmically on the number of
active features, i.e. it scales with O(nr log na) (cf. [8, Sec. 2]).

Winnow is a non-parametric approach; it does not assume a particular prob-
abilistic model underlying the training data. Winnow is a linear separator in
the Perceptron sense, but by providing a feature space that itself allows con-
junction and disjunction, complex non-linear features may be recognized by the
composite feature-extractor + Winnow system.

2.1 Thick Threshold

In our implementation of Winnow, we use a thick threshold for learning (cf. [4,
Sec. 4.2]). Training instances are re-trained even if the classification was correct
if the determined score was near the threshold. Two additional thresholds θ+

and θ− with θ− < θ < θ+ are defined and each instance whose score falls in the
range [θ−, θ+] is considered a mistake. In this way, a large margin classifier will
be trained that is more robust when classifying borderline instances.

2.2 Feature Pruning

The feature combination methods discussed in Section 4 generate enormous num-
bers of features. To keep the feature space tractable, features are stored in an
2 Resp. two or more classes in other tasks involving more than two classes.

Combining Winnow and Orthogonal Sparse Bigrams 413

LRU (least recently used) cache. The feature store is limited to a configurable
number of elements; whenever it is full, the least recently seen feature is deleted.
When a deleted feature is encountered again, it will be considered as a new
feature whose weights are still at their default values.

3 Feature Generation

3.1 Preprocessing

We did not perform language-specific preprocessing techniques such as word
stemming, stop word removal, or case folding, since other researchers found that
such techniques tend to hurt spam-filtering accuracy [6, 16]. We did compare
three types of email-specific preprocessing.

– Preprocessing via mimedecode, a utility for decoding typical mail encodings
(Base64, Quoted-Printable etc.)

– Preprocessing via Jaakko Hyvatti’s normalizemime [9]. This program con-
verts the character set to UTF-8, decoding Base64, Quoted-Printable and
URL encoding and adding warn tokens in case of encoding errors. It also
appends a copy of HTML/XML message bodies with most tags removed,
decodes HTML entities and limits the size of attached binary files.

– No preprocessing. Use the raw mail including large blocks of Base64 data in
the encoded form.

Except for the comparison of these alternatives, all experiments were per-
formed on normalizemime-preprocessed mails.

3.2 Tokenization

Tokenization is the first stage in the classification pipeline; it involves breaking
the text stream into tokens (“words”), usually by means of a regular expression.
We tested four different tokenization schemas:

P (Plain): Tokens contain any sequences of printable characters; they are sep-
arated by non-printable characters (whitespace and control characters).

C (CRM114): The current default pattern of CRM114 – tokens start with a
printable character; followed by any number of alphanumeric characters +
dashes, dots, commas and colons; optionally ended by a printable character.

S (Simplified): A modification of the CRM114 pattern that excludes dots,
commas and colons from the middle of the pattern. With this pattern, do-
main names and mail addresses will be split at dots, so the classifier can
recognize a domain even if subdomains vary.

X (XML/HTML+header-aware): A modification of the S schema that al-
lows matching typical XML/HTML markup3, mail headers (terminated by

3 Start/end/empty tags: <tag> </tag>
; Doctype declarations: <!DOCTYPE; pro-
cessing instructions: <?xml-stylesheet; entity + character references: —; at-
tributes terminated by “=”; attribute values surrounded by quotes.

414 Christian Siefkes et al.

Table 1. Tokenization Patterns

Name Regular Expression

P [^\p{Z}\p{C}]+

C [^\p{Z}\p{C}][-.,:\p{L}\p{M}\p{N}]*[^\p{Z}\p{C}]?

S [^\p{Z}\p{C}][-\p{L}\p{M}\p{N}]*[^\p{Z}\p{C}]?

X [^\p{Z}\p{C}][/!?#]?[-\p{L}\p{M}\p{N}]*(?:["’=;]|/?>|:/*)?

“:”), and protocols such as “http://” in a token. Punctuation marks such as
“.” and “,” are not allowed at the end of tokens, so normal words will be
recognized no matter where in a sentence they occur without being “con-
taminated” by trailing punctuation.

The X schema was used for all tests unless explicitly stated otherwise. The ac-
tual tokenization schemas are defined as the regular expressions given in Table 1.
These patterns use Unicode categories – [^\p{Z}\p{C}] means everything ex-
cept whitespace and control chars (POSIX class [:graph:]); \p{L}\p{M}\p{N}
collectively match all alphanumerical characters ([:alnum:] in POSIX).

4 Feature Combination

4.1 Sparse Binary Polynomial Hashing

Sparse binary polynomial hashing (SBPH) is a feature combination technique in-
troduced by the CRM114 Discriminator [3, 14]. SBPH slides a window of length
N over the tokenized text. For each window position, all of the possible in-order
combinations of the N tokens are generated; those combinations that contain
at least the newest element of the window are retained. For a window of length
N , this generates 2N−1 features. Each of these joint features can be mapped
to one of the odd binary numbers from 1 to 2N − 1 where original features at
“1” positions are visible while original features at “0” positions are hidden and
marked as skipped.

It should be noted that the features generated by SBPH are not linearly inde-
pendent and that even a compact representation of the feature stream generated
by SBPH may be significantly longer than the original text.

4.2 Orthogonal Sparse Bigrams

Since the expressivity of SBPH is sufficient for many applications, we now con-
sider if it is possible to use a smaller feature set and thereby increase speed and
decrease memory requirements. For this, we consider only word pairs containing
a common word inside the window, and requiring the newest member of the
window to be one of the two words in the pair. The idea behind this approach is
to gain speed by working only with an orthogonal feature set inside the window,
rather that the prolific and probably redundant features generated by SBPH.

Combining Winnow and Orthogonal Sparse Bigrams 415

Instead of all odd numbers, only those with two bits “1” in their binary
representations are used: 2n + 1, for n = 1 to N − 1. With this restriction,
only N − 1 combinations with exactly two words are produced. We call them
orthogonal sparse bigrams (OSB) – “sparse” because most combinations have
skipped words; only the first one is a conventional bigram.

With a sequence of five words, w1, . . . , w5, OSB produces four combined
features:

w4 w5
w3 <skip> w5

w2 <skip> <skip> w5
w1 <skip> <skip> <skip> w5
Because of the reduced number of combined features, N − 1 in OSB versus

2N−1 in SBPH, text classification with OSB can be considerably faster than with
SBPH. Table 2 shows an example of the features generated by SBPH and OSB
side by side.

Table 2. Features Generated by SBPH and OSB

Number SBPH OSB

1 (1) today?
3 (11) lucky today? lucky today?
5 (101) feel <skip> today? feel <skip> today?
7 (111) feel lucky today?
9 (1001) you <skip> <skip> today? you <skip> <skip> today?

11 (1011) you <skip> lucky today?
13 (1101) you feel <skip> today?
15 (1111) you feel lucky today?
17 (10001) Do <skip> <skip> <skip> today? Do <skip> <skip> <skip> today?
19 (10011) Do <skip> <skip> lucky today?
21 (10101) Do <skip> feel <skip> today?
23 (10111) Do <skip> feel lucky today?
25 (11001) Do you <skip> <skip> today?
27 (11011) Do you <skip> lucky today?
29 (11101) Do you feel <skip> today?
31 (11111) Do you feel lucky today?

Note that the orthogonal sparse bigrams form an almost complete basis set
– by “ORing” features in the OSB set, any feature in the SBPH feature set can
be obtained, except for the unigram (the single-word feature). However, there is
no such redundancy in the OSB feature set; it is not possible to obtain any OSB
feature by adding, ORing, or subtracting any other pairs of other OSB features;
all of the OSB features are unique and not redundant.

Since the first term, unigram w5, cannot be obtained by ORing OSB features
it seems reasonable to add it as an extra feature. However the experiments
reported in Section 5.4 show that adding unigrams does not increase accuracy;
in fact, it sometimes decreased accuracy.

416 Christian Siefkes et al.

5 Experimental Results

5.1 Testing Procedure

In order to test our multiple hypotheses, we used a standardized spam/nonspam
test corpus from SpamAssassin [11]. This test corpus is extraordinarily difficult to
classify, even for humans. It consists of 1397 spam messages, 250 hard nonspams,
and 2500 easy nonspams, for a total of 4147 messages. These 4147 messages were
“shuffled” into ten different standard sequences; results were averaged over these
ten runs. We re-used the corpus and the standard sequences from [15].

Each test run begins with initializing all memory in the learning system to
zero. Then the learning system was presented with each member of a standard se-
quence, in the order specified for that standard sequence, and required to classify
the message. After each classification the true class of the message was revealed
and the classifier had the possibility to update its prediction model accordingly
prior to classifying the next message4. The training system then moved on to the
next message in the standard sequence. The final 500 messages of each standard
sequence were the test set used for final accuracy evaluation; we also report re-
sults on an extended test set containing the last 1000 messages of each run and
on all (4147) messages. Systems were permitted to train on any messages, in-
cluding those in the test set, after classifying them; at no time a system ever had
the opportunity to learn on a message before predicting the class of this message.
For evaluation we calculated the error rate E = number of misclassifications

number of all classifications ;
occasionally we mention the accuracy A = 1− E.

This process was repeated for each of the ten standard sequences. Each com-
plete set of ten standard sequences (41470 messages) required approximately
25–30 minutes of processor time on a 1266 MHz Pentium III for OSB-55. The
average number of errors per test run is given in parenthesis.

5.2 Parameter Tuning

We used a slightly different setup for tuning the Winnow parameters since it
would have been unfair to tune the parameters on the test set. The last 500
messages of each run were reserved as test set for evaluation, while the preceding
1000 messages were used as development set for determining the best parameter
values. The S tokenization was used for the tests in the section.

Best performance was found with Winnow using 1.23 as promotion factor,
0.83 as demotion factor, and a threshold thickness of 5%6. These parameter
values turned out to be best for both OSB and SBPH – the results reported in
Tables 3 and 4 are for OSB.

4 In actual usage training will not be quite as incremental since mail is read in batches.
5 For SBPH-5 it was about two hours which it not surprising since SBPH-5 generates

four times as many features as OSB-5.
6 In either direction, i.e. θ− = 0.95 θ, θ+ = 1.05 θ.

Combining Winnow and Orthogonal Sparse Bigrams 417

Table 3. Promotion and Demotion Factors

Promotion 1.35 1.25 1.25 1.23 1.2 1.1
Demotion 0.8 0.8 0.83 0.83 0.83 0.9

Test Set 0.44% (2.2) 0.36% (1.8) 0.44% (2.2) 0.32% (1.6) 0.44% (2.2) 0.48% (2.4)
Devel. Set 0.52% (5.2) 0.51% (5.1) 0.52% (5.2) 0.49% (4.9) 0.51% (5.1) 0.62% (6.2)

All 1.26% (52.4) 1.31% (54.3) 1.33% (55.1) 1.32% (54.7) 1.34% (55.4) 1.50% (62.2)

Table 4. Threshold Thickness

Threshold Thickness 0% 5% 10%

Test Set 0.68% (3.4) 0.32% (1.6) 0.44% (2.2)
Development Set 0.88% (8.8) 0.49% (4.9) 0.56% (5.6)

All 1.77% (73.5) 1.32% (54.7) 1.38% (57.1)

Table 5. Comparison of SBPH and OSB with Different Feature Storage Sizes

OSB
Store Size 400000 500000 600000 700000 800000

Last 500 0.36% (1.8) 0.38% (1.9) 0.32% (1.6) 0.44% (2.2) 0.44% (2.2)
Last 1000 0.37% (3.7) 0.37% (3.7) 0.33% (3.3) 0.37% (3.7) 0.37% (3.7)

All 1.26% (52.3) 1.29% (53.4) 1.24% (51.4) 1.26% (52.2) 1.27% (52.5)

SBPH
Store Size 1400000 1600000 1800000 2097152 (221) 2400000

Last 500 0.38% (1.9) 0.36% (1.8) 0.42% (2.1) 0.44% (2.2) 0.42% (2.1)
Last 1000 0.37% (3.7) 0.34% (3.4) 0.38% (3.8) 0.39% (3.9) 0.38% (3.8)

All 1.35% (55.8) 1.28% (53.1) 1.30% (54) 1.30% (54) 1.31% (54.2)

5.3 Feature Store Size and Comparison with SBPH

Table 5 compares orthogonal sparse bigrams and SBPH for different sizes of the
feature store. OSB reached best results with 600,000 features (with an error rate
of 0.32%), while SBPH peaked at 1,600,000 features (with a slightly higher error
rate of 0.36%). Further increasing the number of features permitted in the store
negatively affects accuracy. This indicates that the LRU pruning mechanism is
efficient at discarding irrelevant features that are mostly noise.

5.4 Unigram Inclusion

The inclusion of individual tokens (unigrams) in addition to orthogonal sparse
bigrams does not generally increase accuracy, as can be seen in Table 6, show-
ing OSB without unigrams peaking at 0.32% error rate, while adding unigrams
pushes the error rate up to 0.38%.

5.5 Window Sizes

The results of varying window size as a system parameter are shown in Table 7.
Again, we note that the optimal combination for the test set uses a window size

418 Christian Siefkes et al.

Table 6. Utility of Single Tokens (Unigrams)

OSB only OSB + Unigrams
Store Size 600000 600000 750000

Last 500 0.32% (1.6) 0.38% (1.9) 0.42% (2.1)
Last 1000 0.33% (3.3) 0.33% (3.3) 0.36% (3.6)

All 1.24% (51.4) 1.22% (50.6) 1.24% (51.4)

Table 7. Sliding Window Size

Window Size Unigrams 2 (Bigrams) 3 4 5 6 7

Store Size All (ca.55000) 150000 300000 450000 600000 750000 900000
Last 500 0.46% (2.3) 0.48% (2.4) 0.42% (2.1) 0.44% (2.2) 0.32% (1.6) 0.38% (1.9) 0.42% (2.1)
Last 1000 0.50% (5) 0.43% (4.3) 0.39% (3.9) 0.40% (4) 0.33% (3.3) 0.38% (3.8) 0.37% (3.7)

All 1.43% (59.2) 1.23% (51.2) 1.24% (51.4) 1.26% (52.2) 1.24% (51.4) 1.28% (53) 1.22% (50.8)

Store Size All (ca.220000) All (ca.500000) 600000 900000 1050000
Last 500 0.48% (2.4) 0.42% (2.1) 0.42% (2.1) 0.40% (2) 0.46% (2.3)
Last 1000 0.43% (4.3) 0.38% (3.8) 0.38% (3.8) 0.38% (3.8) 0.40% (4)

All 1.24% (51.3) 1.22% (50.6) 1.25% (51.8) 1.27% (52.5) 1.25% (51.7)

of five tokens (our default setting, yielding a 0.32% error rate), with both shorter
and longer windows producing worse error rates.

This “U” curve is not unexpected on an information-theoretic basis. English
text has a typical entropy of around 1–1.5 bits per character and around five
characters per word. If we assume that a text contains mainly letters, digits,
and some punctuation symbols, most characters can be represented in six bits,
yielding a word content of 30 bits. Therefore, at one bit per character, English
text becomes uncorrelated at a window length of six words or longer, and features
obtained at these window lengths are not significant.

These results also show that using OSB-5 is significantly better then using
only single tokens (error rate of 0.46%) or conventional bigrams (0.48%).

5.6 Preprocessing and Tokenization

Results with normalizemime were generally better than the other two options,
reducing the error rate by up to 25% (Table 8). Accuracy on raw and mime-
decoded mails was roughly comparable.

Table 8. Preprocessing

Preprocessing none mimedecode normalizemime

Last 500 0.42% (2.1) 0.46% (2.3) 0.32% (1.6)
Last 1000 0.37% (3.7) 0.35% (3.5) 0.33% (3.3)

All 1.27% (52.5) 1.26% (52.1) 1.24% (51.4)

The S tokenization schema initially learns more slowly (the overall error rate
is somewhat higher) but is finally just as good as the X schema (Table 9). P
and C both result in lower accuracy, even though they initially learn quickly.

Combining Winnow and Orthogonal Sparse Bigrams 419

Table 9. Tokenization Schemas

Schema X S C P

Last 500 0.32% (1.6) 0.32% (1.6) 0.44% (2.2) 0.42% (2.1)
Last 1000 0.33% (3.3) 0.33% (3.3) 0.39% (3.9) 0.38% (3.8)

All 1.24% (51.4) 1.32% (54.7) 1.28% (52.9) 1.23% (51.1)

Table 10. Comparison With Naive Bayes and CRM114

Naive Bayes CRM114 CRM114 Winnow+OSB
Store Size All 1048577 (220 + 1) All All

Last 500 1.84% (9.2) 1.12% (5.6) 1.16% (5.8) 0.46% (2.3)
All 3.44% (142.8) 2.71% (112.5) 2.73% (113.2) 1.30% (53.9)

5.7 Comparison with CRM114 and Naive Bayes

The results for CRM114 and Naive Bayes on the last 500 mails are the best
results reported in [15] for incremental (single-pass) training. For a fair com-
parison, these tests were all run using the C tokenization schema on raw mails
without preprocessing. The best reported CRM114 weighting model is based on
empirically derived weightings and is a rough approximation of a Markov Ran-
dom Field. This model reduces to a Naive Bayes Model when the window size is
set to 1. To avoid the different pruning mechanisms (CRM114 uses a random-
discard algorithm) from distorting the comparison, we disabled LRU pruning for
Winnow and also reran the CRM114 tests using all features (Table 10).

5.8 Speed of Learning

The learning rate for the Winnow classifier combined with the OSB feature gen-
erator is shown in Fig. 1. Note that the rightmost column shows the incremental
error rate on new messages. After having classified 1000 messages, Winnow+OSB
achieves error rates below 1% on new mails.

6 Related Work

Cohen and Singer [2] use a Winnow-like multiplicative weight update algorithm
called “sleeping experts” with a feature combination technique called “sparse
phrases” which seems to be essentially equivalent to SBPH7. Bigrams and n-
grams are a classical technique; SBPH has been introduced in [14] and “sparse
phrases” in [2]. We propose orthogonal sparse bigrams as a minimalistic alter-
native that is new, to the best of our knowledge.

An LRU mechanism for feature set pruning has been employed by the first
author in [10]. We suppose that others have done the same since the idea seems
to suggest itself; but currently we are not aware of such usage.

7 Thanks to an anonymous reviewer for pointing us to this work.

420 Christian Siefkes et al.

Mails Error Rate New Error Rate
(Avg. Errors) (Avg. New Errors)

25 30.80% (7.7) 30.80% (7.7)
50 21.40% (10.7) 12.00% (3)
100 14.00% (14) 6.60% (3.3)
200 9.75% (19.5) 5.50% (5.5)
400 6.38% (25.5) 3.00% (6)
600 4.97% (29.8) 2.15% (4.3)
800 4.09% (32.7) 1.45% (2.9)
1000 3.50% (35) 1.15% (2.3)
1200 3.04% (36.5) 0.75% (1.5)
1600 2.48% (39.7) 0.80% (3.2)
2000 2.12% (42.3) 0.65% (2.6)
2400 1.85% (44.4) 0.53% (2.1)
2800 1.65% (46.2) 0.45% (1.8)
3200 1.51% (48.2) 0.50% (2)
3600 1.38% (49.7) 0.38% (1.5)
4000 1.28% (51.1) 0.35% (1.4)
4147 1.24% (51.4) 0.20% (0.3)

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
rr

or
 R

at
e

Number of E-Mail Messages in the Corpus

Error Rate (Average Errors)
New Error Rate (Average New Errors)

Fig. 1. Learning Curve for the best setting (Winnow1.23,0.83,5% with 1,600,000 features,
OSB-5, X tokenization)

7 Conclusion and Future Work

We have introduced orthogonal sparse bigrams (OSB) as a new feature combi-
nation technique for text classification that combines a high expressivity with
relatively low computational load. By combining OSB with the Winnow algo-
rithm we more than halved the error rate compared to a state-of-the-art spam
filter, while still retaining the property of incrementality. By refining the pre-
processing and tokenization steps we were able to further reduce the error rate
by 30% 8.

In this study we have measured the accuracy without taking the different
costs of misclassifications into account (it can be tolerated to let a few spam
mails through, but it is bad to classify a regular email as spam). This could be
addressed by using a cost metric as discussed in [5]. Winnow could be biased in
favor of classifying a borderline mail as nonspam by multiplying the spam score
by a factor < 1 (e.g. 99%) when classifying.

Currently our Winnow implementation supports only binary features; how
often a feature (sparse bigram) appears in a text is not taken into account. We
plan to address this by introducing a strength for each feature (cf. [4, Sec. 4.3]).

Also of interest is the difference in performance between the LRU (least-
recently-used) pruning algorithm used here and the random-discard algorithm
used in CRM114 [15]. When the random-discard algorithm in CRM114 trig-
gered, it almost always resulted in a decrease in accuracy; here we found that
an LRU algorithm could act to provide an increase in accuracy. Analysis and
determination of the magnitude of this effect will be a concern in future work.

Acknowledgments

We thank the anonymous reviewers for their helpful comments and suggestions.
8 Our algorithm is freely available as part of the TiEs system [13].

Combining Winnow and Orthogonal Sparse Bigrams 421

References

1. A. J. Carlson, C. M. Cumby, N. D. Rizzolo, J. L. Rosen, and D. Roth. SNoW user
manual. Version: January, 2004. Technical report, UIUC, 2004.

2. W. W. Cohen and Y. Singer. Context-sensitive learning methods for text catego-
rization. ACM Transactions on Information Systems, 17(2):141–173, 1999.

3. CRM114: The controllable regex mutilator. http://crm114.sourceforge.net/.
4. I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization.

In EMNLP-97, 1997.
5. J. M. Gómez Hidalgo, E. Puertas Sanz, and M. J. Maña López. Evaluating cost-

sensitive unsolicited bulk email categorization. In JADT-02, Madrid, ES, 2002.
6. P. Graham. Better Bayesian filtering. In MIT Spam Conference, 2003.
7. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2:285–318, 1988.
8. M. Munoz, V. Punyakanok, D. Roth, and D. Zimak. A learning approach to

shallow parsing. Technical Report UIUCDCS-R-99-2087, Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1999.

9. normalizemime v2004-02-04. http://hyvatti.iki.fi/ jaakko/spam/.
10. C. Siefkes. A toolkit for caching and prefetching in the context of Web application

platforms. Diplomarbeit, TU Berlin, 2002.
11. SpamAssassin. http://www.spamassassin.org/.
12. SpamBayes. http://spambayes.sourceforge.net/.
13. Trainable Incremental Extraction System. http://www.inf.fu-berlin.de/inst/ag-

db/software/ties/.
14. W. S. Yerazunis. Sparse binary polynomial hashing and the CRM114 discriminator.

In 2003 Spam Conference, Cambridge, MA, 2003. MIT.
15. W. S. Yerazunis. The spam-filtering accuracy plateau at 99.9% accuracy and how

to get past it. In 2004 Spam Conference, Cambridge, MA, 2004. MIT.
16. L. Zhang and T. Yao. Filtering junk mail with a maximum entropy model. In 20th

International Conference on Computer Processing of Oriental Languages, 2003.

	1 Introduction
	2 The Winnow Classification Algorithm
	2.1 Thick Threshold
	2.2 Feature Pruning

	3 Feature Generation
	3.1 Preprocessing
	3.2 Tokenization

	4 Feature Combination
	4.1 Sparse Binary Polynomial Hashing
	4.2 Orthogonal Sparse Bigrams

	5 Experimental Results
	5.1 Testing Procedure
	5.2 Parameter Tuning
	5.3 Feature Store Size and Comparison with SBPH
	5.4 Unigram Inclusion
	5.5 Window Sizes
	5.6 Preprocessing and Tokenization
	5.7 Comparison with CRM114 and Naive Bayes
	5.8 Speed of Learning

	6 Related Work
	7 Conclusion and Future Work
	References

