
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Fighting Spam, Phishing and Email Fraud

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Shalendra Chhabra

December 2005

Thesis Committee:
Professor Dimitrios Gunopulos, Chairperson
Professor Vana Kalogeraki
Professor Eamonn Keogh
Professor Mart Molle
Dr. William S. Yerazunis

Copyright by
Shalendra Chhabra

2005

The Thesis of Shalendra Chhabra is approved:

Committee Chairperson

University of California, Riverside

Acknowledgements

Dreaming big with a drive to excel requires immense motivation and a positive attitude. It

takes a lot of courage to follow one’s heart and chase one’s dreams. Great things are never

done without hard work and sacrifice.

I am grateful to myparentsfor teaching me to dream big, for blessing me with the courage

to follow my heart, for inspiring me to work hard, and for instilling the spirit of sportsman-

ship in me. They brought me up in a very optimistic environment, giving me a remarkable

ability to judge good from bad. I am grateful to mysistersfor being the bestsistersin the

world. Every success in life would not have been possible without their sacrifice, help, and

encouragement. They taught me thatwinners don’t do different things but they do things

differently. I am grateful to mygrandparents, my uncle, my aunt, my cousins, and other

members of myfamily for their love, affection, and support during difficult times.

I am grateful to all myfriends, teachers, androommatesfor enriching my life.

I am highly indebted to members of theGraduate Divisionat theUniversity of California,

Riverside (UCR), for providing me with an opportunity to pursue graduate studies at this

temple of education.

This thesis is a compiled version of the cumulative knowledge and wisdom gained through-

out my two years at theDepartment of Computer Science and Engineeringat UCR; intern-

ships atMitsubishi Electric Research Laboratories (MERL); presentations atMIT, Stanford

University,andCisco Systems; interactions with people from around the world; and fruitful

discussions from my interviews atMicrosoft, Cisco Systems, Intel, andGoogle.

iv

Many people have contributed to this thesis directly or indirectly. It’s an honor to have come

across so many wonderful people.

I am highly indebted to my advisor,Professor Dimitrios Gunopulos, for motivating, guid-

ing, and helping me channel my creative energy at times when I was unable to focus. This

thesis would not have been possible without his encouragement, wisdom, feedback, and sup-

port. His counselling kept me pointed in the right direction, and his periodic feedback pro-

tected me from pitfalls.

I am highly grateful to members of my thesis committee—Professor Vana Kalogeraki

andProfessor Eamonn Keoghfor providing guidance, encouragement, and valuable insight.

Communication with them has always brought cheerful spirits and inspiration in me.

I am highly indebted toDr. William “Bill” S. Yerazunis (Captain Crash of Junkyard

Wars)from MERL for being an amazing mentor and an incredible collaborator during 2004

and 2005. He is the smartest person I have ever come across. Working with him has added

tremendous value to my life. Words are not enough to thankBill for the role he has played in

my successive successes.

I am highly indebted toProfessor Mart Mollefor his continued, unparalleled support as

my graduate advisor. He is a very caring, understanding, excellent teacher who imparts novel

ideas to his students. It was during one of his class projects inAdvance Computer Networks

class during Fall of 2003 that led me to the arena of spam-fighting. Words are not enough to

express my gratitude for him.

v

I am grateful toDean Dallas L. Rabensteinfor approving continued support for my Mas-

ter’s Degree atUCR.

I am thankful toProfessor Stefano Lonardifor cheering me with his wonderful smile.

Fruitful discussions, and communication with him add more confidence in my life.

I am thankful toProfessor Harry C. Hsiehfor being my academic advisor in the early

days atUCR; to Professors Chinya V. Ravishankar, Satish Tripathi, Michalis Faloutsos,

Christian R. Shelton, andJun Yangfor very enlightening discussions, and toDepartment

Chair Professor Thomas Paynefor providing valuable teaching tips and resources. Many

thanks to members of the Data Mining Lab—Sharmila Subramaniam, Mirella Moro, Zo-

grafoula Vagena, Song Lin, Petko Bakalov, Marios Hadjielefthrelou, Dimitris Papadopoulos,

Demetrios Z. Yazti, andChristina Charalambidoufor their help and a good time. Many

thanks to the department’s administrative and management staff—Terri Phonharath, Kathy

Vu, Lilian Kang, Mimi Trinh, Tiffany Arakai, Nicole Smidt, Dulce Shipley, Janice Leslie,

andEmily Papavero. Many thanks toKelly Hinosowa, Harrison LeongandTatiana Rakic

for being the best international advisors. Many thanks to members of the systems group—

Victor Hill, Benjamin Arai, Conley Read, Craig Boucher, Jacob Lewallen, Benjamin Arai,

andChuck Boucher. Many thanks toBrian Linard, John Cortes, Ronald Feliciano, and my

studentsfrom Computer Organization and Assembly Languageclass for a good time.

vi

I am highly grateful toDr. Bhiksha Rajfrom MERL for being an incredible mentor and

a great friend. His guidance and wisdom brought a smile to my face every day during the

summers of 2004 and 2005. His inspirational notes crystallized my conviction to excel in

constraints. This thesis would not have been in its present form without his constant support,

motivation, and guidance.

I am grateful toPaul Grahamfor playing a major role in my success, for inspirational

communication, for writing wonderful essays, for organizing theMIT Spam Conference,

and for hosting dinners for anti-spam experts every year. It was because of the MIT Spam

Conference of 2004 that I eventually metBill Yerazunis.

I am thankful toJoe Marks, Bent Schmidt-Nielsen, and others fromMERL; to Rita

Singhfrom Haikya Corporationfor great advice, and toChristian Siefkes (Freie Universität,

Berlin) andFidelis Assis (Embratel)for being great collaborators.

I am grateful toJoshua Goodmanfor introducing me to theMSN Safety Team, for provid-

ing me with an opportunity to volunteer at theSecond Conference on Email and Anti-Spam

(CEAS 2005), and for invaluable feedback and tips. I am grateful toManav Mishrafor

stimulating discussions and feedback at theEmail Authentication Implementation Summit

2005, New York City, and toRobert Rounthwaitefor intellectual conversations during lunch

at CEAS 2005. I am grateful toKumar Chellapillafor invaluable feedback and tips. Many

thanks toHarry S. Katz, Kris Iverson, John Scarrow, Ning Zhang, Geoff Hulten, Collene

Georgia, Jeff Aylesworth, and others fromMicrosoft Corporationfor brainstorming conver-

sations, and for their time and help during relocation.

vii

I am grateful toJim Fentonfor introducing me to theNetwork and Spam Solutions Team

at Cisco Systemsand for great discussions. Many thanks toShamim Pirzada, Sanjay Pol,

Michael Thomas, and others fromCisco Systemsfor their time and fruitful conversations.

Many thanks toMichael Ripley, Gary Graunke, Michael Andre, Don Whiteside, Gary

Mittelstaedt, Keith Shippy, andJanie C. Masonfrom Intel and toCharles Haynes, Kristin

Kassaei, and members of the Gmail team fromGooglefor their time and very fruitful face-

to-face discussions.

Many thanks tolawyers Matthew Prince (Unspam Technologies), Jon Praed (Internet

Law Group),andAaron Kornblum (Microsoft)for motivation, guidance, transcripts and rel-

evant resources for legal actions against spam.

Many thanks toJonathan Zdziarski (DSPAM)and Richard Jowsey (Death2Spam)for

reviewing draft versions of this thesis. Many thanks toEric S. Johansson (CAMRAM)for

providing information and feedback on CAMRAM, and toMatt BlumbergandAndy Sautins

(Return Path)for feedback on theBonded Sendersection. Many thanks toErik Brown for

designing the logo for the thesis. Many thanks toShawn R. LesniakandAmir Friedl̈ander

for making proofreading super-fun.

I am thankful toLaird A. Breyer (University of Lancaster, UK); Regu Radhakrishnan,

Ronald Johnson, Ajay Divakaran (MERL); David Silver (MarkMonitor); Katherine Bretz,

Des Cahill, Doug Warren (Habeas); Ether Dyson (CNET); Miles Libbey (Yahoo); P. Oscar

Boykin (University of Floria); John Graham-Cumming (Electric Cloud); Larry McGrath,

Vickie Park, Dallas Johnson, Mitch Boretz, Monica Wicker, Kara Oswood, Karen Smith,

viii

Abraham Artuz (UCR); Larry Reeker (NIST); Jonathan Oliver, Chad West, Leon Hilton

(MailFrontier); Daniel Quinlan (IronPort Systems); Gordon Cormack (University of Water-

loo); Mike Linksvayer (Creative Commons); andRebecca Wetzelfor very fruitful discussions.

I am grateful to my previous mentors, members of the security group at theUniversity of

Milan—- Professor Pierangela Samarati, Sabrina De Capitani, Stefano Paraboschi, Ernesto

Damiani; Professor Jean Goubault Larrecqat theLaboratoire Sṕecification et V́erification,

Ecole Normale Superieure De Cachan, France; Dr. N. Rajaat theTata Institute of Funda-

mental Research, India, andProfessor S. C. Guptaat theInstitute of Technology, Banaras

Hindu University, India, for exposing me to research during my undergraduate studies.

I am thankful to all myfriendsfor standing by me during the worst times. To express my

gratitude for myfriendswould require far more pages than those occupied by the contents

of this thesis. My movie,The BackBenchers, may prove to be a better medium for this task,

provided it is ever finished.

I am thankful to my former roommateCasey Christine Hoover (UCR)for being the best

roommate in the world. Without the encouragement of this precious person, I would never

have discussed and conducted anti-spam measures with theComputing and Communications

(C&C) group atUCR. Her good words—“uniqueness is a virtue, lead by example, actions

speak louder than words, good leaders know how to ask for help, and you will be fine”—

created an optimistic air in the house and pumped me with confidence for presentations at

the MIT Spam Conference (2005), for challenging interviews at big corporations, and during

tough times, especially during my car accident.

ix

Finally I am thankful to God for showering His love and affection, for bringing wonderful

people into my life, and for everything I have achieved to this day.

With such great blessings and positive energy, a revolution to put an end to the spammers’

business model is in the cards. It begins on the next page...

x

xi

To my parents and sisters

xii

ABSTRACT OF THE THESIS

Fighting Spam, Phishing and Email Fraud

by

Shalendra Chhabra

Master of Science, Graduate Program in Computer Science
University of California, Riverside, December 2005

Professor Dimitrios Gunopulos, Chairperson

Spamming in the electronic communications medium is the action of sending unsolicited

commercial messages in bulk without the explicit permission or desire of the recipients. The

most common form of spam is email spam. Phishing is a particular type of spam character-

ized by attempts to masquerade as a reputed business. The objective is to trick recipients into

divulging sensitive information such as bank account numbers, passwords, and credit card

details. Spam and phishing cause billions of dollars’ worth of losses to businesses.

Many initiatives on technical and legal levels are currently underway for fighting this

challenge. In this thesis we will examine these issues from the aspects of network protocols,

filtering, reputation, human psychology, scalability and corporate alliances.

xiii

We will present a comprehensive description of technical initiatives to fight spam which

include server-side and client-side filtering (using statistical and collaborative techniques);

lists (blacklist, whitelist, greylist and brownlist (in CAMRAM)); email authentication stan-

dards such as Identified Internet Mail (IIM) from Cisco Systems, Domain Keys (DK) from

Yahoo!, Domain Keys Identified Mail (DKIM), Sender Policy Framework (SPF) from Pobox,

Sender ID Framework (SIDF) from Microsoft Corporation; and emerging sender reputation

and accreditation services (from Habeas, Return Path, IronPort Systems, and CipherTrust).

We will touch upon specific anti-spam techniques used in the popular spam-filtering ap-

pliances such as IronMail Connection Control from CiphterTrust, MailHurdle (RazorGate)

from Mirapoint, Mail Security 8160 from Symantec, and MailGate Edge from Tumbleweed

Communications.

We will investigate various tricks that spammers use to fool spam filters, and will also

analyze a spammer’sto do list by looking through Jeremy Jaynes’s court transcripts. Jaynes

was the world’s eighth most prolific spammer until he was convicted and sentenced to nine

years in prison under Virginia statute. We will illustrate malicious stages in a phishing attack

lifecycle. We will also discuss the anatomy of a phishing email and various other tricks that

fraudsters use in the spoofed web sites.

We will first explain sender-paysmodel for email and will then describeThe Penny

Black Project, a challenge-responsesystem with bankable tokens developed by Microsoft

Researchers.

xiv

We will focus on a special class of Human Interactive Proofs (HIPs) known as Com-

pletely Automatic Public Turing test to tell Computers and Humans Apart (CAPTCHA).

CAPTCHAs are used by Hotmail, Yahoo!, Google, and other companies to prevent auto-

matic registration of email accounts by bots and to prevent bulk mailing by the spammers.

We will explain a mechanism for throttling Internet resource abuse based on the crypto-

graphic technique Proof of Work (PoW) known as Hashcash. We will then describe in detail

ahybrid sender-paysemail system based on Hashcash, known as the Campaign for Real Mail

or CAMRAM.

We will also focus on the machine learning approach for spam filters. A large number

of spam filters and other mail communication systems have been proposed and implemented

in the past. We will describe a possible unification of these filters, allowing their technology

to be described in a uniform way. In particular, describing these filters reveals a large com-

monality of designs and explains their similar performance. We will present results of our

experiments with the Markov Random Field (MRF) model and Winnow-based approaches

for spam-filtering in the open source spam filter CRM114 Discriminator Framework. Our re-

sults indicate that such models outperform the Naïve Bayesian approach for spam-filtering.

We will illustrate CRM114 usage for small-, medium-, and large-scale enterprises (for fil-

tering up to one million client email accounts). We will also investigate the significance of

reputation-based protocols for the email communication flow.

xv

We will highlight some problems with the current spam-fighting techniques. We conclude

that with the combination of better spam-fighting techniques, legal actions, awareness among

Internet users, and cooperation within the industry, the spammers’ business model can be

disrupted in the next few years.

In addition to work at the Department of Computer Science and Engineering, University

of California Riverside, this thesis is a product of collaborative work at the Mitsubishi Elec-

tric Research Laboratories, Cambridge, MA (MERL), and enlightening interactions with the

MSN Safety Team of Microsoft Corporation, Network and Spam Solutions Team of Cisco

Systems, Gmail Team of Google, and Anti-Spam Team of Yahoo!. Preliminary results of this

thesis have appeared on Slashdot and presentations at theMIT Spam Conference (2005, 2004,

2003); Cisco Systems (2005);Second Conference on Email and Anti-Spam (CEAS 2005),

Stanford University; The Fourth IEEE International Conference on Data Mining, Brighton,

UK (ICDM04); 8th European Conference on Principles and Practice of Knowledge Discov-

ery in Databases, Pisa, Italy (PKDD 2004)and1st International Workshop on Peer2Peer

Data Management, Security and Trust, Zaragoza, Spain, (PDMST04).

xvi

Table of Contents

List of Tables xxvi

List of Figures xxx

1 Introduction 1

1.1 Contributions .1

1.2 Papers .2

1.3 Presentations .3

1.4 Postings on Slashdot .3

1.5 Slashdot Book Reviews .3

1.6 Articles .4

1.7 Volunteer Work .4

1.8 Surveys .4

1.9 Thesis Structure .5

xvii

2 Background 9

2.1 Email, Spam and Phishing .9

2.1.1 Email .9

2.1.2 Spam .10

2.1.3 Phishing .16

2.2 Internet Email Agents .18

2.2.1 Email Address .18

2.2.2 Mail User Agent (MUA) .18

2.2.3 Mail Transfer Agent (MTA) .18

2.2.4 Mail Delivery Agent (MDA) .19

2.3 Internet Email Flow .19

2.4 Internet Email Format .23

2.5 Details of the Simple Mail Transfer Protocol (SMTP)24

2.5.1 SMTP - Objective and Model .24

2.5.2 Mail Object:EnvelopeandContent 25

2.5.3 Message Transfer .25

2.5.4 SMTP Commands .26

2.5.5 SMTP Commands and Arguments29

2.5.6 SMTP Reply Codes .29

xviii

2.5.7 SMTP Mail Transaction .30

2.5.8 Difference betweenEnvelope SenderandFrom Address 32

2.5.9 Open Mail Relays .33

2.6 Spam - Origin, Categories, False Claims and Exploits33

2.6.1 Geographical Origins of Email and Spam33

2.6.2 Categories of Spam .35

2.6.3 False Claims in Spam .37

2.6.4 Trends in Spam Products and Exploits41

2.7 Phishing - Attack Taxonomy, Lifecycle and Anatomy44

2.7.1 Phishing Attack Taxonomy and Lifecycle44

2.7.2 Anatomy of a Phishing Email .46

2.7.3 Tricks Used in Fraudulent Web Sites51

2.8 Spam and the Law .52

2.8.1 CAN-SPAM Act of 2003 .53

2.8.2 Jeremy Jaynes Sentence .54

2.9 People and Spam .58

2.10 Spam Survey at University of California, Riverside58

xix

3 Related Work 60

3.1 Whitelist, Blacklist and Greylist .61

3.1.1 Whitelist .61

3.1.2 Blacklist .61

3.1.3 Greylist .63

3.2 Email Authentication .64

3.2.1 Sender Policy Framework (SPF) .65

3.2.2 Sender ID Framework (SIDF) from Microsoft Corporation66

3.2.3 Email Authentication Score Card69

3.2.4 Identified Internet Mail (IIM) from Cisco Systems, Inc.71

3.2.5 Domain Keys (DK) from Yahoo!, Inc.75

3.3 Machine Learning Approach .77

3.4 Sender Pays/Sender Verification/Sender Compute79

3.4.1 Challenge Response .79

3.4.2 Human Interactive Proofs (HIP) (CAPTCHA)81

3.4.3 Proof of Work (PoW) .85

3.4.4 Micropayments .88

3.5 Controlling Spam at the Router Level .88

3.6 Social Networks .90

3.7 Distributed Collaborative Filtering .90

3.8 Special Purpose One Time/Disposable Email Addresses91

3.9 Tracking Harvesters through the Project Honey Pot91
xx

3.10 Accreditation and Reputation Services .93

3.10.1 AOL’s Enhanced Whitelisting .93

3.10.2 Habeas SafeList Program .93

3.10.3 Return Path’s Bonded Sender Program94

3.10.4 CipherTrust’s TrustedSource Reputation Service96

3.10.5 IronPort’s SenderBase Reputation Service96

3.11 Anti-Spam Appliances .97

4 A Unified Model of Spam Filtration 98

4.1 Introduction .98

4.2 The Filtering Pipeline .99

4.2.1 Initial Transformation .101

4.2.2 Feature Extraction .103

4.2.3 Feature Weighting .108

4.2.4 Weight Combination .111

4.2.5 Final Thresholding .113

4.3 Emulation of Other Filtering Methods .113

4.3.1 Emulating Whitelists and Blacklists in the Generalized Model114

4.3.2 Emulation of Heuristic Filters in the Generalized Model115

4.3.3 Examples of Popular Spam Filters in the Generalized Model118

4.3.4 Conclusion and Future Work .121

xxi

5 The CRM114 Discriminator Framework 122

5.1 Introduction .122

5.2 CRM114 Discriminator and the Text Retrieval Conference (TREC) 2005 . . .124

5.3 Implementing CRM114 at Mailservers .126

5.4 A Generalized Configuration Mode for Implementing CRM114 at Mailservers126

5.5 CRM114 Configuration Mode for Large Scale Enterprises130

6 The CAMRAM System 134

6.1 Introduction .134

6.2 Architecture of the CAMRAM System .135

6.3 CAMRAM Inbound Filter .135

6.4 CAMRAM Outbound Filter .140

6.5 CAMRAM User Interface .142

6.6 Snapshots of CAMRAM Interfaces .143

7 Spam Filtering Using a Markov Random Field Model 152

7.1 Introduction .152

7.2 Related Work .153

7.3 Markov Random Fields .153

7.4 Markov Random Field Model and CRM114155

7.5 Features Vectors in the Chosen Neighborhood158

xxii

7.6 Training and Prediction using CRM114 .161

7.6.1 Testing Procedure .161

7.6.2 Models Tested .162

7.6.3 Test Results .165

7.6.4 Discussion .166

7.7 Conclusion and Future Work .167

8 Combining Winnow and Orthogonal Sparse Bigrams for Incremental Spam Fil-

tering 168

8.1 Introduction .168

8.2 The Winnow Classification Algorithm .170

8.2.1 Thick Threshold .172

8.2.2 Feature Pruning .172

8.3 Feature Generation .173

8.3.1 Preprocessing .173

8.3.2 Tokenization .174

8.4 Feature Combination .175

8.4.1 Sparse Binary Polynomial Hashing175

8.4.2 Orthogonal Sparse Bigrams .176

xxiii

8.5 Experimental Results .178

8.5.1 Testing Procedure .178

8.5.2 Parameter Tuning .179

8.5.3 Feature Store Size and Comparison With SBPH180

8.5.4 Unigram Inclusion .181

8.5.5 Window Sizes .181

8.5.6 Preprocessing and Tokenization .182

8.5.7 Comparison with CRM114 and Naïve Bayes183

8.5.8 Speed of Learning .184

8.6 Related Work .184

8.7 Conclusion and Future Work .186

9 Reputation Systems 187

9.1 Introduction .187

9.2 Trust and Reputation .188

9.2.1 Common Online Reputation Systems188

9.2.2 Reputation Scoring System .190

9.3 Reputation Network Architectures .191

9.3.1 Centralized Architecture .191

9.3.2 Distributed Reputation Systems .192

xxiv

9.4 Reputation Computation Engines .193

9.4.1 Summation/Average of Votes .193

9.4.2 Bayesian Systems .193

9.4.3 Discrete Trust Models .194

9.4.4 Flow Models .194

10 Conclusion 195

Bibliography 198

xxv

List of Tables

2.1 Headers and values used in the Internet email format.From, To, Subjectand

Dateare the mandatory headers. .24

2.2 SMTP commands and arguments. .29

2.3 A partial list of SMTP reply codes with meanings.29

2.4 SMTP mail transaction betweensending-machine.netandreceiving-machine.org 31

2.5 Table showing difference betweenEnvelope SenderandFrom Address. Upon

delivery of the emailEnvelope Senderis added asReturn-Path:header which

is snd@sending-machine.netwhile theFrom: Addressis thomas@sending-

machine.net. .32

2.6 Types of offers made via spam in a random sample of 1000 spam messages.

Source:“False Claims In Spam,” FTC Division of Marketing Practices (April

2003). .36

2.7 Falsity in “From” line in a random sample of 1000 spam messages. Source:

“False Claims In Spam,” FTC Division of Marketing Practices (April 2003). .37

xxvi

2.8 Falsity in “Subject” line in a random sample of 1000 spam messages. Source:

“False Claims In Spam,” FTC Division of Marketing Practices (April 2003). .38

2.9 Trends in categories of spam in random 2004 and 2003 spam samples. Source:

“Trends in Spam Products and Methods,” Microsoft Corporation.42

2.10 Trends in exploits in spam in random 2004 and 2003 spam samples. Source:

“Trends in Spam Products and Methods,” Microsoft Corporation.43

2.11 Trends in number of exploits per message in random 2004 and 2003 spam

samples. Source: “Trends in Spam Products and Methods,”Microsoft Corpo-

ration. .43

2.12 Different reply address and claimed sender found in a phishing sample. Source:

“Anatomy of a Phishing Email,” MailFrontier, Inc.47

2.13 A statement demanding quick response found in a phishing sample. Source:

“Anatomy of a Phishing Email,” MailFrontier, Inc.47

2.14 A statement assuring security found in a phishing sample. Source: “Anatomy

of a Phishing Email,” MailFrontier, Inc. .48

2.15 Use of HTML forms in emails found in a phishing sample. Source: “Anatomy

of a Phishing Email,” MailFrontier, Inc. .48

2.16 A phishing email using a look-a-like domain name as eBay. Source: “Anatomy

of a Phishing Email,” MailFrontier, Inc. .48

2.17 Different link text and link destination found in a phishing email. Source:

“Anatomy of a Phishing Email,” MailFrontier, Inc.49

xxvii

2.18 URL obscuring with IP address and hexadecimal characters found in a phish-

ing email. Source: “Anatomy of a Phishing Email,” MailFrontier, Inc.50

3.1 Domain sampling authentication study by MarkMonitor. Source: Email Au-

thentication Scorecard, David Silver, MarkMonitor. Email Authentication

Implementation Summit, NYC, July 12, 2005. Table reproduced with per-

mission from David Silver, MarkMonitor.69

3.2 Domain sampling authentication study by VeriSign. Source: Email Authenti-

cation Score Card, David Silver, MarkMonitor. Email Authentication Imple-

mentation Summit, NYC, July 12, 2005. Table reproduced with permission

from David Silver, MarkMonitor. .70

3.3 Some look-a-like domains of reputed brands having SPF records. Source:

Email Authentication Score Card, David Silver, MarkMonitor. Email Au-

thentication Implementation Summit, NYC, July 12, 2005. Table reproduced

with permission from David Silver, MarkMonitor.70

3.4 Anti-spam appliances from some vendors. Source: “Next-Gen Appliances

Put SPAMMERS in the Crosshairs” by Logan G. Harbaugh, INFOWORLD,

08/29/2005. .97

4.1 Chi Square Formulation .112

7.1 Minimum weighting sequences. .159

7.2 Exponential weighting sequences. .161

xxviii

7.3 A summary of tested models with their weighting sequences.163

7.4 Example subphrases and relative weights with the models tested.165

7.5 Errors and accuracy (% A) per 5000 test messages with varying window sizes

(Win). .166

8.1 Tokenization patterns. .175

8.2 Features generated by SBPH. .177

8.3 Features generated by OSB. .177

8.4 Promotion and demotion factors. .180

8.5 Threshold Thickness .180

8.6 Comparison of SBPH and OSB with different feature storage sizes.181

8.7 Utility of single tokens (Unigrams). .181

8.8 Sliding window size. .182

8.9 Preprocessing. .182

8.10 Tokenization schemas. .183

8.11 Comparison with Näive Bayes and CRM114.183

xxix

List of Figures

2.1 Different types of spam in the media. .11

2.2 A snapshot of spam messages in my junk folder. Note the different subject

lines. Most of them try to attract attention by including “Re:” in the subject

line. .12

2.3 A spam message with a picture attachment offering university diplomas. . . .13

2.4 A spam message offering low mortgage rates.14

2.5 An example of Nigerian scam (419 Fraud).15

2.6 A phishing attempt to masquerade the sender as eBay. Note that the URL at

the bottom redirects the recipient to the websitehttp://awcg1dln.comand not

http://www.ebay.com. Source: Phishing IQ Test, MailFrontier, Inc.16

2.7 A phishing attempt to masquerade the sender as PayPal. Note that the URL at

the bottom redirects the recipient tohttp://www.signupaccount.comand not

http://www.paypal.com. Source: Phishing IQ Test, MailFrontier, Inc.17

2.8 A schematic of the electronic mail communication flow over the Internet

between Sender Alice and Recipient Bob.22

xxx

2.9 Model for SMTP usage as illustrated in RFC 821. Note that in RFC 821

termsSender-SMTPandReceiver-SMTPare used while in RFC 2821 terms

Client-SMTPandServer-SMTPare used. .25

2.10 Geographical origins of email and spam derived from a corpus of 2 million

hand-classified email messages obtained through Hotmail Feedback Loop

during April and June 2003. Western Europe, Japan, and New England sent

more good mail than spam to Hotmail users. Asia, the Middle East, and

Africa sent more spam than good mail to Hotmail users. Source - “Filter-

ing Spam Email on a Global Scale”. Figure provided by Joshua Goodman,

Microsoft Research. .34

2.11 Types of offers made via spam in a random sample of 1000 spam messages.

Source:“False Claims In Spam,” FTC Division of Marketing Practices (April

2003). .36

2.12 Percentage of spam with false “From” line in a random sample of 1000 spam

messages. 33% percent of spam analyzed contained false information in the

“From” line. Source: “False Claims In Spam,” FTC Division of Marketing

Practices April 2003. .39

2.13 Percentage of spam with false “Subject” line in a random sample of 1000

spam messages. 22% percent of spam analyzed contained false information

in the “Subject” line. Source: “False Claims In Spam,” FTC Division of

Marketing Practices April 2003. .39

xxxi

2.14 Percentage of spam with false “Text” line in a random sample of 1000 spam

messages. 40% percent of spam analyzed contained false information in the

body of the message. Source: “False Claims In Spam,” FTC Division of

Marketing Practices (April 2003). .40

2.15 66% of spam in a random sample of 1000 messages contained false infor-

mation in “From” lines, “Subject” lines or “Message text”. Source: “False

Claims In Spam,” FTC Division of Marketing Practices (April 2003).40

2.16 2% of spam in a random sample of 1000 messages contained the “ADV” label

in the subject line, which is required by several state laws. Source: “False

Claims In Spam,” FTC Division of Marketing Practices (April 2003).41

2.17 Phishing attack taxonomy and lifecycle. Source: “Tackling Phishing” by Re-

becca Wetzel, Business Communications Review, Feb 2005. Figure redrawn

with inputs from Rebecca Wetzel. .45

2.18 Jeremy Jaynesto do list 1 recovered during his arrest and then redacted by

the court. Note:get tons of ips, figure out filtering, change ips and update

robomails. .55

2.19 Jeremy Jaynesto do list 2 recovered during his arrest and then redacted by

the court. Note:figure out AOL. 56

2.20 Jeremy Jaynesto do list 3 recovered during his arrest and then redacted by

the court. Note:$ involved. .57

xxxii

2.21 Effect of spam on people derived through responses of the spam survey con-

ducted by John Graham-Cumming on Slashdot in 2004. Figure redrawn with

permission from John Graham-Cumming.59

3.1 Current technical initiatives for tackling spam and phishing.60

3.2 Sender ID Framework (SIDF) from Microsoft Corporation.68

3.3 Identified Internet Mail (IIM) from Cisco Systems.74

3.4 DomainKeys (DK) from Yahoo!. .77

3.5 Modern-day reading based Human Interactive Proofs (HIPs) used by MSN/

Hotmail, Register.com, Yahoo!, Ticketmaster and Google. HIPs are also

known as Completely Automated Public Turing tests to tell Computers and

Humans Apart (CAPTCHA). Figure provided by Kumar Chellapilla, Mi-

crosoft Research. .84

3.6 Project Honey Pot - special license restrictions for non human visitors such

as bots. Figure provided by Matthew Prince, Unspam Technologies.92

3.7 Habeas’ SafeList program. .94

3.8 Return Path’s Bonded Sender program. .95

4.1 A generalized model for spam filtering pipelines.100

5.1 A generalized configuration mode for implementing CRM114 at mailservers.

Figure drawn in collaboration with Ronald Johnson and William S. Yerazunis

from Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA. .129

xxxiii

5.2 CRM114 configuration mode for filtering more than one million client email

accounts used by a large ISP. Figure drawn in collaboration with Ronald

Johnson, William S. Yerazunis from Mitsubishi Electric Research Laborato-

ries (MERL), and Fidelis Assis from Embratel.133

6.1 CAMRAM inbound filter. Note that the inbound filter chain is composed of

first stage CAMRAM filters and four filters—Hashcash stamp filter, friends

list filter, header keyword filter and CRM114 filter.139

6.2 CAMRAM outbound filter. .141

6.3 CAMRAM user interface. .144

6.4 CAMRAM user interface displaying configuration settings. Source: Eric S.

Johansson, CAMRAM. .145

6.5 CAMRAM user interface displaying a mechanism for adding friends. Source:

Eric S. Johansson, CAMRAM. .146

6.6 CAMRAM user interface displaying a mechanism for adding keywords present

in the headers. Source: Eric S. Johansson, CAMRAM.147

6.7 CAMRAM user interface displaying the sorting mechanism - 1. Source: Eric

S. Johansson, CAMRAM. .148

6.8 CAMRAM user interface displaying the sorting mechanism - 2. Source: Eric

S. Johansson, CAMRAM. .149

6.9 CAMRAM user interface displaying the recovery mechanism - 1. Source:

Eric S. Johansson, CAMRAM. .150

xxxiv

6.10 CAMRAM user interface displaying the recovery mechanism - 2. Source:

Eric S. Johansson, CAMRAM. .151

6.11 CAMRAM user interface - key to history. Source: Eric S. Johansson, CAM-

RAM. .151

7.1 Comparison of errors in the tested models with variable neighborhood win-

dows. .167

8.1 Learning curve for the best setting (Winnow1.23,0.83,5% with 1,600,000 fea-

tures, OSB-5,X tokenization). .185

9.1 SupRep protocol built on the top of Gnutella v0.6. (a) query and poll; (b)-(d)

vote verification; (e) resource download. .192

xxxv

Chapter 1

Introduction

1.1 Contributions

The main contributions from the author of this thesis are:

• The author presentsan in-depth study of the problem of spam and phishing.

• The author presentsredacted court transcripts of Jeremy Jaynes, the world’s eight

most prolific spammer.

• The author presentsan in-depth description of current initiatives for fighting spam.

• The author proposesa unified model of spam filtration for the spam filters currently

available in the market, in collaboration with others.

• The author proposesa Markov Random Field (MRF) and a Winnow-based model in

the CRM114 Discriminator, in collaboration with others.

1

• The author presents different configuration modes for implementing CRM114 at

mailservers.

• The author presentsthe internals of ahybrid sender-payssystem known as CAM-

RAM.

• The author presentsa reputation system built on the top of Gnutella known as SupRep.

1.2 Papers

The author, in collaboration with others, published the following papers during the course of

his graduate studies:

1. A Unified Model of Spam Filtration. In MIT Spam Conference 2005, MIT, Cambridge.

2. Spam Filtering using a Markov Random Field Model with Variable Weighting Schemas.

In Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM

’04), Brighton, UK.

3. Combining Winnow and Orthogonal Sparse Bigrams for Incremental Spam Filtering.

In Proceedings of the 15th European Conference on Machine Learning and 8th Eu-

ropean Conference on Principles and Practice of Knowledge Discovery in Databases

(ECML/PKDD 2004), Lecture Notes in Computer Science, Springer-Verlag 2004.

4. A Protocol for Reputation Management in Super-Peer Networks. In Database and Ex-

pert Systems Applications, 15th International Workshop on (DEXA’04), Spain.

2

1.3 Presentations

The author gave the following presentations:

1. Netizen, Authentication and Reputation, Second Conference on Email and Anti-Spam

(CEAS 2005), Stanford University.

2. Its About You, Me and Every Netizen Because We’ve Got Spam and Phish, Cisco Sys-

tems, April 18, 2005.

3. A Unified Model of Spam Filtration, MIT Spam Conference, MIT, Cambridge, January

21, 2005.

4. Spam Filtering using a Markov Random Field Model with Variable Weighting Schemas,

ICDM04, Brighton, UK.

1.4 Postings on Slashdot

The author’s post, titledMicrosoft Researchers on Stopping Spamappeared on Slashdot on

April 11, 2005.

1.5 Slashdot Book Reviews

The author’s review for the bookEnding Spamappeared on Slashdot on August 15, 2005.

3

1.6 Articles

The author’s article, titledA Quick Note on Yahoo! Mail SpamGuard, was cited on Slashdot

on April 11, 2005.

1.7 Volunteer Work

The author was a volunteer at theEmail Authenication Implementation Summit, New York

City, 2005and theSecond Conference on Email and Anti-Spam (CEAS 2005), Stanford Uni-

versity.

1.8 Surveys

The author submitted a human subjects protocol, HS-05-037, entitledSpam Survey at UCR:

Collecting Useful Information about Spam (Unsolicited Commercial Email) Received by

UCR Population for Providing Effective Guidelines for Design and Development of Effec-

tive Spam Filtering Solutions at UCR Mailservers to Curb Spam and Prevent Email Fraudto

theOffice of Research Integrityat theUniversity of California, Riverside. The protocol

was approved, and an online survey about spam received by email users at theUniversity

of California, Riverside was conducted in May 2005. We received 1721 responses, around

10% of the university population.

4

1.9 Thesis Structure

The thesis titledFighting Spam, Phishing and Email Fraud, is divided into ten chapters:

Introduction; Background; Related Work; A Unified Model of Spam Filtration; The CRM114

Discriminator Framework; The CAMRAM System; Spam Filtering Using a Markov Random

Field Model; Combining Winnow and Orthogonal Sparse Bigrams for Incremental Spam

Filtering; Reputation Systems; and Conclusion.

Conclusionis followed by theBibliography, which is followed by theVita of the author.

In Chapter 2 we introduce the terminology of email, spam and phishing. We illustrate dif-

ferent types of spam plaguing the communication media. We describe Internet email flow and

the Simple Mail Transfer Protocol (SMTP). We describe geographical origins of spam and

trends in spam exploits derived by Microsoft Researchers from a corpus of hand-classified

email messages obtained through the Hotmail Feedback Loop. We study Federal Trade Com-

mission’s (FTC’s) analysis of False Claims and Categories of Spam (April 2003) in a random

sample of spam messages drawn from a corpus of Unsolicited Commercial Email (UCE)

database. We illustrate the decomposition of a phishing attack lifecycle in various malicious

phases and discuss the anatomy of the phishing email. We then discuss tricks used in spoofed

web sites. We discuss legal initiatives on spam and analyze a spammer’sto dolist by looking

through Jeremy Jaynes’s court transcripts. Jaynes was the world’s eighth most prolific spam-

mer until he was convicted and sentenced to nine years in prison under Virginia statute. This

chapter concludes with a note on the effect of spam on people.

5

Chapter 3 is the related work section. We discuss blacklist, whitelist and greylist. We

describe email authentication proposals such asSender Policy Framework (SPF)from Pobox,

Sender ID Framework (SIDF)from Microsoft Corporation,DomainKeys (DK)from Yahoo!,

Identified Internet Mail (IIM)from Cisco Systems,Domain Keys Identified Mail (DKIM), a

combined proposal from Yahoo! and Cisco Systems. We present Email Authentication Score

Card, a study conducted independently by MarkMonitor and VeriSign. We also discuss the

methodology of statistical filters based on the machine learning approach.

We first explainsender-paysmodel for email and then describeThe Penny Black Project,

achallenge-responsesystem with bankable tokens developed by Microsoft Researchers. We

then discuss a special class of Human Interactive Proofs (HIPs) known as Completely Auto-

matic Public Turing test to tell Computers and Humans Apart (CAPTCHA). CAPTCHAs are

used by Hotmail, Yahoo!, Google, and other companies to prevent automatic registration of

email accounts and to prevent automatic signing of email accounts by bots and bulk mailing

by the spammers. We then explain a mechanism for throttling Internet resource abuse based

on the cryptographic technique Proof of Work (PoW) known as Hashcash.

We then describe a proposal for controlling spam at the router level. We touch upon

distributed collaborative filtering, use of social networks for filtering spam, and disposable

email addresses. We then explain Project Honey Pot from Unspam Technologies. We also

explain current reputation- and accreditation-based services from Habeas, Return Path, Ci-

pherTrust, and IronPort Systems. We then mention anti-spam techniques used in the popular

spam-filtering appliances.

6

In Chapter 4, we discuss a unified model of spam filtration. A large number of spam filters

and other mail communication systems have been proposed and implemented in the past. We

describe a possible unification of these filters, allowing their technology and behaviour to be

described in a uniform way. In particular, describing these filters reveals a large commonality

of designs and explains their similar performance. A preliminary version of this chapter

appeared at theMIT Spam Conference 2005.

In Chapter 5, we describe the open source spam filter Controllable Regex Mutilator, con-

cept #114 (CRM114) Discriminator Framework. We illustrate its usage in a shared mode for

more than one million client email accounts used by a large ISP company.

In Chapter 6, we describe the internals of asender-payssystem using Hashcash known

as the Campaign for Real Mail or CAMRAM.

In Chapter 7, we describe a Markov Random Field (MRF) model based approach to filter

spam. This model is integrated into the CRM114 Discriminator Framework. This approach

examines the importance of neighborhood relationship (expressed as MRF cliques) among

words in an email message for the purpose of spam classification. We propose and test sev-

eral different theoretical bases for weighting schemes among corresponding neighborhood

windows. Our results indicate that the MRF model outperforms the Naïve Bayesian model.

Our results demonstrate that unexpected side effects depending on the neighborhood win-

dow size may have larger accuracy impact than the neighborhood relationship effects of the

Markov Random Field.

7

A preliminary version of Chapter 7 appeared atThe Fourth IEEE International Confer-

ence on Data Mining (ICDM04), Brighton, UK.

In Chapter 8, we describe a statistical but non-probabilistic classifier based on the Win-

now algorithm. We introduce the concept of Orthogonal Sparse Bigrams (OSB). This model

is also integrated into the CRM114 Discriminator Framework.

A preliminary version of this chapter appeared at the8th European Conference on Prin-

ciples and Practice of Knowledge Discovery in Databases (PKDD) 2004, Pisa, Italy.

In Chapter 9, we describe reputation models in other realms of computer science. These

reputation models should be well studied in order to propose reputation systems for email

communication and web services in the future.

In Chapter 10, we highlight some problems with the current spam-fighting techniques.

We conclude that with the combination of better spam fighting techniques, legal actions,

awareness among Internet users, and cooperation within the industry, the spammers’ business

model can be disrupted within the next few years.

8

Chapter 2

Background

2.1 Email, Spam and Phishing

In this section we explain the email system and the problem of spam and phishing.

2.1.1 Email

Email is a method of sending and receiving messages over electronic communication systems

such as the Internet. The modern-day protocol for sending email is the Simple Mail Transfer

Protocol (SMTP), proposed in 1982[106]. The most commonly-used protocols for email

retrieval by client programs, Post Office Protocol (POP)[97] and Internet Message Access

Protocol (IMAP)[63], were proposed in 1984 and 1996, respectively.

9

2.1.2 Spam

Spamming in the electronic communications medium is the action of sending unsolicited

commercial messages in bulk without the explicit permission or desire of the recipients.

Figure 2.1 depicts different types of spam such as email spam, instant messaging spam

(spim), Usenet newsgroup spam, web search engines spam, weblogs spam and mobile phone

messaging spam. A person engaged in spamming is called spammer.

In this thesis, spam refers to email “spam” and “ham” refers to legitimate email.

Figure 2.2 shows spam messages caught in my junk folder. Three typical examples of

spam messages are shown in Figure 2.3, Figure 2.4 and Figure 2.5.

10

Figure 2.1: Different types of spam in the media.

11

Figure 2.2: A snapshot of spam messages in my junk folder. Note the different subject lines.
Most of them try to attract attention by including “Re:” in the subject line.

12

Figure 2.3: A spam message with a picture attachment offering university diplomas.

13

Figure 2.4: A spam message offering low mortgage rates.

14

Figure 2.5: An example of Nigerian scam (419 Fraud).

15

2.1.3 Phishing

Phishing is a particular type of spam which reflects social engineering. Phishing frauds are

characterized by attempts to masquerade as a trustworthy person or emulate an established,

reputed business in an electronic communication such as email. The objective is to trick

recipients into divulging sensitive information such as bank account numbers, passwords,

and credit card details. A person engaged in phishing activities is called a phisher.

Two phishing attempts taken from MailFrontier’s “Phishing IQ Test”[76] are shown in

Figure 2.6 and Figure 2.7. The emails appearing to have originated from eBay and PayPal

instead redirect recipients to fraudulent websites:

http://awcg1dln.comandhttp://www.signupaccount.com, respectively.

Figure 2.6: A phishing attempt to masquerade the sender as eBay. Note that the
URL at the bottom redirects the recipient to the websitehttp://awcg1dln.comand not
http://www.ebay.com. Source: Phishing IQ Test, MailFrontier, Inc.

16

Figure 2.7: A phishing attempt to masquerade the sender as PayPal. Note that the
URL at the bottom redirects the recipient tohttp://www.signupaccount.comand not
http://www.paypal.com. Source: Phishing IQ Test, MailFrontier, Inc.

17

2.2 Internet Email Agents

We will now describe various Internet email agents.

2.2.1 Email Address

An Internet email address is a string of the form username@host.domain. Ray Tomlinson[126]

first initiated the use of the @ sign to separate the names of the user and the machine in 1971.

2.2.2 Mail User Agent (MUA)

A Mail User Agent (MUA), also known as email client, is a program that is used to send

and read email. Example email clients include Eudora from Qualcomm, KMail from KDE,

Mail from Apple Computer, Outlook Express from Microsoft and Thunderbird from Mozilla

Foundation. In addition, there are web-based email programs and services (known as web-

mail) such as SquirrelMail, AIM Mail from America Online, Yahoo!Mail from Yahoo!,

Gmail from Google, and Hotmail from Microsoft.

2.2.3 Mail Transfer Agent (MTA)

A Mail Transfer Agent (MTA) is a program that is used to transfer email messages from one

computer to another. Example MTAs include Sendmail from Sendmail, Inc.; Postfix from

IBM; an Exim from the University of Cambridge.

18

2.2.4 Mail Delivery Agent (MDA)

A Mail Delivery Agent (MDA) is a program responsible for delivering incoming email mes-

sages to recipients’ individual mailboxes. Example MDAs include Procmail and Maildrop.

2.3 Internet Email Flow

We will now describe email communication flow between Sender Alice and Recipient Bob

over the Internet using various agents described in Section 2.2. The email communication

flow between Sender Alice and Recipient Bob is illustrated in Figure 2.8.

1. Sender Composes Message and MUA Transfers the Message to Local MTA

Sender Alice composes a message intended for Bob using her MUA such as Outlook

Express. Alternatively, Sender Alice can use any of the webmail service such as Hot-

mail offered by Microsoft or Yahoo!Mail offered by Yahoo to compose a message.

Alice then provides the email address of the recipient, which isbob@b.org. The MUA

transfers the message in Internet message format[64] to local MTA using SMTP. The

local MTA is smtp.a.org. This is shown in step 1 in Figure 2.8.

19

2. Sending MTA Performs Lookup for the Mail Exchanger Records (MX) of the Recipient

Domain through the Domain Name System (DNS)

The sending MTAsmtp.a.orgdetermines the recipient domain through the recipient

email address. The recipient email address isbob@b.organd therefore the username

is boband the recipient domain isb.org. The sending MTAsmtp.a.orgmakes a query

requesting the Mail Exchanger records (MX) for the domainb.orgthrough the Domain

Name System (DNS)[117]. The MX records of the DNS entry of a particular domain

have information about the mail exchange servers (MTAs) responsible for accepting

messages for this particular domain[74]. This is shown in step 2 in Figure 2.8.

As illustrated in step 3 in Figure 2.8, the DNS server for the the recipient domainb.org

is ns.b.org. The DNS serverns.b.orgresponds to the DNS query from the sending MTA

smtp.a.orgwith the MX records listing the mail exchange servers for theb.orgdomain.

Domains usually have several mail exchange servers. The MX records are prioritized

with a preference number which indicates the order in which these mail servers should

be contacted for delivery. The MX record with the smallest preference number has the

highest priority and is the first server to be tried.

As illustrated in Figure 2.8,mx.b.orgis the mail exchange server with the highest

priority for theb.orgdomain.

20

3. SMTP Connection between Sender/Forwarding MTA and the Recipient MTA

Sender/Forwarding MTAsmtp.a.orguses SMTP to send the message to the recipient’s

MTA (i.e. to mx.b.org). This is shown in step 4 in Figure 2.8. The recipient MTA

delivers the message to the recipient’s (i.e Bob’s) email box using its MDA

4. Recipient Retrieves Email Using MUA

As illustrated in step 5 in Figure 2.8, Recipient Bob uses his MUA to retrieve the mes-

sage (by using Post Office Protocol (POP3)[97] or Internet Message Access Protocol

(IMAP)[63]). Alternatively, Bob can read his email by directly logging intomx.b.org

or by using a webmail service such as Hotmail or Yahoo!Mail.

21

Figure 2.8: A schematic of the electronic mail communication flow over the Internet between
Sender Alice and Recipient Bob.

22

2.4 Internet Email Format

The format of the Internet email messages is defined in RFC 822[114] and RFC 2822[64].

An Internet email message has two components:Headersand theBody. These components

are described below.

1. Headers

The headers form a collection of field/value pairs. Headers contain information about

the sender, receiver, and the message. Each header has a name and a value and starts in

the first character of a line, followed by a colon, followed by the value. Header names

and values are restricted to 7-bit ASCII characters. Non-ASCII values are represented

by using the Multipurpose Internet Mail Extensions (MIME) encoding[83].From, To,

SubjectandDate are the mandatory headers in the email messages. Table 2.1 lists

mandatory headers as well as some others commonly used in email messages. It is

important to note that these headers have common uses but are completely up to the

sender (i.e. values in these header fields can be easily spoofed).

2. Body

The body of the email message is the message itself, with or without a signature at the

end. The header section is separated from the body by a blank line. The body text in

character sets other than US-ASCII and multi-part message bodies are represented by

using the MIME encoding[82].

23

Header Value Field

From contains the email address, and optionally name, of the sender
of the message

To contains the email addresses, and optionally names, of the receivers
of the message

Subject contains a brief summary about the contents of the message
Date contains the local time and date when the message was originally sent
CC denotes Carbon Copy
BCC denotes Blind Carbon Copy
Received prepended by each mailserver which has just handled a

particular message
Content-Type contains information about the message format

Table 2.1: Headers and values used in the Internet email format.From, To, SubjectandDate
are the mandatory headers.

2.5 Details of the Simple Mail Transfer Protocol (SMTP)

The Simple Mail Transfer Protocol (SMTP) is the standard protocol used to exchange Internet

mail. We will now describe the objective, design, commands, and a typical mail transaction

in the Simple Mail Transfer Protocol (SMTP).

2.5.1 SMTP - Objective and Model

SMTP is designed to transfer mail reliably and efficiently (example: by using TCP). In order

to transmit an email message, a SMTP client[107] (referred to as the sender SMTP in RFC

821[106]) establishes a two-way transmission channel with a SMTP server on port 25 (re-

ferred to as the receiver SMTP in RFC 821[106]). The SMTP client has the responsibility

of transferring mail messages to one or more SMTP servers which may further act as SMTP

clients. It is the responsibility of the SMTP server to report failure if it unable to transfer a

mail message. The SMTP model[106] is shown in Figure 2.9.

24

Figure 2.9: Model for SMTP usage as illustrated in RFC 821. Note that in RFC 821 terms
Sender-SMTPand Receiver-SMTPare used while in RFC 2821 termsClient-SMTPand
Server-SMTPare used.

2.5.2 Mail Object: Envelopeand Content

SMTP transports a mail object. A mail object contains anenvelopeandcontentas described

below.

• The envelopeconsists of an originator address (to which error reportsshould bedi-

rected), one or more recipient addresses, and optional protocol extension material.

• The SMTPcontenthas two parts,headersand thebody.

The headersform a collection of field/value pairs as described in the RFC 2822[64]

and thebody is described according to MIME[82]. This is explained previously in

Section 2.4.

2.5.3 Message Transfer

In SMTP, the message transfer can occur in a single connection between the original SMTP-

sender and the final SMTP-recipient, or it can occur in a series of hops through intermediate

systems. This implies that an SMTP server may be either:

25

1. The Ultimate Destination

2. Intermediate Relay(i.e. SMTP server adds trace information, acts as SMTP client, and

transmits the message to another SMTP server for further relaying or for delivery)

3. Gateway(i.e. it may further transport the message using some protocol other than

SMTP).

SMTP follows acommand responseprotocol. SMTP commands are generated by the sending

SMTP client and sent to the receiving SMTP server. The receiving SMTP server generates

SMTP replies in response to these commands.

2.5.4 SMTP Commands

All SMTP commands begin with a command verb. SMTP commands are character strings

terminated by the the space character (<SP>) if parameters follow or by the Carriage Return

Line Feed (<CRLF>) character sequence.

A typical SMTP mail transaction involves several data objects. These data objects are

communicated as arguments to different commands. SMTP commands are described below.

1. Extended HELLO (EHLO) or HELLO (HELO)

These commands are used by the SMTP client to identify to the SMTP server. The ar-

gument field contains the fully-qualified domain name of the SMTP client if available.

26

2. MAIL (MAIL)

The MAIL command is used to initiate a mail transaction between a SMTP client and

a SMTP server. Upon successful delivery of the mail data, the SMTP server may, in

turn, deliver it to one or more mailboxes or pass it on to another system (possibly using

SMTP), thus acting as a relay. The argument field contains a reverse-path (sender

mailbox).

3. RECIPIENT (RCPT)

The RCPT command is used to identify an individual recipient of the mail data. SMTP

supports specifying multiple recipients by multiple use of this command. The argument

field contains a forward-path (destination mailbox).

4. DATA (DATA)

The DATA command causes the mail data to be appended to the mail data buffer. The

mail data is terminated by the character sequence<CRLF>.<CRLF>

5. RESET (RSET)

The RSET command specifies that the current mail transaction will be aborted.

6. VERIFY (VRFY)

The VRFY command asks the receiver to confirm that the argument identifies a user or

a mailbox.

27

7. EXPAND (EXPN)

The EXPN command asks the receiver to confirm that the argument identifies a mailing

list, and, if true, returns the membership of the list.

Spammers exploit VRFY and EXPN to learn about the accounts on the system. For

this reason, these two commands are often disabled in the current SMTP servers.

8. HELP (HELP)

The HELP command causes the server to send helpful information to the client.

9. NOOP (NOOP)

The NOOP command has no effect on any parameters or previously entered com-

mands. It specifies no action other than that the receiver sends an OK reply.

10. QUIT (QUIT)

QUIT command specifies that the receiver MUST send an OK reply and then close the

transmission channel.

There are restrictions on the order of usage of these commands.

28

2.5.5 SMTP Commands and Arguments

As mentioned previously in Section 2.5.4, a typical SMTP mail transaction involves several

data objects and these data objects are communicated as arguments to different commands.

For example: the reverse-path is the argument of the MAIL command, the forward-path is the

argument of the RCPT command, and the mail data is the argument of the DATA command.

These commands and arguments are shown in Table 2.2.

MAIL FROM:<reverse-path>[SP <mail-parameters>] <CRLF>
RCPT TO :<forward-path>[SP <rcpt-parameters>] <CRLF>
DATA <CRLF>

Table 2.2: SMTP commands and arguments.

2.5.6 SMTP Reply Codes

During the process of SMTP mail transaction, SMTP replies maintain synchronization of

requests-actions(i.e. they convey state of the SMTP server to the SMTP client). Every

SMTP command generates exactly one reply. All SMTP replies begin with a three-digit

numeric code. Some SMTP reply codes with their meanings are described in Table 2.3.

Reply Code Meaning

220 < domain > service ready
221 < domain > service closing transmission channel
250 requested mail action okay, completed
354 start mail input; end with <CRLF>.<CRLF>
550 requested action not taken

mailbox unavailable (for ex: mailbox not found,
no access, or command rejected for policy reasons)

Table 2.3: A partial list of SMTP reply codes with meanings.

29

2.5.7 SMTP Mail Transaction

In Table 2.4 we show a typical SMTP mail transaction demonstrating the usage of HELO,

MAIL FROM, DATA, and QUIT commands with reply codes between a sending machine

with the domainsending-machine.netand a receiving machine with the domainreceiving-

machine.org. Note that in the mail transaction,Envelope Senderissnd@sending-machine.net,

while the email address in the claimedFrom: header isthomas@sending-machine.net. We

will explain the difference between the two in the next section.

30

Sending Machine Receiving Machine

220 receiving-machine.com
Simple Mail Transfer
Service
Ready

HELOsending-machine.net
250 receiving-machine.org

MAIL FROM:< snd@sending −machine.net >
250 OK (Sender OK)

RCPT TO:< rpt@receiving −machine.org >
250 OK (Recipient OK)

DATA
354 Start mail input ;
end with <CRLF>.<CRLF>

From:thomas@sending-machine.net
To: shalen@receiving-machine.org
Subject: Hi
Hi,
How are you?
Thomas.
.

250 OK (Message Accepted)
QUIT

221 receiving-machine.org
Service closing
Transmission Channel

Table 2.4: SMTP mail transaction betweensending-machine.netandreceiving-machine.org

31

2.5.8 Difference betweenEnvelope Senderand From Address

Envelope Senderis the email address provided by the sending email server in the MAIL

FROM command. It is added as aReturn-Path:header upon delivery of the email while the

From Addressis the email address listed in theFrom: line.

In the protocol flow described in Table 2.4, theEnvelope Senderis

snd@sending-machine.org

while the email address listed in theFrom: header is

thomas@sending-machine.net.

The difference between the two as visible from the recipient’s view upon delivery of the

email is illustrated in Table 2.5.

Return-Path:< snd@sending −machine.org >
other headers
From:thomas@sending-machine.net
To: shalen@receiving-machine.com
Subject: Hi
Hi,
How are you?
Thomas.
.

Table 2.5: Table showing difference betweenEnvelope SenderandFrom Address. Upon de-
livery of the emailEnvelope Senderis added asReturn-Path:header which issnd@sending-
machine.netwhile theFrom: Addressis thomas@sending-machine.net.

In mailing listsFrom Addressis generally different from theEnvelope Sender(the ad-

dress specified in theReturn-Path:header) in order to notify the list administrator about the

bounces. The email address visible in theFrom: header is the email address of the person

who posts to the list.

32

2.5.9 Open Mail Relays

An open mail relay is a SMTP mailserver configured in such a way that anyone (not just a

local user) can send/relay/forward email through it. Spammers exploit this mechanism for

sending spam. These days, a huge amount of spam is relayed, and therefore many MTAs are

configured to reject email messages and connections from open mail relays.

2.6 Spam - Origin, Categories, False Claims and Exploits

We will now describe the results of a study on geographical origins of email and spam con-

ducted by the Microsoft Corporation in 2004. We will then present the results of a study

on false claims in spam conducted by the Federal Trade Commission’s (FTC) Division of

Marketing Practices in 2003. This is followed by the results of a study on trends in spam

products and exploits analyzed through the Hotmail Feedback Loop conducted by the MSN

Safety Team at Microsoft.

2.6.1 Geographical Origins of Email and Spam

Hulten etal.[60] analyzed a massive corpus of two million hand-classified email messages

for the geographical origins of email and spam in 2004. This hand-classified corpus was

collected through the Hotmail Feedback Loop involving Hotmail users receiving emails be-

tween April and June of 2003. In the Hotmail Feedback Loop, random Hotmail users are

picked and asked to classify messages as email or spam in exchange for a financial incentive.

33

In their setup, each message collected through the feedback loop was tagged with the IP

address of the computer that connected to Hotmail to deliver the message. The two million

email messages in the corpus came from 214,000 distinct IP addresses, allocated to 157

different countries.

The geographical origins of email and spam obtained through this corpus are illustrated

in Figure 2.10. Their results indicate that30% of the spam in their data set wasdomestic;

32% semi-domestic(i.e. from nearby countries such as Canada, Mexico etc.) and38%

international - implying that70% of the spam could be frominternational locations (and

thus avoid U.S. legislation).16% of the spam in their dataset contained advertising for

pornographic web sites.

Figure 2.10: Geographical origins of email and spam derived from a corpus of 2 million hand-
classified email messages obtained through Hotmail Feedback Loop during April and June
2003. Western Europe, Japan, and New England sent more good mail than spam to Hotmail
users. Asia, the Middle East, and Africa sent more spam than good mail to Hotmail users.
Source - “Filtering Spam Email on a Global Scale”. Figure provided by Joshua Goodman,
Microsoft Research.

34

2.6.2 Categories of Spam

Spam is Unsolicited Commercial Email (UCE) and, because of its very nature, keeps mu-

tating. Spammers continue to evolve spam text and invent exploits in order to bypass spam

filters.

The FTC’s Division of Marketing Practices conducted an extensive study on spam in

2003. They present their results about categories and falsity in spam in their report “False

Claims in Spam[49]”. Their results are based on the review of a random sample of 1,000

pieces of UCE (spam) drawn from a pool of over 11,000,000 spam messages. The random

sample of 1,000 spam messages was derived from three sources—theUCE Database, which

consists of spam forwarded to the FTC by members of the public (450 random samples cho-

sen from a total of 11,184,139 messages); theHarvest Database, which consists of messages

received by undercover FTC email boxes seeded on Internet web pages and chat rooms (450

sample messages of 3651 messages); and spam received in official FTC inboxes (100 mes-

sages).

Their analysis of random spam text categorizes spam in eight general categories:Invest-

ment/Business Opportunity, Adult, Finance, Products/Services, Health, Computers/Internet,

Leisure/Travel, EducationandOther. This is described in Table 2.6 and their relative occur-

rence is illustrated in Figure 2.11.

35

Type of Offer Description

Investment/Business Opportunitywork-at-home, franchise, chain letters, etc.
Adult pornography, dating services, etc.
Finance credit cards, refinancing, insurance,

foreign money offers, etc.
Products/Services products and services, other than those coded with

greater specificity etc.
Health dietary supplements, disease prevention,

organ enlargement, etc.
Computers/Internet web hosting, domain name registration,

email marketing, etc.
Leisure/Travel vacation properties, etc
Education diplomas, job training, etc.
Other catch-all for types of offers not

captured by specific categories
listed above.

Table 2.6: Types of offers made via spam in a random sample of 1000 spam messages.
Source:“False Claims In Spam,” FTC Division of Marketing Practices (April 2003).

Figure 2.11: Types of offers made via spam in a random sample of 1000 spam messages.
Source:“False Claims In Spam,” FTC Division of Marketing Practices (April 2003).

36

2.6.3 False Claims in Spam

Spam is characterized by false information in theheaderandbody. For example, “From”

lines often obscure the true identity of the sender; “Subject” lines are often blank, connote

a relationship (business or personal), or suggest that the message is in reply to a message

previously sent by the recipient (for example, by includingRe: in the Subject line). Out

of 1000 random sample messages, FTC’s analysis offalsity in From and Subjectlines is

presented in Table 2.7 and Table 2.8, respectively. Their relative occurrence is illustrated in

Figure 2.12, Figure 2.13, Figure 2.14, and Figure 2.15, respectively. Relative occurrence

of spam containing the“ADV” label required by several state laws is illustrated in Figure

2.16.

Type of Falsity in
the “From” Line Description

Blank sender’s identity has been stripped
from the “From” line

Connotes Business name of sender suggests a business relationship
Relationship between sender and recipient

(ex: “youraccount@vendorxyz.com”)
Connotes Personal name of sender suggests a personal relationship
Relationship between sender and recipient (ex: use of a first name

only, which may suggest that the message is from
someone in the recipient’s address book.)

Message from sender’s identifying information has been stripped
Recipient from message and replaced with recipient’s

email address
Disguised in catch-all for other methods used to disguise the sender’s
Other way true email address (ex: sender, as identified in the

message text, uses another person or entity’s name or email
address in the “From” line)

Table 2.7: Falsity in “From” line in a random sample of 1000 spam messages. Source: “False
Claims In Spam,” FTC Division of Marketing Practices (April 2003).

37

Type of “Subject” Line Falsity Description

Blank contains no information about the subject
of the message

Connotes Business suggests existence of business relationship
Relationship between sender and recipient

(ex: “your order status”)
Connotes Personal suggests existence of personal relationship
Relationship between sender and recipient

(ex: “Bob says ’hi’ ”);
Unrelated to Content content of message differs from

description in Message
“Subject” line

Re: suggests that the message is in reply to
a message previously sent
by recipient

Other catch-all for other methods used to
disguise the true content of
the message (ex: “Subject” line
indicates that the message
is “extremely urgent”)

Table 2.8: Falsity in “Subject” line in a random sample of 1000 spam messages. Source:
“False Claims In Spam,” FTC Division of Marketing Practices (April 2003).

38

Figure 2.12: Percentage of spam with false “From” line in a random sample of 1000 spam
messages. 33% percent of spam analyzed contained false information in the “From” line.
Source: “False Claims In Spam,” FTC Division of Marketing Practices April 2003.

Figure 2.13: Percentage of spam with false “Subject” line in a random sample of 1000 spam
messages. 22% percent of spam analyzed contained false information in the “Subject” line.
Source: “False Claims In Spam,” FTC Division of Marketing Practices April 2003.

39

Figure 2.14: Percentage of spam with false “Text” line in a random sample of 1000 spam
messages. 40% percent of spam analyzed contained false information in the body of the
message. Source: “False Claims In Spam,” FTC Division of Marketing Practices (April
2003).

Figure 2.15: 66% of spam in a random sample of 1000 messages contained false information
in “From” lines, “Subject” lines or “Message text”. Source: “False Claims In Spam,” FTC
Division of Marketing Practices (April 2003).

+

40

2.6.4 Trends in Spam Products and Exploits

The MSN Safety Team at Microsoft Corporation conducted a study of trends in spam prod-

ucts and exploits from the corpus obtained through the Hotmail Feedback Loop in 2003 and

2004[61]. Their analysis confirms that spammers continue to evolve spam by tricks such

asword obscuring, url obscuring, domain spoofing, token breakingandcharacter encoding,

etc.

In their setup they randomly sample 1,000 spam messages that arrived at Hotmail between

2/1/2004 and 3/1/2004 and call it2004 spam. They sample 200 messages that arrived at

Hotmail between 3/15/2003 and 4/15/2003 and call it2003 spam. A comparison of trends in

categories and exploits in spam messages between2003 spamsample and2004 spamsample

from their study is reported in Table 2.9, Table 2.10, and Table 2.11, respectively.

Figure 2.16: 2% of spam in a random sample of 1000 messages contained the “ADV” label
in the subject line, which is required by several state laws. Source: “False Claims In Spam,”
FTC Division of Marketing Practices (April 2003).

41

Product 2003 2004 Description
Spam (%) Spam (%)

Porn/Sex enhancers with sexual
Non-Graphic 17 34 connotation, links to porn

health, dental, life, home
Insurance 1 4 auto insurance

cheap drugs or
Rx/Herbal 8 10 herbal supplements

refinancing, get out -
Financial 12 13 - of debt, financial advice

Travel/ selling airlines tickets, hotel
Casino 2 3 reservations, rental car

Internet casino and
other gaming sites

Scams 8 6 get rich quick, Phisher scams etc.
any newsletter that

Newsletters 9 6 is not selling something
everything else

Other Spam 13 8 that appears to be spam
anything that contains

Porn/Sex Graphic 13 7 pornographic images
Dubious pirated software
Products 20 10 diplomas etc.

Table 2.9: Trends in categories of spam in random 2004 and 2003 spam samples. Source:
“Trends in Spam Products and Methods,” Microsoft Corporation.

42

Exploit 2003 Spam (%) 2004 Spam (%) Description

Word misspelling words,
Obscuring 4 20 Inserting words in images etc.
URL adding URLs to
Spamming 0 10 non-spam sites (ex: msn.com)
Domain using an invalid or
Spoofing 41 50 fake domain in the from line
Token breaking words with
Breaking 7 15 punctuation, space etc.
MIME inserting non-spam content
Attacks 5 11 in one body part and

spam content in another
Text random strings of
Chaff 52 56 characters, random series or

words, or unrelated sentences
URL encoding a URL in
Obscuring 22 17 in hex, hiding the

URL with an @ sign etc.
Character pharmacy renders
Encoding 5 0 into pharmacy

Table 2.10: Trends in exploits in spam in random 2004 and 2003 spam samples. Source:
“Trends in Spam Products and Methods,” Microsoft Corporation.

Category 2003 Spam 2004 Spam

Scams 1.07 1.89
Financial 1.26 1.88
Porn/Sex Non-Graphic 1.85 2.44
Travel/ Casino 0.75 0.98
Other Spam 0.76 0.79
Insurance 1.50 1.52
Newsletters 0.00 0.00
Rx/Herbal 2.13 2.12
Dubious Products 1.20 1.15
Porn/Sex Graphic 2.16 1.33

Table 2.11: Trends in number of exploits per message in random 2004 and 2003 spam sam-
ples. Source: “Trends in Spam Products and Methods,”Microsoft Corporation.

43

2.7 Phishing - Attack Taxonomy, Lifecycle and Anatomy

The objective of phishing fraud is to acquire sensitive information such as passwords and

credit card details. Phishing is a dangerous threat and causes billions of dollars’ worth

of losses to businesses. We now present phishing attack taxonomy, the lifecycle, and the

anatomy of a phishing email.

2.7.1 Phishing Attack Taxonomy and Lifecycle

To tackle the phishing problem, the Financial Services Technology Consortium (FSTC) re-

cently developed a taxonomy of phishing attacks[125]. The phishing attack lifecycle can be

decomposed inPlanning, Setup, Attack, Collection, FraudandPost-Attack Actions. Each

of these malicious stages spawn a series of malignant steps. The phishing attack cycle is

illustrated in Figure 2.17.

44

Figure 2.17: Phishing attack taxonomy and lifecycle. Source: “Tackling Phishing” by Re-
becca Wetzel, Business Communications Review, Feb 2005. Figure redrawn with inputs
from Rebecca Wetzel.

45

2.7.2 Anatomy of a Phishing Email

John Graham-Cumming has very elegantly presented tricks exploited by spammers in his pa-

per “The Spammers Compendium”[55]. Drake etal. from MailFroniter[75] have extensively

described key features present in phishing emails and tricks used in fraudulent web sites in

their paper “The Anatomy of a Phishing Email”[43]. Below is their analysis of phishing

emails and fraudulent web sites from the phishing samples forwarded to MailFrontier from

its customers. We use phishing samples from their paper.

1. An Attempt to Spoof Reputable Companies Using Convincing Strategies

Phishers try to spoof or emulate reputable companies like eBay, PayPal, Citibank etc.

They often use the following tricks:

• Use of the legitimate company’s image, logo, icon and similar font schemes

• Links to the legitimate websites/services

• Spoofing headers to provide a look-a-like appearance of reputable companies

such as @eBay.com, @paypal.com etc.

2. Claimed Sender has a Reputable Name but a Different Reply Address

In some cases, the email claims to be from a legitimate company but has a fraudulent

value for the “Reply-To” header. This is illustrated in Table 2.12:

46

From : Citibank
Reply To: citibank3741@collegeclub.com

Table 2.12: Different reply address and claimed sender found in a phishing sample. Source:
“Anatomy of a Phishing Email,” MailFrontier, Inc.

3. Offering Valuable Proposition

Such fraudulent emails try to convince recipients to reveal sensitive information by

claiming that the recipient’s account information is outdated, that a credit card has

expired etc.

4. Reflect Urgency Demanding Quick Response

Scammers try to convince recipients to respond quickly. An example of an urgent

request is presented in Table 2.13:

If you don’t respond within 24 hours after receiving
this email your account will be deactivated and
removed from the server

Table 2.13: A statement demanding quick response found in a phishing sample. Source:
“Anatomy of a Phishing Email,” MailFrontier, Inc.

5. Assurance of Secure Transaction

Phishers try to gain the trust of recipients by assuring that the transaction is secure.

An example is illustrated in Table 2.14. Phishers have also demonstrated the use of

Secure Socket Layer (SSL) by using thehttps protocol. Unfortunately, fraudulent

emails also use theTRUSTesymbol[121] frequently.TRUSTeis an independent non-

profit organization that enables trust based on privacy for personal information on the

Internet.

47

Your information is submitted via a secure server

Table 2.14: A statement assuring security found in a phishing sample. Source: “Anatomy of
a Phishing Email,” MailFrontier, Inc.

6. Use of HTML Forms in the Email

Phishers have also used HTML forms in the body of the email message to collect

information from the recipients. One such example from [43] in what appeared to be

an email from eBay is presented in Table 2.15.

< FORM action = http : //www.christmas− offer.com/
sendmail.php method = get target = blank >

Table 2.15: Use of HTML forms in emails found in a phishing sample. Source: “Anatomy
of a Phishing Email,” MailFrontier, Inc.

7. Look-A-Like Domain Names

Fraudsters register domain names that are very similar to the domain names of rep-

utable companies. A fraudulent email from eBay used the link shown in the Table

2.16. Fraudsters are also early adopters of the email authentication standards. A re-

cent study conducted by MarkMonitor revealed that more than 90% of the Fortune 100

companies have look-a-like domains with a published Sender Policy Framework (SPF)

record for the email authentication. This study is presented in the next chapter.

http : //ebay− securitycheck.easy.dk3.com

Table 2.16: A phishing email using a look-a-like domain name as eBay. Source: “Anatomy
of a Phishing Email,” MailFrontier, Inc.

48

8. Mismatch between Link Text in the Email and the actual Link Destination

In phishing emails, the link text seen in the email is usually different from the ac-

tual link destination. In the example below, the email that appears to send the user

to http://account.earthlink.cominstead takes the user tohttp://memberupdating.com.

The HTML code is presented in Table 2.17.

< a class = “m1” target = “ blank”title = “Update”
href = “http : //www.memberupdating.com” >

http : //account.earthlink.com < /a >

Table 2.17: Different link text and link destination found in a phishing email. Source:
“Anatomy of a Phishing Email,” MailFrontier, Inc.

9. Using JavaScript Event Handlers to Display False Information

Some fraudsters use the JavaScript event handler “OnMouseOver” to show a false URL

in the status bar of the user’s email application. Drake etal.[43] present an example of

a fraudulent PayPal email in which, when the user puts the mouse over the link, the

status bar will display:

https://www.paypal.com/cgi-bin/webscr?cmd=login-run

However, the link actually takes the user to:

http://leasurelandscapes.com/snow/webscr.dll

10. Obscuring the URL Using an IP Address OR Hexadecimal Character Codes

Phishers try to hide the destination web site by obscuring the URL. They also use IP

addresses in decimal, octal, hexadecimal format to obscure the URL. They often use

hexadecimal character codes to represent the numbers in the IP address.

49

11. Using a Reputable Entity or Word along with @ Symbol in a URL to Confuse Recipients

An Internet email address is of the formusername@hostaddress. Whenever ahttp or

httpsrequest with the above format is made, the part before the @ symbol is ignored

and the browser is directed to thehostaddress. Spammers often use this format and

reputable names before the @ character to trick recipients into thinking that the fetched

destination web site belongs to the reputable business. Sometimes, fraudsters also

substitute @ with %40 (the hexadecimal character representation of the @ character).

In the example presented in Figure 2.18, the link appears to be going to eBay however

the text before the @ symbol is ignored and the link sends the user to“210.93.131.250”

which is the fraudulent web site’s IP address.

http : //cgi1.ebay.com.aw− cgiebayISAPI.dll
%00@210.93.131.250/my/index.htm

Table 2.18: URL obscuring with IP address and hexadecimal characters found in a phishing
email. Source: “Anatomy of a Phishing Email,” MailFrontier, Inc.

12. Abusing Redirection Services

Phishers try to obscure URL by using redirection servicesfor example, cjb.net, tinyurl.com

to hide their URLs.

50

13. Using Ports Other than 80

Fraudsters occasionally use ports other than 80 (http) to hide their location. A port can

be specified with a colon (:) and a port number following the URL.

2.7.3 Tricks Used in Fraudulent Web Sites

Once the näive users are on fraudulent web sites, fraudsters then use various other tricks to

continue emulating the legitimate reputable business. Some of these tricks used in these sites

are described below.

1. Continuous Attempts to Emulate the Legitimate Reputable Company

Phishers continue to emulate the legitimate company by using their images, logos,

fonts and color schemes.

2. Use of Secure Socket Layer (SSL) Certificates

As aforementioned, phishers have demonstrated the use of Secure Socket Layer (SSL)

protocol. These phishing sites often have URL beginning with “https://” to indicate

that information is being transmitted over a secure channel and that the company has

obtained a Secure Sockets Layer (SSL) certificate from a certifying authority

3. Deceptive Information Processing Pages:

Phishing sites collect sensitive information from the users via forms and then display

deceptive information processing pages such as thanking the recipient for providing the

information, often redirecting them to the legitimate company’s web site in the end.

51

4. Other Tricks:

Scammers and phishers often make use of various other tricks such as displaying a fake

address bar, using pop-ups, and disabling the right-click button of a mouse to prevent

the user from viewing and saving source code. They have also demonstrated the use of

trojan horses and viruses for phishing.

2.8 Spam and the Law

Several legal initiatives are underway for tackling spam and phishing. In December 2003,

President George W. Bush signed legislation to help fight spam. The bill is known asCon-

trolling the Assault of Non-Solicited Pornography and Marketing Act of 2003(CAN-

SPAM Act of 2003). Microsoft, Yahoo!, American Online, and Earthlink have filed lawsuits

against individuals and companies who have spammed their customers. A Virginia court re-

cently sentenced a prolific spammer, Jeremy Jaynes, to nine years in prison[15]; a Nigerian

court sentenced a woman to two and a half years for phishing[16]. Michigan and Utah have

both passed laws creating “do-not-contact” registries in July/August 2005, covering email

addresses, instant messaging addresses and telephone numbers[86]. Microsoft Corporation

recently won a seven-million dollar settlement from spammer Scott Richter[17].

The CAN-SPAM Act of 2003 is described in Section 2.8.1, and Jeremy Jaynes day-to-

day action transcripts recovered at the time of his arrest (and then redacted by the Court) are

presented in Section 2.8.2.

52

2.8.1 CAN-SPAM Act of 2003

CAN-SPAM defines spam as “any electronic mail message the primary purpose of which is

the commercial advertisement or promotion of a commercial product or service (including

content on an Internet website operated for a commercial purpose).”

The bill permits sending Unsolicited Commercial Email (UCE) provided it satisfies all of

the requirements listed below.

1. It contains an opt-out mechanism.

2. It contains a valid subject line and header (routing) information.

3. It contains the legitimate physical address of the mailer.

4. It contains a label if the content is adult.

If a user opts out, the sender must remove his address within ten days.

So far, the CAN-SPAM Act has had a little or no effect on the presence of spam on the

Internet.

53

2.8.2 Jeremy Jaynes Sentence

Jeremy Jaynes, one of world’s most prolific spammer, was recently sentenced to nine years

in prison for spamming by a Virginia Court. Jaynes was sending bulk emails with forged

headers, which is a crime under Virginia statute[15]. Jaynes’s day-to-day plan of action is

presented in Figure 2.18, Figure2.19, and Figure2.20. These notes were recovered during his

arrest and then redacted by the Court. A close look at Figure 2.18 confirms that spammers

try to change their identities frequently and continue to evolve tricks in spam to fool spam

filters. Note: ”get tons of ips, figure out filtering,” etc.

54

Figure 2.18: Jeremy Jaynesto do list 1 recovered during his arrest and then redacted by the
court. Note:get tons of ips, figure out filtering, change ips and update robomails.

55

Figure 2.19: Jeremy Jaynesto do list 2 recovered during his arrest and then redacted by the
court. Note:figure out AOL.

56

Figure 2.20: Jeremy Jaynesto do list 3 recovered during his arrest and then redacted by the
court. Note:$ involved.

57

2.9 People and Spam

John Graham-Cumming conducted a spam survey on Slashdot in 2004[56] to understand the

effect of spam on people. His survey had 4,691 participants, of which 94.5% were men,

4% were women and 1.5% were other. 50% of the participants were email users with more

than five years’ experience. Two respondents identified themselves as spammers. 80% of the

respondents were between the ages of 18 and 45.

An analysis from the responses to the survey indicated that 76% participants believe that

the spam problem will never go away, 9% believe that spam-filtering makes the spam problem

worse, and, on an average 85% are using an anti-spam tool. 98.5% users receive spam. 1%

of respondents claimed that they have bought from spam. The average user (both men and

women) spends around 9 minutes a day dealing with spam. Figure 2.21 illustrates the effect

of spam on the respondents of the Slashdot spam survey.

2.10 Spam Survey at University of California, Riverside

A spam survey was conducted at the University of California, Riverside (UCR), in May

2005 to understand the impact of spam on the university population. We had 1,721 mixed

responses from students, staff, and professors of all age groups and genders. The results of

the survey are unavailable at the time of publishing this thesis.

58

Figure 2.21: Effect of spam on people derived through responses of the spam survey con-
ducted by John Graham-Cumming on Slashdot in 2004. Figure redrawn with permission
from John Graham-Cumming.

59

Chapter 3

Related Work

Current technical initiatives to fight spam and phishing include server and client-side spam

filtering, using lists (blacklist, whitelist, greylist), email authentication standards (Identified

Internet Mail (IIM), DomainKeys (DK), Domain Keys Identified Mail (DKIM), Sender Pol-

icy Framework (SPF), Sender ID Framework), and emerging sender reputation and accred-

itation services. Figure 3.1 illustrates current technical initiatives for fighting spam and

phishing. We will now describe each of these technical initiatives.

Figure 3.1: Current technical initiatives for tackling spam and phishing.

60

3.1 Whitelist, Blacklist and Greylist

3.1.1 Whitelist

A whitelist in the context of spam-filtering is a list of trusted senders (i.e. email received

from the addresses in thewhitelistare always delivered to the recipient’s email inbox). The

person maintaining thewhitelistmay have initiated communication with whitelisted senders

in the past. All modern Mail Transfer Agents (MTAs) support whitelisting technique. It is a

common practice to mirror one’s address book as thewhitelist.

3.1.2 Blacklist

A blacklist is the exact opposite of a whitelist. In the context of spam-filtering, emails re-

ceived from the blacklisted addresses are always filtered out. Modern MTAs support Domain

Name System Blackhole List (DNSBL). A DNSBL is a real-time database of IP addresses of

spam sources and relays. The first DNSBL was the Real-Time Blackhole List (RBL) created

by Paul Vixie for the Mail Abuse Prevention System (MAPS)[73]. The Spamhaus Block

List (SBL) (a real time database of IP addresses of spam sources) and Spamhaus Exploits

Block List (XBL) (a real-time database of IP addresses of worms/viruses/trojan exploits) are

examples of RBLs from Spamhaus[119].

61

When a mailserver implementing DNS blacklist filtering receives a connection from a

sender, it queries the DNSBL server for the client IP address. If the sender is listed in

DNSBL, the mailserver can reject or flag messages from that client.

The DNSBL system is built on top of the Domain Name System (DNS). In the DNS,

the address recordA assigns an IP address to a domain name,MX record provides mail

exchanger for that domain andPTRrecord (reverse record) associates an IP address with a

canonical name. This is done by reversing the four IP octets followed byIN-ADDR.ARPA.

For example for IP address192.168.0.1, thePTRrecord is1.0.168.192.IN-ADDR.ARPA.

The DNSBL lookup is similar to the reverse-DNS lookup, except that in the DNSBL

system,A record is looked up and the forward domain is used, while in reverse-DNS, PTR

record is looked up and the reverse domainIN-ADDR.ARPAis used.

The DNSBL query and result format is explained below.

A mailserver utilizing DNSBL service, say fromsbl.spamhaus.org,receives a connection

from a client with IP addressa.b.c.d. The mailserver reverses the octets and appends the

DNSBL’s domain name, yieldingd.c.b.a.sbl.spamhaus.org. This name is then looked up

in the DNS as a domain nameA record. If the client is listed, an IP address is returned;

otherwise a code indicating no such domain is returned. DNSBL servers publish information

about reasons for a client’s listing in the DNSTXTrecord.

The DNSBL query tosbl.spamhaus.orgzone returns127.0.0.2for sources of verified

spam services, and queries toxbl.spamhaus.orgzone return127.0.0.4-6for sources of worms

and trojan exploits[119].

62

3.1.3 Greylist

A greylist is a cross betweenwhitelist andblacklist[58]. A MTA implementinggreylist is

configured totemporarily rejectan email if it has not encountered any of the items previously

listed in a triplet (items in the triplet can be matched against the user’swhitelist). The triplet

contains:

1. The IP address of the connecting host.

2. The envelope sender address.

3. The envelope recipient address.

Greylisting is based on the assumption that the spammer’s bulk mailing tools do not incorpo-

rate a mechanism for handling temporary bounces, while a legitimate mailserver will try to

reconnect and make an attempt to deliver the email.

Greylisting risks delaying all unknown email and not just spam. Poorly configured le-

gitimate mailservers can transform temporary rejects into permanent bounces, leading to

rejection of legitimate mails.

63

3.2 Email Authentication

Authentication is a mechanism used to ensure that the person is the one he or she claims to

be. Authorization is an access control mechanism. It is the process of granting privileges

or permissions to entities to perform certain actions. Authentication and authorization are

related in the sense that authenticated entities are authorized to execute actions in their scope.

In the context of Internet email, authentication refers to a mechanism by which the re-

cipient of the email can authenticate the identity of the sender; Authorization refers to an

access control mechanism granted to individuals by the domain authority on some criteria.

For example, only authorized senders can be allowed to send email from that domain.

The biggest weakness with the SMTP is that the senders address can be easily spoofed.

To prevent this, the email industry is currently devising protocols for email authentication.

Meng Weng Wong of Pobox[96] has very elegantly explained current email authentica-

tion proposals in his paper “Sender Authentication: What To Do”[101].

The current email authentication proposals can be broadly divided into two categories

listed below.

1. IP Based Authenticationsuch as SPF from Pobox[103] and Sender ID Framework

(SIDF) from Microsoft Corporation[102].

2. Cryptographic Based Authenticationsuch as Identified Internet Mail (IIM) from Cisco

Systems[62] and DomainKeys (DK) from Yahoo![41].

64

We will now explain SPF followed by the Sender ID Framework (SIDF). This is fol-

lowed by the description of the Identified Internet Mail (IIM) from Cisco Systems and the

DomainKeys (DK) proposal from Yahoo!. IIM and DK have recently merged to form the

Domain Keys Identified Mail Standard (DKIM)[42].

3.2.1 Sender Policy Framework (SPF)

In the SPF proposal, mailserver at the receiving side of the SMTP connection validates the IP

address of the connecting client machine (specified in the MAIL FROM command) against

the SPF record for that domain using the DNS. SPF records are published using TXT resource

record of the the DNS.

For example, the SPF record for the domainfoobar.example.comspecified asv=spf1

mx implies that the mail exchanger servers (mx) for thefoobar.example.comdomain are

explicitly permitted to send email originating from that domain.

The SPF record entry in the domain file for the domainfoobar.example.comlooks like[103]:

foo.example.com IN TXT “v=spf1 ...”

65

3.2.2 Sender ID Framework (SIDF) from Microsoft Corporation

Sender ID Framework is the based upon the Caller ID proposal[22] from Microsoft and SPF

from Meng Weng Wong of Pobox. In SPF described above, theEnvelope Senderaddress

(i.e. the address mentioned in the MAIL FROM command) is verified. Sender ID proposal

is based on the Sender Policy Framework (SPF) and uses Purported Responsible Address

(PRA) instead ofEnvelope Senderaddress. The PRA as defined in the proposal “Purported

Responsible Address in E-Mail Messages” by Lyon is the entity that, according to the head-

ers, most recently caused the message to be delivered[99].

For example, a Sender ID-compliant MTA, upon delivery of an email to the recipient,

would display in the headers field:

From PRA on behalf of From

This indicates that the PRA is the most recent sender in the current communication.

The Sender ID Framework (SIDF) is illustrated in Figure 3.2 and described below.

1. Objective

The objective of the Sender ID Framework is to provide the recipient system with a

mechanism to verify whether the email originated from the claimed sender domain.

This is done by validating the IP address of the sender against the mailservers allowed

to send email on behalf of that particular domain as published in its domain file.

66

2. Publishing SPF Records in DNS

Domain owners/administrators publish SPF records as TXT records in the DNS to

identify the email servers authorized to send email originating from that domain.

3. Sender Side

The Sender dispatches email destined for the mailserver of the recipient system. This

is shown in step 1 in Figure 3.2.

4. Verification at the Receiving Side

Upon receiving the email, the Sender-ID enabled MTA at the recipient side checks the

claimed sender domain and then looks up the SPF record for that domain using the

DNS. This is shown in steps 3,4,5 and 6 in Figure 3.2.

If the IP address of the sender matches any of the mailservers published in the SPF

Record, the message is considered to be authenticated and delivered to the receiver.

Authentication failure leads to non-delivery of the email. This is shown in step 7 in

Figure 3.2.

67

Figure 3.2: Sender ID Framework (SIDF) from Microsoft Corporation.

68

3.2.3 Email Authentication Score Card

Spammers, phishers, and fraudsters are smart people who have taken countermeasures to

SPF. It has been observed that they are increasingly adopting SPF records for their domains

in order to prevent spam rejection resulting from authentication failures.

In light of the above, MarkMonitor and VeriSign conducted independent studies on adop-

tion of SPF by various domains on the Internet. Their studies are reported in Tables 3.1

and 3.2. They emphasize adoption of reputational information to protect corporate brands.

Fraudsters are increasingly adopting email authentication standards for the look-a-like do-

mains. They report that more than 90% of the Fortune 100 companies have look-a-like

domains registered with SPF records. This is shown in Table 3.3.

Domain Sampling Authentication Study by MarkMonitor, Inc.

1.1 million .com/net domains with SPF1 and SPF2 records
38,664,506 .com domains
995,407 with SPF Records
2.57% Domains
4.41% domains with SPF Records
5,926,755 .net domains
140,444 with SPF Records
2.4 % domains
62.7 % with MX Records
3.78 % domains with SPF Records
44,51261 total domains

Table 3.1: Domain sampling authentication study by MarkMonitor. Source: Email Authen-
tication Scorecard, David Silver, MarkMonitor. Email Authentication Implementation Sum-
mit, NYC, July 12, 2005. Table reproduced with permission from David Silver, MarkMoni-
tor.

69

Domain Sampling Authentication Study by Verisign, Inc.

March 1.2 million .com/net domains with SPF1 and SPF2 records
July 1.6 million usable by SenderID
3.55% all .com/ .net domains
44,684 total domains
Extrapolate to the population of 70 million domains,
2.48 million domainswith SPF 1/SPF2 records

Table 3.2: Domain sampling authentication study by VeriSign. Source: Email Authentica-
tion Score Card, David Silver, MarkMonitor. Email Authentication Implementation Summit,
NYC, July 12, 2005. Table reproduced with permission from David Silver, MarkMonitor.

Trick Domain Name

Transposed Letters www.pfizre.com, www.krogre.com
Name Derivatives www.wellsfargomastercard.com, www.fordmercury.com
Pluralized Versions www.albertson.com, www.geicos.com
Alternative Extensions www.dupont.net, www.merrill.net
Qwerty Mistypings www.walmarr.com
Left Off Letters www.dowcornin.com
Misspelled Words www.bankofamarica.com

Table 3.3: Some look-a-like domains of reputed brands having SPF records. Source: Email
Authentication Score Card, David Silver, MarkMonitor. Email Authentication Implemen-
tation Summit, NYC, July 12, 2005. Table reproduced with permission from David Silver,
MarkMonitor.

70

3.2.4 Identified Internet Mail (IIM) from Cisco Systems, Inc.

Jim Fenton and Mike Thomas from Cisco Systems proposed Identified Internet Mail (IIM)[62]

for email authentication in 2004. The IIM proposal provided message recipients with a mech-

anism to verify the integrity of the message using digital signatures and public key cryptogra-

phy. It also provided a mechanism to authenticate the associated public key for determining

the validity of the senders email addresses.

A digital signature is a hash of the message content signed with the private key. The

sending side transmits the message along with its digital signature. At the recipient side,

public key cryptography is used to recover the hash. This is done by decrypting the signature

with the corresponding public key. The recipient system then computes the hash of the

message separately using an already known(agreed upon)hash algorithm and decodes the

digital signature. An exact match between the two hashes described above implies that the

message integrity is preserved (i.e. the message has not been modified during transit).

The IIM Protocol is illustrated in Figure 3.3.

1. Objective

The objective of the IIM proposal was to identify fraudulent messages and to ensure

that the sender of the message was authorized by the domain owner to use that address

for sending email messages from that domain.

71

2. Sending Domain Signs the Message

The MTA of the sending domain signs the message and inserts a new signature along

with the public key (used for creating the signature) into the email headers field. This

is step 1 in Figure 3.3. Alternatively, a signature can also be added by the user’s MUA,

MSA, or a subsequent MTA.

3. Recipient Domain Verifies Integrity of the Message and Authorization of the Key using

DNS or the Key Registration Server (KRS)

The MTA of the recipient domain verifies the integrity of the message by using the

hash of the message content, signature and public key included in the signature header.

The recipient MTA also verifies authorization of the public key (used for signing the

message) with that particular email address by querying the DNS or the KRS of the

sending domain. This is shown in steps 2 and 3 of Figure 3.3. Depending upon the

outcome of the verification process, user defined policies can be applied to accept or

reject the email.

4. Use of Third Party Reputation Services

The IIM proposal allowed the use of third party reputation services for applying policy-

based decisions on the signed messages. This is shown in step 4 in Figure 3.3. Policy-

based decisions can be applied depending upon the reputation score of sending do-

mains. However, traffic with the third party reputation services was specified in clear

text in the proposal, which leaves the door open for sniffing attacks.

72

Overall, IIM is a great contribution leading the industry towards email authentication. IIM

has now merged with the DomainKeys (DK) to form the Domain Keys Identified Mail

(DKIM) standard. The concept of a KRS is eliminated in the DKIM proposal.

73

Figure 3.3: Identified Internet Mail (IIM) from Cisco Systems.

74

3.2.5 Domain Keys (DK) from Yahoo!, Inc.

Mark Delany from Yahoo! proposed “Domain-based Email Authentication Using Public-

Keys Advertised in the DNS (DomainKeys)[41]” for email authentication. We now describe

the DomainKeys protocol. The protocol is illustrated in Figure 3.4.

1. Objective

The objective of DK is to provide recipient system with a mechanism to verify the

integrity of the received message and also the authenticity of the domain of email

senders using digital signatures, public key cryptography, and the DNS.

2. Sending Side

(a) Generation of the Public, Private Key Pair

The domain owners generate a pair of public and private keys. The private key is

made available to DK outbound email servers and is used for signing all outgoing

messages. The public key is published in the DNS entry of that particular domain.

(b) Signing of Messages

Upon receiving an email from an authorized user within the domain, a digital

signature of the entire message using the private key is computed. This digital

signature is prepended as a header to the email and sent for delivery destined at

the recipient MTA.

75

3. Receiving Side

(a) Extraction of Signature and Claimed From: Domain

The recipient MTA which is DK-enabled extracts the signature and claimedFrom:

domain from the email headers. It then looks up the public key for the claimed

From: domain from the DNS.

(b) Verification

The public key retrieved from the DNS for that particular domain is then used

to decrypt the signature to obtain the hash of the message as computed by the

sender. The recipient system then computes the hash of the message. A match

between the two hashes confirms that the email was sent with the permission of

the claimed sendingFrom: domain, and that the integrity of the email (headers

and body) was preserved during transit.

(c) Delivery

Based on the verification results obtained above, the recipient email system ap-

plies local policies to deliver the email in the recipients’ inbox or to trash it.

76

Figure 3.4: DomainKeys (DK) from Yahoo!.

3.3 Machine Learning Approach

Researchers and hackers have been actively interested in experimenting with machine learn-

ing techniques for filtering spam. A lot of spam filters available today, both open source

and commercial, are based upon machine learning techniques. Most of these filters use the

Näive Bayesian model, Markov model, and other advanced techniques and heuristics.Paul

Grahampopularized the Näive Bayesian model for spam-filtering through his essay “A Plan

for Spam”[53] in 2002.

Some examples of open source filters based on the machine learning techniques are

CRM114[35], DSPAM[130], SpamAssassin [110] and SpamBayes[111]. One of the best

commercially-available spam filter is Death2Spam (D2S)[68].

77

A detailed unified model of spam filtration is explained in Chapter 4. The machine learn-

ing approach for filtering spam consists of the following steps.

1. Corpus: A corpus of spam and ham (legitimate messages) is obtained and validated.

2. Feature Generation: Features (attributes) representing each class (spam and ham) are

generated. For example, individual words in messages can be used as features.

3. Classifier Training: A classifier based on a machine learning technique is trained by

representing messages in terms of the features generated above.

4. Threshold: For each new message arriving at the mailbox, the classifier, operating on

the extracted features, decides the target class the of the message (spam or ham).

Statistical approach for spam-filtering has been covered in [6] [8] [9] [10] [21] [25] [72]

[77] [78] [79] [88] [92] [89] [90] [91] [94]. Jose Maria Gomez Hidalgo maintains an active

bibliography on machine learning for spam detection[59].

78

3.4 Sender Pays/Sender Verification/Sender Compute

Recently, techniques based on thesender-paysmodel have been proposed to protect the In-

ternet email system against spammers. In this model, some sort of action is required on

the sender’s part. Thesender-paysmodel can be sub-categorized intochallenge-response

techniques andmicropaymentsproposals. Thechallenge-responseclass of techniques can be

further sub-categorized. The sub-categorization is shown below:

1. Challenge Response

(a) Human Interactive Proof (HIP)

(b) Proof of Work (PoW)

i. Proof of Work (PoW) advocacy by Dwork and Moni Naor

ii. Adam Back’s Hashcash

2. Micropayments

3.4.1 Challenge Response

In challenge-responsetechnique, the recipient system issues a challenge which the sending

system has to respond to. The response is then verified by the recipient system. Upon success,

the email is delivered to the recipient’s inbox. It is best to usechallenge-responsetechniques

in combination with other techniques such as whitelisting and spam-filtering. For example,

whitelisted senders should not be challenged, and legitimate senders who have responded

79

to the challenge already can be added to the whitelist. Emails classified as spam from the

senders who are not whitelisted should be challenged[51].

The Penny Black Project

The Penny Black Project[118] at Microsoft Research is achallenge-responsesystem with

the notion of “bankable/refundable” tokens. Tokens can be generated by solving some sort

of challenges or by making some monetary payment, and then can be deposited in an ac-

count. The challenge is a request for a token from the sender’s account, which can then

be refunded if the recipient informs the authority managing accounts that the email was a

legitimate message and not spam[51].

The Penny Black Project has investigated the use of several currencies such as CPU cy-

cles, memory cycles, and Turing tests to implement thesender-paysmodel. Senders can

pre-compute the appropriate function tied to a particular message; senders can come up with

the payment in response to a challenge after they have submitted their message, or senders

can acquire a ticket pre-authorizing the message using theTicket Server[118].

TheTicket Serveris proposed in the paper “Bankable Postage for Network Services” by

Abadi etal.[1]. They describe a scheme in which senders can send an email attached with

a ticket obtained from theTicket Server. The recipient can then determine the validity and

freshness of the ticket from theTicket Server. If the message is legitimate, recipients can

inform theTicket Serverto refund the ticket to the sender.

80

3.4.2 Human Interactive Proofs (HIP) (CAPTCHA)

Human Interactive Proofs (HIPs) are challenges designed to distinguish humans from com-

puters. In order to achieve this as originally proposed by Moni Naor[85], the computer

presents a challenge that must be easily solvable for humans while hard for computers. HIPs

are also known as Completely Automated Public Turing to tell Computers and Humans Apart

(CAPTCHAs), or the reverse Turing Test. Specifically, CAPTCHAs are a special class of

HIPs that require verification of the results by a computer and the public availability of the

protocol/code[38]. Typically, these are image-based HIPs designed to distinguish a human

from a computer program (bot). CAPTCHAs are commonly used for preventing automatic

signing of the email accounts by bots and for challenging a user sending a large number

of (possibly spam) emails. Since CAPTCHAs require a human to solve the challenge, they

impose certain cost on spammers’ actions.

Modern-day reading-based HIPs using clutter and distortion settings deployed by MSN,

Hotmail, Register.com, Yahoo!, Ticketmaster and Google are illustrated in Figure 3.5.

The security of HIPs is dependent upon therecognitionandsegmentationtasks.Recog-

nition andsegmentationare well-known related problems in computer vision. In our context,

recognitionrefers to the mechanism of identifying individual characters taken from the al-

phabet containing both lowercase and uppercase English characters, and the decimal number

system. In practice, HIPs almost never use both upper and lowercase characters. Well de-

signed HIPs usually exclude confusable pairs such as O and0.

81

By segmentation, we meansegmentationat the lowest level, implying a mechanism of

fragmenting the CAPTCHA image so that approximate locations of the constituent characters

from the above alphabet are identified.

The most common reading-based visual HIPs are based on the character recognition

tasks. Chellapilla etal.[27] from Microsoft Research suggest a combination ofrecognition

andsegmentationtasks for designing the next generation of CAPTCHAs, since recognition-

based CAPTCHAs can easily be broken using machine learning techniques[28].

In light of the above, Chellapilla etal.[27] recently compared the single-character recog-

nition ability of humans and computers by performing identical human user studies and com-

puter experiments using convolutional neural networks as the core of the recognition engine.

In their study, they assume that the segmentation problem is already solved (i.e. approxi-

mate locations of constituent characters are already identified). Their results indicate that

computers are better than humans at single-character recognition under the commonly-used

distortion and clutter scenarios in modern-day HIPs such as the ones illustrated in Figure 3.5.

They conducted a total of seven experiments with computers and humans. In each com-

puter experiment, a convolution neural network was used as a recognizer. A total of 110,000

random characters were sampled using distortion and clutter settings. Of these, 90,000 char-

acters were used for training, 10,000 for validation, and the remaining 10,000 for testing.

The alphabet set consists of 31 characters from{A-Z,0-9}. Five characters{I, O, Q, 0, 1}

were discarded because these can be easily confused (For example: 0 with O, I with 1).

Thirty-point Times Roman font was used. An electronic human study closely matching the

82

computer experiments was conducted with 44 participants. The participants were assigned

the task of recognizing characters under the same distortion conditions.

In all seven experiments, computers either outperformed or were on par with the human

ability in recognizing the single characters. As previously mentioned, they used a total of

90,000 characters for training. A HIP has between 5 to 8 characters on average, and therefore

90,000 characters are equivalent to between 11,250 and 18,000 HIPs. Assuming the cost of

solving a HIP is about $0.002[52], the total cost of labeling the training data amounts to

$22.5 to $36.

Recent communication with Kumar Chellapilla and Joshua Goodman from Microsoft

Research indicates that a customized HIP breaker can be built in a day for forty dollars,

assuming that the tools for sampling, labeling, and neural network training have already been

built.

83

Figure 3.5: Modern-day reading based Human Interactive Proofs (HIPs) used by MSN/ Hot-
mail, Register.com, Yahoo!, Ticketmaster and Google. HIPs are also known as Completely
Automated Public Turing tests to tell Computers and Humans Apart (CAPTCHA). Figure
provided by Kumar Chellapilla, Microsoft Research.

84

3.4.3 Proof of Work (PoW)

Proof of Work (PoW) is a class of cryptographic protocols in which the prover demonstrates

the verifier that he/she has performed a desired computation in a specified interval of time.

Proof of Work puzzles have the following properties:

• PoW puzzles are hard to solve.

• PoW puzzles are easy to verify.

• There are no known shortcuts for solving such puzzles.

In their work, “Proofs of Work and Bread Pudding Protocols,” Markus Jakobsson and Ari

Juels have formally characterized the notion of Proof of Work (PoW) protocols and presented

the idea ofbread pudding protocols[66]. They definebread pudding protocolas a Proof of

Work (PoW) such that the computational effort invested in the proof may be harvested to

achieve a separately useful and verifiable correct computation.

1. Proof of Work (PoW) Advocacy by Cynthia Dwork and Moni Naor (1992)

Dwork and Naor[45] first advocated the use of Proof of Work (PoW) in 1992 in their

paper “Pricing via Processing or Combatting Junk Mail.” The idea is that the sender

of the email is required to spend some time performing complex computation in order

to deliver email to the recipient. While this resource expense approach is a minimal

burden on the legitimate sender, it is assumed that this will deter spammers, since

spammers send bulk mail and hence require a significant amount of computational

85

time and resources. Dwork and Naor also introduced the notion of Proof of Work

(PoW) with atrap door, a function that is easy to compute given the key(trap door

information)but moderately hard to compute without the knowledge of this key.

2. Adam Back’s Hashcash (1997)

In 1997, Adam Back independently proposed a system based on the Proof of Work

(PoW) known as the Hashcash[11][12]. The objective of Hashcash is to throttle abuse

of Internet resources such as email and anonymous remailers. In Hashcash, the CPU

cost function computes a token, which can be used as Proof of Work (PoW). Adam

definescost functionas a function that is efficiently verifiable but parameterisably ex-

pensive to compute. In the Hashcash setting, a client computes atoken Tusing a cost

function MINT (). This token is then used to participate in a protocol with a server.

The server verifies the value of the token using an evaluation function VALUE(). If

the token has the required (correct) value, the server advances to the next step in the

protocol. These functions are parameterized by the amount of workw the client has

to spend in order to compute the token. The settings ofinteractiveandnon-interactive

cost functionsin Hashcash are described below.

(a) Interactive Cost-Functions

In this setting, the server uses the CHAL() function parameterized by the work

factor w to compute a challengeC, which is then sent to the client. The client

then mints a tokenT using the MINT() function and returns the tokenT to the

86

server which is then evaluated using a VALUE() function. If the value is correct,

the server proceeds to the next step in the protocol.

C ← CHAL(s, w) server challenge function

T ←MINT (C) mint token based on challenge

V ← V ALUE(T) token evaluation function

(b) Non Interactive Cost-Functions

In this setting, the client chooses its own challenge or random start value and

generates a tokenT using the MINT() function. The token is then evaluated by

the server using the VALUE() function. If the value is correct, the server proceeds

to the next step in the protocol.

T ←MINT (s, w) mint token

V ← V ALUE(T) token evaluation function

Hashcash is based onpartial hash collisions. A partial hash collisionof k bits is defined

as the match betweenk most significant bits between the hash of two numbers x and y (say

SHA1(x) and SHA1(y)).

Campaign for Real Mail (CAMRAM)[23], a system based on thesender paysmodel

uses, Hashcash. In such systems, the sender finds a number which, when prepended to the

combined string ofFrom, To, Subject, Date, has a hash whose firstk bits are 0. k can be

varied depending upon the time required to find the hash[52].

87

CAMRAM system uses CRM114 Filter for classifying emails into spam and good mail.

We explain the architecture and working of the CAMRAM system in detail in chapter 6.

3.4.4 Micropayments

In Micropayments systems, small amounts of money (micropayments) are accumulated and

collected as one regular payment. In the micropayment model for the Internet email, the

recipient can charge a very small amount of money($0.05)from the sender through an online

banking system. The recipient can keep the money if the email is a spam message. The

money generated through these transactions can also be donated to charity. This proposal

suffers from one major problem of establishing a worldwide bank or authority for keeping

records of, tracking, and handling transactions[51].

3.5 Controlling Spam at the Router Level

Recently, Professor Mart Molle introduced the idea of fighting spam inside the network. The

motivation for this early-detection strategy is saving network resources that would otherwise

be wasted on the delivery of spam immediately discarded by the recipient’s spam filter. Since

no spam detection algorithm is perfect for everyone, however, network spam control would

merely impose a limit on the number of copies of a particular bulk email message that can

pass through the router per unit time.

88

In this way, legitimate but misclassified email would still reach its destination, but the

spammer’s cost of doing business would rise considerably because of the extra delivery time

and/or personalization effort required for each message.

A detailed plan for implementing network spam control has been developed by Agrawal

etal.[5]. After separating SMTP traffic from the fast path, the router tries to determine

whether the new message is part of a bulk-delivery stream (i.e., it is similar to another mes-

sage seen within the rate-control window) and if it contains spam. If both conditions hold,

then the router blocks its delivery by closing the SMTP connection. The router could also set

a TCP header flag to inform the recipient of the arrival of rate-compliant spam.

The Boyer Moore pattern-matching algorithm is used to identify bulk message streams

by comparing each new email message with a cache of previously seen emails. This is

achieved by using a two-level cache structure:primary cacheand secondary cache. All

emails received are kept in thesecondary cache. As bulk mails are characterized by short

span of time, all new emails received within a short span of time are compared with the

signatures of the messages in thesecondary cache. A match indicates that the message is

bulk and the signature is moved to theprimary cache. Thus, theprimary cachecontains

signatures of bulk messages.

In the second phase, a Bayesian classification technique is applied to determine if the

bulk stream is composed of spam messages.

89

3.6 Social Networks

Recently Boykin etal.[20] proposed use ofsocial networksto fight spam. In their work, they

create email graphs(social networks)from legitimate email (ham) and spam headers. Using

social networkstools, they construct an anti-spam tool to identify a user’s trusted network of

friends and subnetworks generated by spam.

3.7 Distributed Collaborative Filtering

In this approach, a signature of every spam message received by the recipient is computed and

added to a shared database. Upon arrival of a new email message, its signature is computed

and then compared to the shared spam database. Depending upon the similarity measured be-

tween the signature of the message and the closest matching signature in the spam database,

the message can be tagged as spam or ham. Vipul’s Razor[123] and Distributed Checksum

Clearinghouse (DCC)[40] are examples of successful modern-day collaborative spam filters.

90

3.8 Special Purpose One Time/Disposable Email Addresses

Special purpose/disposable email addresses are one approach to stay away from spam. A

person can release the email address in a limited scope; for example, a person can give a

different address to different correspondents. If any of those email addresses starts receiving

spam, this implies that a particular email address has been abused and can be terminated,

leading to the bouncing of all further emails.

3.9 Tracking Harvesters through the Project Honey Pot

Email harvesting refers to the mechanism of collecting email addresses by web spiders or

spambots which scan web pages, mailing lists or chat rooms looking for the @symbol. In

order to avoid spambots, address-munging (i.e. inserting random text such that spambots

cannot recognize email address while humans can) or the use of AT instead of @ is recom-

mended.

Unspam Technologies came up with the idea of Project Honey Pot[98] for identifying

spammers and their spambots used for harvesting email address from a website. In Project

Honey Pot, the participating website installs software distributed by the Unspam Technolo-

gies. Email addresses specific to a particular website are generated and installed somewhere

on the site. When those honeypot email addresses start receiving spam, the date, time, and

IP address of the harvester are tracked.

91

The terms and conditions for the use of these email addresses listed on a particular web

site is embedded in the comments of the HTML code of the page. Violators can be tracked

and then subject to litigation.

Special license restrictions for non-human visitors from Project Honey Pot’s terms and

conditions section is illustrated in Figure 3.6.

Figure 3.6: Project Honey Pot - special license restrictions for non human visitors such as
bots. Figure provided by Matthew Prince, Unspam Technologies.

92

3.10 Accreditation and Reputation Services

3.10.1 AOL’s Enhanced Whitelisting

America Online’s Enhanced Whitelisting is a mechanism through which messages from the

whitelisted bulk mailers to recipients are displayed with images and enabled links (i.e. images

are not blocked and links are not disabled). Legitimate bulk mailers who are already on

AOL’s whitelist are automatically added to AOL’s Enhanced Whitelisting after 30 days, if

they adhere to the delivery standards according to AOL.

3.10.2 Habeas SafeList Program

Habeas offers a SafeList program through which legitimate email marketers are promised a

guaranteed delivery of their email. More precisely, if the sender is certified by Habeas, it

includes this information in the headers. Upon receiving emails claiming to be Habeas cer-

tified, the recipient MTA authenticates the IP address of the sender against Habeas SafeList.

Upon authentication success, the email is delivered to the recipient’s inbox. The working of

the Habeas SafeList program is illustrated in Figure 3.7.

93

Figure 3.7: Habeas’ SafeList program.

3.10.3 Return Path’s Bonded Sender Program

The Bonded Sender program was introduced by the IronPort Systems in 2003 and was ac-

quired by Return Path in early 2005. In the Bonded Sender program, qualified legitimate

bulk mailers deposit a financial bond, and IP addresses of their outbound mail servers are

then whitelisted. Upon receiving emails claiming to be affiliated with the Bonded Sender

program, the recipient MTA authenticates the IP address of the sender against the Bonded

94

Sender whitelist using reverse DNS lookup. Upon authentication success, email is delivered

in the recipient’s inbox. The recipient provides feedback or complaints to its ISP which can

then forward all complains to the Bonded Sender program authority. The financial bond

of the bulk mailer is debited according to the number of complains received. The Bonded

Sender program has a dispute resolution mechanism for senders to contest a debit of the

bond. The Bonded Sender program is illustrated in Figure 3.8.

Figure 3.8: Return Path’s Bonded Sender program.

95

3.10.4 CipherTrust’s TrustedSource Reputation Service

TrustedSource portal from CipherTrust is a service which attempts to score the reputation

of an IP address by combining attributes such as sending behaviour, whitelist and black-

list. The data is gathered through already-installed IronMail Gateway appliances worldwide.

TrustedSource service classifies reputation of an IP address in one of the four classes:

1. Inoffensive:Indicating a legitimate sender.

2. Raised Concern:Indicating a legitimate sender but suggesting further inspection of

emails received from this address.

3. Suspicious:The IP address may belong to a spammer because it has shown many spam

sender characteristics.

4. Spam: This IP address has been used for spamming or should not send any email

messages.

3.10.5 IronPort’s SenderBase Reputation Service

SenderBase is a similar reputation service from IronPort Systems and provides information

about the email traffic sent by different IP addresses and domains.

96

3.11 Anti-Spam Appliances

Anti-spam appliances are the standalone appliances designed specifically for the purpose of

filtering incoming spam. Some vendors selling such appliances are IronPort Systems [65],

CipherTrust [31], Mirapoint [81], Barracuda Networks [13], Symantec [115] and Tumble-

weed Communications[122]. Table 3.4 lists anti-spam techniques used in some of these

appliances from the above vendors.

Appliance Technique

CipherTrust IronMail Connection Control uses TrustedSource sender reputation
service and bandwidth throttling
for rate limiting connections and
traffic from known and
suspected spammers

Mirapoint MailHurdle uses greylisting
Symantec Mail Security 8160 Appliance uses Brightmail sender reputation

service to restrict connections
and traffic from known
and suspected spammers

Tumbleweed MailGate Edge Uses sender authentication mechanisms
to validate recipient and
sender domains; protects
against Denial of Service (DoS)
and Directory Harvest Attacks (DHA)

Table 3.4: Anti-spam appliances from some vendors. Source: “Next-Gen Appliances Put
SPAMMERS in the Crosshairs” by Logan G. Harbaugh, INFOWORLD, 08/29/2005.

97

Chapter 4

A Unified Model of Spam Filtration

4.1 Introduction

We describe three common spam filtration styles in the current state of the art. These are

Blacklisting, Human driven heuristic filtering, and Machine learning based filtering. In

this chapter, we consider a recursive description of these filters, compare them and consider

higher level interactions of these filters in an Internet wide context.

1. Blacklisting

Blacklisting deals with determining IP addresses and domains of spammers and block-

ing emails originating from these sources to mail servers. Some prime examples of

blacklists are Spamhaus Black List (SBL) [19], SpamCop Blocking List (SCBL) [112],

Composite Block List (CBL) [33].

98

2. Heuristic Filtering

In heuristic filtering a human examines spam and nonspam texts for likely features, and

writes specific code to trigger action on those features. These human created features

are weighted (either manually or by an optimization algorithm), and thresholded to

determine the spam or nonspam nature of a document. A prime example of such a

heuristic filter is SpamAssassin[110]; other heuristic filters are used by major ISPs

such as Earthlink[46] and Yahoo!.

3. Statistical Filtering

In statistical filtering a human classifies a training set of texts; a machine-learning algo-

rithm then creates and weights features according to an internal optimization algorithm.

A number of these filters have been implemented, such as Death2Spam (D2S)[37],

SpamBayes[111], SpamProbe[113], and the CRM114 Discriminator[35].

4.2 The Filtering Pipeline

In order to differentiate spam-filtering from the more generalized problems of information

retrieval, we first define the set of spam filtering actions. Given a large set of email readers

(who desire to reciprocally communicate without prearrangement with each other) and an-

other set of email spammers (who wish to communicate with the readers who do not wish

to communicate with the spammers), the set of filtering actions are the steps readers taketo

maximize their desired communication and minimize their undesired communications.

99

We now propose the following filtering pipeline as a generalized form for spam classifi-

cation. Given an input text we perform the following sequential operations:

1. Initial (arbitrary) Transformation (a.k.a. MIME normalization)

2. Feature Extraction

3. Feature Weighting

4. Feature Weight Combination

5. Thresholding, yielding a go/no-go result (or perhaps go/unsure/no-go) result

Note that this classification model functions irrespective of the learning model used to

update the databases involved; in the long term the learning model does not matter as long

as the learning system produces (eventually) a satisfactory configuration. This includes both

single-user, multi-user, and multi-host distributed filtering systems.

The filtering pipeline is graphically represented in Figure 4.1.

Figure 4.1: A generalized model for spam filtering pipelines.

100

4.2.1 Initial Transformation

The initial transformation (step 1) is often a null step - the output text is just the input text.

Other common initial transformations are described below:

• Character-Set Folding

Forcing the character set used in the message to the character set deemed “most mean-

ingful” to the end user. For a typical US based user, this is base ASCII (also known as

Latin-1) where accents are not significant.

• Case-Folding

Removing extraneous case changes in the text.

• MIME Normalization

Unpacking MIME encodings to a reasonable (and common) representation. In partic-

ular, the decoding of BASE64 texts is often useful, as some email systems encode a

perfectly reasonable plain-ASCII text in BASE 64.

• HTML Deboning

In some rare cases, HTML is an essential part of the message, but HTML also provides

an incredibly rich environment to obscure content from a machine classifier while re-

taining the content for a human viewer. In particular, spammers often insert nonsense

tags to break up otherwise recognizable words, while enthusiastic email authors often

overuse tags such as< bold > and< color > to the detriment of the actual content.

101

• Look-a-Like Transformations

Spammers often substitute characters for other characters that “look alike”, in order

to avoid known spammish keywords. Examples are using ‘@’ instead of ‘a’, ‘ 1’ (the

numeral) or ! (the punctuation) instead of ‘1’ or ‘i’ (the letters), and $ instead of ‘S’.

• OCR/Machine Vision Operations

Using machine vision techniques to form a textural representation of an included image

(such as a pornographic .jpg). The authors are unaware of any actual implementations

doing OCR or machine vision classification at the time of writing this paper.

It should be realized that not all systems use an initial transformation; some systems work

perfectly well with no preprocessing whatsoever.

It should also be noted that the initialtext-to-text transformationis human-created, ar-

bitrary, and rarely if ever 1-to-1 in terms of characters, words, or even lines of text. The

arbitrary nature of this transformation is what we will eventually use to demonstrate that this

generalized filtering form includes not only statistical methods, but also heuristic methods

and black/white lists.

102

4.2.2 Feature Extraction

In the feature extraction step of the pipeline, the text is converted into a set of indexable

features. We propose a two-step process in feature extraction:

1. Using aregular expression (regex)to segment the incoming text into interesting parts

(tokens). This step is akin totokenizationin typical compiler.

2. Using atuple-based approachto combine the tokens into features. This tuple-based

approach allows arbitrarily nonadjacent tokens to be combined into features.

In prior work [105] it was found that the choice of tokenizing regexes between an intuitively

good regex such as [[:graph:]]+ and a carefully crafted HTML-aware regex can affect overall

accuracy by at least a factor of25% on one standard corpus. It is likely that with multiple

“typical” corpora at least another similar factor in accuracy by tokenization will occur.

The tuple-based approach to feature generation is a generalization of the techniques

known to the authors [30][105][127][128]. Tuple-based feature generation often produces

more features than the original text contained tokens; in some implementations there will be

more features emitted from the feature generator than there were bytes of text in the original

message.

Tuple-based feature generation uses a two-step process to convert textual tokens into

features [120]1. The steps are:

1It is also computationally feasible to invert the order of text→ tokenvalue and tuple→ weight operation;
For example the TIE system [105] forms the concatenated texts first, and then looks up the concatenated text to
get a weight value. This is computationally equivalent; either method will generate identical results. Interest-
ingly, TIE [120] is in some cases faster in this string-based operation thanCRM114 is in the computationally
equivalent hash-then-combine-then-look-up computation.

103

1. Conversion of the textual tokens into unique (or nearly unique) numerical representa-

tions

For example, a lookup of textual tokens in a dictionary of tokens previously seen in

learning corpus can guarantee unique numerical representations of tokens (textual to-

kens that haven’t been seen in the learning corpus can be assigned a locally unique

number but, by definition, no feature containing a previously unseen token exists in the

learned corpora and so such tokens do not contribute to the useful classification feature

set). Alternatively, in a faster implementation textual tokens could simply be hashed

to a moderately long numerical representation; a64-bit representation gives roughly

1.8E19 different possible hashes and the occasional hash collision is equivalent to a

single typographical error in the human-created input text.

2. The sequence of numerical representations of sequential features are then combined by

stepwise dot products against every member of a tuple defining the feature generator.

This is stepping the sequential token values through a pipeline of length equal to or

greater than the longest tuple and calculating the dot product of the pipeline contents

against each member of a set of tuples. By describing the feature generation as tuples,

we can obtain features from simple unigrams to arbitrary selection lattices. Of course,

for reasonable tuple sets the pipeline length is usually quite small - there is evidence

[105] that pipeline lengths in excess of five or six do not increase accuracy.

104

In a perfect world, this dot product would have tuple terms that are large prime num-

bers, and be carried out in infinite-precision (bignum) arithmetic, but a fast implementation

can simply use small integer tuple values and register-based (fixnum) arithmetic with a triv-

ially small decrease in accuracy (again, each collision caused by64-bit finite arithmetic is

equivalent to a single typographical error in the human-created input text).

For simplicity, we will represent all of our tuples in this paper in a normalized form -

that is, tuple elements which correspond to pipeline tokens which are to be disregarded will

always have the tuple element value 0, and all nonzero tuple elements will start at 1 and

increase by 1 for each element that is to be regarded with unique position, and will reuse a

previously used integer if the corresponding tuple element is to be considered interchangeable

with a previous tuple element.

Many spam filters consider only single words to be features. Consider the very simple

single-element tuple set{1}. In this case, each output feature is simply an input feature set,

multiplied by 1. This gives the “typical” behavior of most word-at-a-time Bayesian spam

filters.

The somewhat more interesting tuple set is:

{ 1, 0 }

{ 1, 2 }

It yields the classic “digraph” feature set as used by libbnr [14], where each word is taken

as a feature, and each pair of words in sequence are also taken as a feature. The sequence

105

“foo bar” is not equivalent to the sequence “bar foo” (the zero term in the first tuple element

multiplies the respective token’s numerical value by0− thereby disregarding the feature).

This tuple-based feature generation also allows for representation of bag-based (order

does not matter) and queue-based (order matters, but interspersed ignored elements don’t)

feature generators.

For example, an order-ignoring (“bag-based”) feature generator with a viewing pipeline

length of4, which when slid over the pipeline, generates all pairs taken two at a time is

below:

{ 1, 1, 0, 0 }

{ 1, 0, 1, 0 }

{ 1, 0, 0, 1 }

Note that the tuple coefficients for each token are each1 and thus the same output numerical

representation is generated without regard to the order of the incoming tokens.

A very similar but order-sensitive tuple set is below:

{ 1, 2, 0, 0 }

{ 1, 0, 2, 0 }

{ 1, 0, 0, 2 }

Note that the coefficient of the first feature in the pipeline is1 and the coefficient of the

second feature in the pipeline is2. This causes this particular tuple set to generate features

where order is significant, but intervening tokens are not significant (for example, “foo bar”,

106

“foo lion bar”, and “foo lion tiger bar” all generate the “foo bar” feature value, but “bar foo”,

“bar lion foo”, and “bar lion tiger foo” generate a different (but identical between themselves)

value.

We can create “contains” feature generators. For example, the following tuple set creates

features where the three tokens must occur in the order specified, but as long as the entire

feature sequence fits into the pipeline length (here,5), the precise positioning does not matter.

Below is the tuple set:

{ 1, 2, 3, 0, 0 }

{ 1, 2, 0, 3, 0 }

{ 1, 0, 2, 3, 0 }

{ 1, 2, 0, 0, 3 }

{ 1, 0, 2, 0, 3 }

{ 1, 0, 0, 2, 3 }

Another interesting tuple set is below:

{ 1, 2, 0, 0, 0 }

{ 1, 0, 3, 0, 0 }

{ 1, 0, 0, 4, 0 }

{ 1, 0, 0, 0, 5 }

Note that this tuple set doesnot generate the unigram (that is, features representing single

words, taken one at a time, do not appear in the output feature stream). This tuple set is

107

interesting because it has been shown experimentally to be particularly effective in spam

filtering - in experiments, it was at least equal to the same tuple set including the unigram,

and was often more accurate [105]. This is an interesting counterintuitive example where

better accuracy is achieved with fewer features.

4.2.3 Feature Weighting

The third step in the filtration pipeline is feature weighting. This weighting has several parts:

• A part of the weighting is based on theprior training of the filter with respect to

this particular feature; this is simply atable (or database) lookup. Often this part

of the weighting is the number of times each feature has been seen in each of the

respective training corpora2. There are experimental indications that for some tuple

sets accuracies are higher if training and feature weighting are based on the number of

training documents it appears in, rather than the number of times the feature appears

(thus the same feature repeated several times in a document is used only once for the

training or classification).

• A part of the weighting is based on thetuple itself - for example, it appears for some

tuple sets and combiner rules to be advantageous to not weight all tuples evenly; tuples

containing more nonzero terms appear to be more significant than mostly-zero tuples,

and tuples with the nonzero terms adjacent or nearly adjacent are more significant than

2The reader should differentiate between “training texts offered” versus “training texts actually used”. Many
very effective learning algorithms do not use all of the training texts offered; the superfluous texts do not have
their features added to the database.

108

those tuples with the nonzero terms widely separated. The Markovian weighting sets

[127] using a full set of all possible combination tuples exhibit this behaviour. Other

tuples sets and combiner rules show no such effect (OSB[105] tuples with Winnow-

type combiner rules seem to work best with uniform tuple values)

• A part of the weighting may be based onmetafeaturesor “database constants”; for

example, it appears advantageous to alter the weighting of features depending on the

overall count of features learned, as well as the related count of example texts learned.

It is not necessarily the case that a feature’s weight is a strict probability [or better: is a proba-

bility estimate]. Other weighting generators can be used as desired; it is perfectly reasonable

to define weight of a feature by reference to a database produced by a learning algorithm. For

example, the Winnow algorithm uses linear weights stored in a database. It is not reasonable

to assume that every possible weighting generator will work with every possible combiner

rule; in particular, Bayesian combiner rules need reasonable - valued probabilities as inputs

(consider what happens to a Bayesian combiner rule if a local probability is greater than unity

or less than zero?)

A very simple and obvious per-feature probabilistic weighing formula is given in Equa-

tion 4.1

Weight =
TimesSeenInClass

T imesSeenOverAllClasses
(4.1)

Unfortunately, the weighting shown in Equation 4.1 yields absolute certainty when a fea-

ture has only been seen just once in a single class. A better-behaved per-feature weight as

109

used in the Markovian filter option inCRM114 Discriminator Framework [128] is shown in

Equation 4.2.

Weight =
TimesSeenInClass

T imesSeenOverAllClasses + Constant
(4.2)

Constant is some relatively small integer, such as1 to 100. Note that, this is one common

form of “smoothing”.

Experimentally, we have found that a better local estimate of probabilistic weight takes

into account the relative number of documents in each of the learned corpora; a simple renor-

malization of weights with respect to how many documents have been inserted into each

database such as in Equation 4.3, gives a significant improvement in filtering accuracy.

Weight =
TimesSeenInClass ∗DocumentsInClass

(TimesSeenOverAllClasses + Constant) ∗ TotalCorporaDocuments

(4.3)

• Other Weight Generators

It is not necessarily the case that a features weight is a strict probability. For example,

the Winnow algorithm uses linear weights stored in a database; each feature’s weight

starts at1.0000 3. Winnow Feature weights are promoted on correct learning by multi-

plying by a constant> 1 (typically in the range1.1 to 1.23), and demoted on incorrect

3To be precise, in Winnow, all features have a value of1.000 until learned otherwise; the Winnow type
database handler is specifically programmed to give the default value of1.000 when a feature is not found

110

learning by multiplying by a different constant< 1 (typically in the range0.8 to 0.9) 4.

Other weighting generators can be used as desired; it is perfectly reasonable to define weight

of a feature by reference to a database produced by a learning algorithm.

4.2.4 Weight Combination

At this point in the pipeline, we now have a series of weights corresponding to each feature

in the unknown input text. We now combine these weights to obtain a single output result.

Some spam filters use completely linear weight combining rules - that is, their combining

rules obey the laws of superposition, and the output value of a concatenated text is equal to the

combining rule applied to the values of the unconcatenated text segments. Other filters have

nonlinear features in their combining laws, such as “ignore any weight below a particular

threshold”. This type of nonlinearity is easily accommodated by simple modification of the

combining rules below.

Other filters use a sorted-weight approach, typically “only use the most extremeN weights

found in the document”. This sorted-weight approach is less easily represented as a simple

function of the stream of weights emitted from the weight generator software.

• Bayesian Combining

A very common combining formula is the generalized Bayesian probability combiner

formula - this relates a local probability due to a given feature, a prior probability (the

4It should be noted that Winnow learning is not “promote on correct”, rather, it is a thickness-based learning
algorithm that promotes/demotes if the final output is not outside a thick threshold; this means that for some
ambiguous texts both the in-class and not-in-class databases will be updated.

111

probability of a document being in a particular class before this feature was encoun-

tered) and the posterior probability (the updated probability, given that the feature was

found in the document)

Pposterior =
Pprior ∗ Plocal∑

overallclasses(PpriorThatClass ∗ PlocalThatClass)
(4.4)

• Chi-Squared Combining

Another common combining rule is thechi-squared rule. In the chi-squared formula-

tion, the observed occurrences of features are compared against the expected number

of occurrences of those features. Typically this is done in a matrix format The actual

chi-squared formula for the chi-squared value of one exclusive feature is given by the

equation 4.5. All of the chi-square feature values are summed.

X2 = ((Observed− Expected)2/Expected) (4.5)

Nature of Expected No. No. of Features
Text of Features Actually Observed

Unknown text assumed
to be Good A B

Unknown text assumed
to be Spam C D

Table 4.1: Chi Square Formulation

112

• Winnow Combining

If the weight calculation and value updating is performed using the Winnow algorithm,

the combining rule is particularly simple and is given by Equation 4.6

WeightOut = WeightIn + LocalWeight (4.6)

4.2.5 Final Thresholding

After the weights are combined, a final thresholding is performed. For filters that use prob-

ability, the final decision threshold value is typically0.5 (ambivalent probability). As some

filters authors and filter users consider it preferable to falsely accept some spam in order to

decrease the amount of falsely rejected nonspam, not all filters usep = 0.5. (it is conjectured

that, for filters using linear combining rules, that altering the decision threshold is completely

equivalent to altering the training regimen).

4.3 Emulation of Other Filtering Methods

If this generalized model of spam filtering is truly general, we must show that it is possible to

represent all possible filters within its framework. In one sense, this is trivial to prove, as the

initial text-to-text transformcan contain an arbitrary computation and all subsequent stages

can operate in a pass-through mode. Despite this trivial proof, it’s actually useful to consider

113

how to use an optimized implementation with parameterized code in the generalized filtering

model to implement other types of filters such as heuristic filters and black/whitelists.

4.3.1 Emulating Whitelists and Blacklists in the Generalized Model

Emulation of whitelist/blacklist filtering in the generalized model is quite simple. All we

need to do is to look for the whitelisted or blacklisted words in the input, and count them.

If the whitelisted words outnumber the blacklisted words, the text is good, if the blacklisted

words outnumber the whitelisted words, the text is spam, and it’s indeterminate if there is a

tie.

A set of parameters for the generalized model that produce a whitelist/blacklist filter is below:

1. The initial text-to-texttransform is “none”. That is, the output text is equal to the input

text.

2. The token generator regex is [[:graph:]]+ (resulting in blank-delimited blacklisting and

whitelisting.

3. The tuple set for feature generation is just{1}, giving feature Ids that correspond to

single words.

4. The feature database is loaded only with those words that are blacklisted or whitelisted,

with a value of+1 for whitelisted words, and−1 for blacklisted words. All other words

return a0.0 value.

114

5. The feature weight rule is

FeatureWeight = FeatureLookedUpV alue

6. The feature combiner rule is

NewScore = OldScore + FeatureWeight

7. The final decision threshold is “> 0” implies good, “< 0” implies bad, otherwise

unknown”.

This particular implementation scores whitelist words and blacklist words equally; some

people consider them equally valuable. For pure whitelisting or blacklisting, one could put

only the respective whitelist or blacklist words into the feature database, or one could weight

whitelist words with much higher weights than blacklist words (or vice versa).

4.3.2 Emulation of Heuristic Filters in the Generalized Model

We now consider the question of the emulation of heuristic filters in the generalized model.

Heuristic filters are by definition created by expert humans, to trigger on specific features

of the unknown text. The individual features may either accumulate a weight or score, or

by themselves be sufficient to reject (or accept) an unknown text. It is possible to form

115

hybrid human+machine-created systems in this form. For example, SpamAssassin [110] has

a feature library of several hundred human-written recognizers; the recognizers themselves

have weights that are optimized by a genetic algorithm testing against a well-vetted base of

spam and nonspam texts.

Emulation of these heuristic-feature-based filtering systems is easily performed by:

1. Generating a “local key”, a string with a vanishingly small probability of appearing in

an incoming text; this local key can be constant for a user, or be randomly generated

for each incoming text.

2. Executing a series of rewrite rules; each rewrite rule corresponds to one of the original

heuristics. Whenever a rewrite rule matches the incoming text (corresponding to the

original heuristic being triggered), the rewrite rule appends a new line at the end of

the unknown text; this new line contains the local key followed by the heuristic rule’s

unique identifier.

3. The second-from-last rewrite rule deletes every line in the unknown text that does not

start with the local key.

4. the last rewrite rule deletes every copy of the textual representation of the local key

from the text, leaving only the unique heuristic identifiers.

5. The text emitted from the preprocessor is now just the unique identifiers of the heuristic

rules that were satisfied by the original text.

116

The resulting output text is now taken one unique identifier at a time (i.e., with the tuple set:

{1}

and the respective weightings of the unique identifiers are then looked up. For example, if

we were emulating SpamAssassin [110], the respective weightings stored in the database

would be the relative point values of each of the heuristic features found, the local weighting

formula would be just:

LocalWeight = DatabaseV alueReturned

and the combining rule would be the summation of the local weights is:

TotalWeight = TotalWeight + LocalWeight

The current version of SpamAssassin [110] at this writing uses a threshold of4.5, so the final

decision threshold is:

TotalWeight− 4.5 > 0

117

4.3.3 Examples of Popular Spam Filters in the Generalized Model

Here, we will show several popular spam filters as expressed in the generalized model.

1. Classic Paul Graham’s “A Plan For Spam” model (2002)[53]

(a) Preprocessor:lowercase, remove HTML comments, remove numeric-only con-

stants

(b) Tokenizer:[[-’$a-z]]+

(c) Feature Generator:single tuple -{ 1 }

(d) Lookups:count of good occurrences “G”, count of bad occurrences “B”

(e) Weight Generator:

If(G + B < 5) : 0.5

Else(d0.99(b0.01(
Bad

Good + Bad
)c)e)

(f) Weight Combiner:Classic Bayesian, top 15 scorers only

(g) Final Decision Threshold:0.9

2. Death2Spam (D2S) model[68]

(a) Preprocessor: lowercase, remove HTML comments, add specific markers for

FROM and TO fields in header

(b) Tokenizer:[[a-z]]+

(c) Feature Generator:single tuple -{ 1 }

118

(d) Lookups:count of good occurrences “G”, count of bad occurrences “B”

(e) Weight Generator:

(d0.99(b0.01(
Bad

Good + Bad
)c)e)

(f) Weight Combiner:Classic Bayesian

(g) Final Decision Threshold:0.5

3. SpamAssassin model[110]

(a) Preprocessor:all 300+ SpamAssassin heuristics (using the feature Ids as in cur-

rent SA), deleting all non-featureID text as a final step before tokenizing

(b) Tokenizer:[[:graph:]]

(c) Feature Generator:single tuple - 1

(d) Lookups:precalculated per-feature weights of good occurrences “G”, weight of

bad occurrences “B”

(e) Weight Generator:Simple lookups, no G/B combination

(f) Weight Combiner:Simple addition

NewScore = OldScore + B −G

(g) Final Decision Threshold:accept if< 4.5

119

4. CRM114 (2002 model)[35]

(a) Preprocessor:remove HTML comments, expand BASE64’s

(b) Tokenizer:[[:graph:]]

(c) Feature Generator:Sparse Binary Polynomial Hash (SBPH) tuple set of window

length 4 (note that CRM114 in 2002 did not use differing weightings depending

on the tuple. CRM114 moved to a window-length 5 tuple set in early 2003)

{ 1, 0, 0, 0 }

{ 1, 2, 0, 0 }

{ 1, 0, 3, 0 }

{ 1, 2, 3, 0 }

{ 1, 0, 0, 4 }

{ 1, 2, 0, 4 }

{ 1, 0, 3, 4 }

{ 1, 2, 3, 4 }

(d) Lookups:count of good occurrences “G”, count of bad occurrences “B”

(e) Weight Generator:

0.5 +
Good

(Good+Bad
2

)
+ 16 (4.7)

(Note: 2002 CRM114 did not yet have superincreasing Markovian weightings

that depended on the tuple being used)

120

(f) Weight Combiner:Classic Bayesian, score everything.

(g) Final Decision Threshold:accept ifPgood > 0.5

4.3.4 Conclusion and Future Work

This chapter shows that a single unified pipeline, controlled by a relatively small set of input

parameters (a set of rewrite rules, a regex, a set of tuples, a mapping/lookup table, and a chain

combining rule) can describe nearly all of the spam filters of all variants typically available

today. By showing the commonality of these filters, we hope to stimulate creative thought to

advance the state of filtering art, with some hope of advancing the entire field of information

retrieval.

121

Chapter 5

The CRM114 Discriminator Framework

5.1 Introduction

CRM114[35] is an acronym for the Controllable Regex Mutilator concept 114. It was created

by Dr. William “Bill” S. Yerazunis from Mitsubishi Electric Research Laboratories (MERL)

in 2002. It originally got its name from Stanley Kubrick’s movieDr. Strangelove (or: How I

Learned to Stop Worrying and Love the Bomb). The CRM114 Discriminator is analogous to

the radio receiver in the movie which is designed to receive only authentic communications

and reject any communications that might be false or misleading. In the context of spam

filtering, CRM114’s goal is to discriminate between authentic messages and to reject others.

Most spam filters are single-paradigm; to change the methodology of filtering requires a

complete rewrite of the filter. CRM114 is different; It’s not a filter per se; it is a language

designed for writing filters and the most common filter usage is for spam.

122

Much of the work on spam-filtering models by the author of the thesis conducted in col-

laboration with William Yerazunis from MERL, Christian Siefkes from Freie Universität,

Fidelis Assis from Embratel and Dimitrios Gunopulos from UCR[30][105][129], is imple-

mented in different versions of the CRM114 Discriminator(Please refer to Chapters 4, 7

and 8).

At the time of this writing, CRM114 versions implemented the Naïve Bayes Model,

the Markov Model, an OSB (Orthogonal Sparse Bigram) model, Littlestone’s non-statistical

Winnow algorithm[71], an experimental “voodoo” weighting model on an Orthogonal Sparse

Bigrams (OSB) base, a bytewise correlator model, and a hyperspatial radiance model. A

CRM114 version implementing Support Vector Machines (SVM) model is under develop-

ment. Fidelis Assis from Embratel is the original inventor of the Orthogonal Sparse Bigrams

(OSB).

All of the classifiers mentioned above are keyword selectable, so to switch to a different

classifier model requires only changing a single flag and re-running the training corpus. Be-

cause the CRM114 system is a language, multiple classifiers can coexist peacefully in the

same filter architecture.

The CRM114 language is explained in detail in the bookCRM114 Revealed, which is

freely available from the CRM114 homepage hosted at SourceForge[35].

123

5.2 CRM114 Discriminator and the Text Retrieval Confer-

ence (TREC) 2005

The Text Retrieval Conference (TREC)[116] is organized every year by the Information

Technology Laboratory’s (ITL), of National Institute of Standards and Technology (NIST),

the Retrieval Group of the Information Access Division (IAD), and the Advanced Research

and Development Activity (ARDA) of the U.S. Department of Defense. Professor Gordon

Cormack is organizing the SPAM Track for TREC 2005[109]. The objective of the SPAM

Track is to provide a standard evaluation of the current spam-filtering approaches. Results of

SPAM Track will be available in November 2005.

The CRM114 Team for TREC (Fidelis Assis, Christian Siefkes, William S. Yerazunis

and Shalendra Chhabra) have submitted the following four versions of CRM114 to the SPAM

Track, TREC 2005. The algorithms implemented in these filters and the configuration set up

are explained in detail in Chapter 7 and Chapter 8.

1. crmSPAM1osf: CRM114 Orthogonal Sparse Bigram (OSB) Filter

TheOSB Filteris a typical Bayesian classifier implementing Fidelis Assis’s Orthogo-

nal Sparse Bigrams (OSB) [105], a feature extraction technique derived from Sparse

Binary Polynomial Hashing (SBPH)[127].

This filter does not use any pre-trained information and the messages are not prepro-

cessed in any way, not even mimedecoded.

124

2. crmSPAM2win: CRM114 OSBF Filter

TheOSBF Filteris a typical Bayesian classifier implementing the Orthogonal Sparse

Bigrams (OSB) as the feature extraction technique at its front-end and an intuitively

derived confidence factor, also known asvoodoo, for noise reduction and greater accu-

racy.

This configuration does not use any pre-trained information and the messages are not

preprocessed in any way, not even mimedecoded.

3. crmSPAM3osu: CRM114 OSB Unique Filter

TheOSB Uniqueis a typical Bayesian classifier implementing the Orthogonal Sparse

Bigrams (OSB) feature extraction technique with the restriction that features are con-

sidered only once irrespective of their occurrence in a document.

This configuration does not use any pre-trained information and the messages are not

preprocessed in any way, not even mimedecoded.

4. crmSPAM4OSB: CRM114 Winnow Filter

This filter variation combines the Orthogonal Sparse Bigrams (OSB) feature combina-

tion technique with the Winnow algorithm[71] developed by Nick Littlestone. More

details on this are available in Chapter 8. This classifier also does not use any pre-

trained information and messages are not preprocessed in any way, not even mimede-

coded.

125

5.3 Implementing CRM114 at Mailservers

We will now describe different configuration modes for implementing CRM114 at mailservers.

In Section 5.4 we describe a generalized configuration mode for implementing CRM114,

which is currently being tested at a medium-sized organization. This is illustrated in Figure

5.1. We are also aware of a large ISP company using CRM114 for filtering more than one

million web based email accounts. We present the CRM114 configuration mode for such

huge set of email users in Section 5.5.

5.4 A Generalized Configuration Mode for Implementing

CRM114 at Mailservers

A generalized configuration mode for implementing CRM114 at mailservers is illustrated in

Figure 5.1.

1. Lookups by the Recipient MTA

Upon receiving SMTP connections from Sender/Forwarding MTA, the recipient MTA

first performs DNS-based lookups. For example, it matches the IP address of the sender

against a Real-time Blackhole List such as the one provided by the Spamhaus. It

can also implement authentication mechanisms using SPF (i.e. it will validate the IP

address of the connecting client machine obtained during the TCP/IP setup and also

specified in the MAIL FROM command against the SPF record for that domain).

126

2. MTA Calls MDA

Depending upon the local policies, the mail can then be rejected or allowed to pass

through. The MTA then calls the MDA(ex: Procmail, Maildrop)which is the program

responsible for delivering incoming mail to the recipients inbox.

3. MDA Calls a Series of Filters: sanitizer, clamd, CRM114

A MDA like Procmailexecutes a series of filtering actions in a sequential fashion. As

illustrated in Figure 5.1, the MDAProcmailfirst calls a filtersanitizerwhich is a tool

for preventing attacks via trojans and worms in attachments. TheProcmail then calls

another filter,clam daemon(clamd). Clamdis a tool which scans files against viruses.

Note that these filters are just described as an example setup. The administrators can

choose any number of filters in any order.

The next filter in the pipeline is the CRM114 Discriminator for filtering spam. The

CRM114 classifies the email stream into three folders:Good, Spam, andUnsure. The

MDA Procmailthen delivers these classified emails into respective folders in the users

inbox. As illustrated in Figure 5.1, a user can access these folders by any of the enabled

standard mail retrieval program such as Internet Message Access Protocol (IMAP)[63],

Post Office Protocol (POP)[97] or via webmail.

4. Feedback Loop with Human Actions

After checking emails in the respective folders, the user can provide feedback by train-

ing the system about misclassified messages. This is shown in the oval displaying

127

Human Actionin Figure 5.1. Thus, through human intervention, the system is trained

aboutgood mail misclassified as spam, spam misclassified as good mail, spam in un-

sure folderandgood mail in unsure folder. A Cron Daemoncan be programmed to

train the learning acquired in the feedback loop to to the CRM statistics files ofspam,

ham and whitelistedsenders. Ham emails which were misclassified as spam are deliv-

ered back in the GOOD folder throughProcmail.

The CRM statistics files do not store the actual text but rather uses a hashed representa-

tion. The hashing references speeds up access per feature (typically under 1 microsec-

ond per feature) and provides a modicum of actual security against snooping attacks

since the text is not stored.

5. Whitelisting through Outbound Mail

Also, all outbound email to recipients sent from the senders inside the domain are

added to thewhitelist, and the features in their content are trained in the CRM sparse

spectra files for whitelisted senders.

128

Figure 5.1: A generalized configuration mode for implementing CRM114 at mailservers.
Figure drawn in collaboration with Ronald Johnson and William S. Yerazunis from Mit-
subishi Electric Research Laboratories (MERL), Cambridge, MA.

129

5.5 CRM114 Configuration Mode for Large Scale Enter-

prises

We are aware of a large webmail ISP company using CRM114 for more than one million

email accounts of its users for filtering out spam. We now present CRM114 configuration

mode for such large scale enterprises. This is illustrated in Figure 5.2.

1. Look Ups by the Recipient MTA

Upon receiving SMTP connections from sender/forwarding MTA, the recipient MTA

first performs DNS-based lookups. For example, it matches IP address of the sender

against a Real-time Blackhole List (RBL) such as the one provided by the Spamhaus.

It can also implement authentication mechanisms using SPF (i.e. it will validate the

IP address of the connecting client machine obtained during the TCP/IP setup and also

specified in the MAIL FROM command against the SPF record for that domain).

2. MTA Calls MDA

Depending upon the local policies, the mail can then be rejected or allowed to pass

through. The MTA then calls the MDA(example: Procmail, Maildrop), which is the

program responsible for delivering incoming mail to the recipient’s inbox.

130

3. MDA Calls the CRM114 Spam Filter

A MDA like Maildrop executes a series of filtering actions in a sequential fashion.

The next filter in the pipeline is CRM114 Discriminator. A precise description of the

working stages of CRM114 spam filter follows:

(a) CRM114 Matches Sender against Whitelist and Blacklist

CRM114 matches all incoming emails against a user’swhitelistandblacklist. If

the sender iswhitelisted, CRM114 stops the evaluation and the email is delivered

to the good mail spool. Usually the address book of the users is mirrored as the

whitelist. Similarly, if the sender isblacklisted, the email is delivered to the spam

mail spool.

(b) CRM114 Computes the Class

As illustrated in Figure 5.2, after testing the sender against thewhitelistandblack-

list, the CRM114 Discriminator(set with a conservative decision point)using its

database, classifies the email stream into GOOD and SPAM. Emails are then de-

livered to the good mail spool and the spam mail spool, respectively.

131

4. Training by the Systems Staff

A group oftrusted peoplefrom the entire users set forms the training staff. The training

staff is around 20 people from the systems staff of the company implementing CRM114

in this configuration mode. The systems staff is shown by the white oval in Figure 5.2.

This set of trusted people use and train the global database of spam and good mail as

if they were training their own local database. The result is a global database, shared

by all users but trained for a broader audience. Care is taken while training, and all

training sessions are logged.

This particular configuration of CRM114 has shown remarkable accuracy in filtering

spam in practice.

132

Figure 5.2: CRM114 configuration mode for filtering more than one million client email
accounts used by a large ISP. Figure drawn in collaboration with Ronald Johnson, William S.
Yerazunis from Mitsubishi Electric Research Laboratories (MERL), and Fidelis Assis from
Embratel.

133

Chapter 6

The CAMRAM System

6.1 Introduction

CAMRAM[23] is an acronym for Campaign for Real Mail. Invented by Eric S. Johansson

in 2002, it is a real-world system implementing thehybrid sender-paysmodel for email.

A näive sender-payssystem sends a stamp to everyone all the time while ahybrid sender-

payssystem sends stamps to a sender the user has never emailed. This difference withnäive

sender-payssystem minimizes the work load on the ordinary user and increases the difference

in workload between ordinary user and spammer.

CAMRAM is based on Adam Back’s Hashcash[11], which we explained in detail in

Chapter 3.

134

6.2 Architecture of the CAMRAM System

The CAMRAM system consists primarily of three major subsystems—two filter chains, one

for outbound messages and one for inbound messages, and a user interface. The outbound

filter chain is shown in Figure 6.2, and the inbound filter chain is shown in Figure 6.1. The

CAMRAM user interface is shown in Figure 6.3. The CAMRAM system has adumpster

folder for all spam and aspamtrapfolder for unsure mails.

Inbound messages go through a series of filters—stamp filter, keyword filter, friends list

filter andcontent filter—to determine the class of the message (i.e. to determine if it is a

good message or spam). Outbound messages are subjected to thestamper filter, and a stamp

based on Hashcash[11] is generated for any message recipient not on the friends list; these

addresses are fed into the friends database so that any replies are not subjected to the content

filter.

The CAMRAM system is currently usable with Postfix MTA only because of the Postfix

filter interfaces.

6.3 CAMRAM Inbound Filter

The CAMRAM inbound filtering chain consists of two filter stages, each with a series of

filters. The first stage is designed to prevent the entry of spam into the mail system. The

second stage is designed to eliminate spam from the message stream once it’s in the mail

system. These filter stages are described below.

135

1. First Stage CAMRAM Filters

For the inbound filter chain one instance of the Postfix SMTP serversmtpd.1is con-

nected to the first stage CAMRAM filters. First stage CAMRAM filters consists of two

filters, abrown listingfilter and aper address rate limitingfilter.

(a) Brown Listing Filter

The brown listing component of CAMRAM system provides an escape mecha-

nism for inappropriately blacklisted senders. Brown listing is a slight modifica-

tion of the blacklist. Any message coming from a blacklisted address is blocked

unless the message contains a large stamp. A large stamp is defined as three bits

larger than the baseline stamp (i.e. it takes eight times longer to compute). The

computational load imposed by such a stamp is only practical if an individual is

trying to get through to correct a blacklist problem.

(b) Per Address Rate Limiting Filter

The per address rate limiting filter is implemented for protecting mailservers and

specific addresses on these servers against Denial of Service (DoS) attacks. If

the arrival rate for a given address is above a threshold, only messages for that

address are rejected with a 4xx SMTP error code. For example, a per address rate

limiter message error message will look like this:

421 mailbox temporarily disabled, not accepting messages

The sending MTA in this case should re-queue the message and try again later.

136

2. Message is Queued for Subsequent Filtering

After the message passes through these two filters, the source IP address is placed in

the message and is then returned to the Postfix SMTP server for further processing,

subsequent filtering, and delivery. Recording source IP with messages is useful for

constructing a local blacklist if the message is confirmed as a spam message.

3. Post Queuing Filtering

The CAMRAM post queue filtering consists of four filters—Hashcash stamp filter,

friends list filter, header keyword filterandCRM114 filter. The filtering chain termi-

nates as soon as the message is determined as good or is processed by the CRM114

filter. As soon as a message is determined good, it is passed to the Postfix SMTP server

for further processing (i.e. local delivery, or relaying the message to another machine

for local delivery).

(a) Hashcash Stamp Filter

This filter tests for the existence of the stamp. If the stamp is present, it then

checks if the stamp is of “sufficient value.” Any electronic currency needs protec-

tion againstparallel andserial double spending. The Hashcashdouble spending

databaseprotects against serial double spending (i.e. detecting the same stamp

arriving twice). Using an email address in the resources field protects against par-

allel double spending. If the email address in the resources field does not match

the recipient’s email address, the stamp is considered invalid.

137

(b) Friends List Filter

If the sender is in the friends list, the message is passed. The friends list is up-

dated automatically from outbound traffic and the messages approved from the

spamtrap. This feature can also be used to train the content filter. Every message

that passes the friends list filter is considered good. If this message, when passed

to the content filter, is classified as a bad message, the content filter can be trained

with known good messages.

(c) Header Keyword Filter

This filter matches strings associated with a particular header. This is very useful

for passing mailing lists through the inbox or for whitelisting senders.

(d) CRM114 Filter

The CRM114 filter is the last filter in the series. It scores the message and then

separates it into three bands—green, yellow, and red. Green is automatically

passed into the user’s inbox, red is passed into a dumpster, and yellow is passed

into a spamtrap.

138

Figure 6.1: CAMRAM inbound filter. Note that the inbound filter chain is composed of
first stage CAMRAM filters and four filters—Hashcash stamp filter, friends list filter, header
keyword filter and CRM114 filter.

139

6.4 CAMRAM Outbound Filter

We will now explain the CAMRAM outbound filtering chain in detail.

1. The CAMRAM Queue

At the second CAMRAM filter system interface, there is another instance of Postfix

SMTP server,smtpdrunning with a filter connected to the post-queuing stage of the

processing. As shown in Figure 6.2, messages are taken from the Postfix queue and

placed in the CAMRAM queue. A second queue is needed because the stamp process-

ing can take a significant amount of time and this might exceed the filter timeout value

of the Postfix.

2. Splitter Filter

After the message is removed from the queue, it is then split into individual messages

which are then passed to the Stamper filter.

3. Stamper Filter

Each message is then stamped and delivered. The stamper filter also records the recip-

ient email address in the friends database so that all replies are directly delivered to the

sender.

140

Figure 6.2: CAMRAM outbound filter.

141

6.5 CAMRAM User Interface

We will now describe the CAMRAM user interface. At the time of this writing, there are two

primary user interface channels for CAMRAM, the web and the Mail User Agent (MUA).

1. The Web Interface to CRM114

The web interface has six functionalities—sort messages, recover, preferences, edit

whitelists (keyword and friends), andlogout.

(a) Correct.cgi

Sort messages functionality is shown as correct.cgi in Figure 6.3. This is the

interface for designating messages in the spamtrap as good or bad. Each message

in the user interface is color-coded (red/green/yellow), has a visible score, and

has a checkbox so that the user can change the color state. If the message state is

inconsistent with the score, CRM114 will retrain with the correct state.

The correct.cgi interface also shows the thresholds between green, yellow, and

red. During initial system set-up, the threshold limits for green and red are +/-

350. During training, these thresholds are moved together and stop moving when

they are +/-10 points apart.

(b) Recover.cgi

Recover.cgi is the interface for recovering messages from the dumpster. Normally

a message placed in the dumpster is considered as spam, and the message expires

after five days. However, if the content filter misclassifies a good message as

142

spam and moves the message to the dumpster (false positive), a recovery process

can be used to recover the message.

2. The MUA Interface to CAMRAM

At the time of this writing, the MUA interface to the CAMRAM remains primitive. A

message can be dropped into a specified mailbox such as the junk folder. The contents

of the mailbox are then harvested and trained as spam using the CRM114 filter, and

then thrown into the dumpster. The MUA feedback mechanism works only with IMAP.

6.6 Snapshots of CAMRAM Interfaces

Snapshots of the CAMRAM interfaces are shown in Figure 6.4, Figure 6.5, Figure 6.6,

Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11.

143

Figure 6.3: CAMRAM user interface.

144

Figure 6.4: CAMRAM user interface displaying configuration settings. Source: Eric S.
Johansson, CAMRAM.

145

Figure 6.5: CAMRAM user interface displaying a mechanism for adding friends. Source:
Eric S. Johansson, CAMRAM.

146

Figure 6.6: CAMRAM user interface displaying a mechanism for adding keywords present
in the headers. Source: Eric S. Johansson, CAMRAM.

147

Figure 6.7: CAMRAM user interface displaying the sorting mechanism - 1. Source: Eric S.
Johansson, CAMRAM.

148

Figure 6.8: CAMRAM user interface displaying the sorting mechanism - 2. Source: Eric S.
Johansson, CAMRAM.

149

Figure 6.9: CAMRAM user interface displaying the recovery mechanism - 1. Source: Eric
S. Johansson, CAMRAM.

150

Figure 6.10: CAMRAM user interface displaying the recovery mechanism - 2. Source: Eric
S. Johansson, CAMRAM.

Figure 6.11: CAMRAM user interface - key to history. Source: Eric S. Johansson, CAM-
RAM.

151

Chapter 7

Spam Filtering Using a Markov Random

Field Model

7.1 Introduction

Spam filtering problem can be seen as a particular instance of the Text Categorization prob-

lem (TC), in which only two classes are possible:spamandlegitimate emailor ham. Today,

most of the spam filters implemented at the client side or at the ISP Level are Bayesian Style

Spam Filters (with some heuristics) [53][54] violating the basic assumption of the Bayes rule

(i.e. they treat words independent of each other). In this chapter, we present spam filtering

based on the Markov Random Field Model with different weighting schemes of feature vec-

tors for variable neighborhood of words. We present theoretical justification for our approach

and conclude with results.

152

7.2 Related Work

Spam filtering has been treated as a particular instance of Text Categorization (TC). Much

work has already been reported on spam filtering using the traditional classification and sta-

tistical techniques such as an application of learning algorithm RIPPER for classification

based on TF-IDF weighting (Term Frequency× Inverse Document Frequency)[32]; Naïve

Bayesian approach[100]; Support Vector Machines in comparison to boosting of C4.5 trees,

RIPPER and Rocchio[44] etc. Recently Sparse Binary Polynomial Hash (SBPH) filtering

technique, a generalization of the Bayesian method[127] and Markovian discrimination[128]

have also been reported.

The classifier model in [128] uses empirically derived ad-hoc superincreasing weights.

We develop more on [128], correlate it with Markovian Random Field Model, choose variable

neighborhood windows for features using Hammersley-Clifford theorem [57] and present

different weighting schemas for the corresponding neighborhood window. We implement

our scheme in CRM114 filter [35]. Our results reflect the effect of neighborhood relationship

among features and provide evidence that such a model is superior than existing Bayesian

models used for spam filtering.

7.3 Markov Random Fields

Let F = {F1 ,F2 . . . ,Fm} be a family of random variables defined on the discrete set of sites

S, in which each random variableFi takes a valuefi in the discrete label setL . The familyF

153

is called a random field. The notationFi = fi denotes the event thatFi takes the valuefi and

the notation(F1 = f1, . . . , Fm = fm) denotes the joint event. A joint event is abbreviated

asF = f wheref = {f1, . . . fm} is a configurationof F, corresponding to a realization of

the field. For the label setL , the probability that random variableFi takes the valuefi

is denoted byP(Fi = fi), and abbreviated asP(fi) and the joint probability is denoted by

P(F = f) = P(F1 = f1 , . . .Fm = fm) but abbreviated asP(f). A site in the context of spam

classification refers to the relative position of the word in a sequence and a label maps to

word values.F is said to be a Markov random field onS with respect to a neighborhood

systemN if and only if the following two conditions hold:

1. P(f) > 0 ,∀f ∈ F (positivity)

2. P(fi |fS−{i}) = P(fi |FNi) (Markovianity)

whereS−{i} is the set difference,fS−{i} denotes the set of labels at the sites inS−{i} and

fNi
= {f ′

i |i′ ∈ Ni} stands for the set of labels at the sites neighboring i. When the positivity

condition is satisfied, the joint probability of any random field is uniquely determined by

its local conditional probabilities [18]. The Markovianity depicts the local characteristics of

F. Only neighboring labels have direct interactions with each other. It is always possible to

select sufficiently largeNi so that the Markovianity holds. The largest neighborhood consists

of all other sites. AnyF is a MRF with respect to such a neighborhood system.

154

7.4 Markov Random Field Model and CRM114

We have implemented our scheme in CRM114 Filter. Like other binary document classi-

fiers, the CRM114 filter associates a binary class valueS ∈ {spam, nonspam} with any

given documentω = (ω1, . . . , ωn). As a word context sensitive classifier CRM114 does

not treat the input documentω as a bag of independent words, but rather considers all re-

lations between neighboring words to matter, for neighborhoods with variable window size

(for example: up to 3, 4, 5, 6 words etc.).

We now derive a possible MRF model based on this neighborhood structure, thereby

casting the classification problem as a partial Bayesian inference problem.

Our MRF model consists of a probability measureP defined on a set of configurationsΩ.

The elementsω ∈ Ω represent all possible documents of interest, with thei-th componentωi

representing thei-th word or token. A random class functionC is defined overΩ, C : Ω →

{spam, nonspam}, such thatC indicates the class of the document, and whose law is given

by P .

In this framework, the document classification problem can be treated as the problem of

computing the probabilityP (C(w) = spam|ω), or more precisely for MAP estimation (i.e.

maximum a posteriori). The optimal classs∗ is chosen as:

s∗ = arg maxs∈SP (C(w) = s|ω).

155

Let us define ak-neighborhood consisting ofk consecutive token positions in a document.

The cliques are defined to be all possible subsets of a neighborhood.

Thus if ω = (ω1, . . . , ωn) is a document, then the first3-neighborhood is{1, 2, 3}, and

the associated cliques are{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}.

We assume that the measureP is an exponential form Markov Random Field condi-

tioned onC(w). This postulate is natural in view of the characterization by Hammersley and

Clifford [57], in terms of conditional distributions on cliques. The functional form ofP is

therefore fixed as follows:

P (ω|C(ω) = s) = Z−1
s exp

(∑
i

V s
i (ωi) +

∑
ij

V s
ij(ωi, ωj)+

· · ·+
∑

i1,...,ik

V s
i1,...,ik

(ωi1 , . . . , ωik)
)
,

whereZs is the appropriate normalizing constant which guarantees that
∑

ω P (ω|C(ω)) = 1

when summed over all possible documentsω. By the Hammersley and Clifford [57] charac-

terization of MRFs, the functionsV are nonzero if and only if the indices form a clique.

We can identify the conditional MRF with a specific CRM114 instance by assigning the

requiredV functions from the local probability formulas. For example,

log V s
ij(ωi, ωj) = Πij(ω, s),

whereΠij(ω, s) = (local probability for(ωi, ωj), givenC(ω) = s). Πij(ω, s) cannot be

156

interpreted directly as conditional probabilities, however an easy product form solution is

obtained i.e.

P (ω|C(ω) = s) = Z−1
s

∏
cliques c

Πc(ω, s)

which is quite different from a Näive Bayesian model. In the special case of neighborhoods

with k = 1, this reduces to a Naïve Bayesian model.

With this solution, Bayes’ rule can be applied to obtain the class probability, given a

document:

P (C(ω) = s|ω) =
P (ω|C(ω) = s)P (s)

P (ω)
.

In the Bayesian framework, the two unknowns on the right areP (s) (the prior) andP (ω).

Normally, P (ω) is ignored, since it does not influence the MAP estimate, but it can also be

expanded in the form:

P (ω) = Z−1
spam

∏
cliques c

Πc(ω, spam)P (s)+

Z−1
nonspam

∏
cliques c

Πc(ω, nonspam)(1− P (spam))

TheZ−1 terms are the factors necessary to compensate for the inter-word dependence that a

Näive Bayesian Model normally ignores. WhileZ−1 terms cannot be computed exactly, a

lower bound based on the neighborhood structure of the clique can be set and a possible value

can be approximated. However, this approximate Markov Random FieldZ−1, bound merely

guarantees the ability of the learning system to compensate for the inter-word dependence.

157

7.5 Features Vectors in the Chosen Neighborhood

We now present a few possible approximations and bounds onZ−1 such that the learning

algorithms can compensate for inter-word dependence. This is done by re-defining the learn-

able features to be both single tokens and groupings of sequential tokens, and by varying the

length of the grouping window. By forcing the shorter groupings of sequential tokens to have

smallerZ−1 weightings, the inter-word dependence of natural language can be compensated.

The larger groupings have greater clique potentials and the smaller groupings have smaller

clique potentials. A secondary effect which is present is that if theZ−1 weights are super-

increasing, then the classifier becomes a nonlinear classifier and is not bound by the limits

of the Perceptron theorem. This superincreasing classifier can cut the feature hyperspace

along a curved (and possibly disconnected) surface, in contrast to a linear Bayesian classifier

that is limited to a flat hyperplane [80]. We now propose someZ−1 weighting schemes with

superincreasing weights.

Let n-sequencedenote a feature containingn sequential nonzero tokens, not separated by

placeholders;n-termdenotes a feature containingn nonzero tokens, ignoring placeholders;

e.g. “A B C” would be a 3-sequence and a 3-term, “A B ? D” would be a 3-term, but not a

sequence.

For eachn-sequence, there areNum(n) = 2n − 2 subterms (“−2” because the “empty

feature”—only placeholders, no nonzero token—and then-sequence are ignored).

158

The number of subterms withk tokens is given by the binomial coefficient:Num(n, k) =(
n
k

)
, for 0 < k < n. (Fork = 0 andk = n this also holds and yields the empty feature resp.

then-sequence itself:
(

n
0

)
=

(
n
n

)
= 1)

The weightW (n) of an-sequence should be larger then the weight of all subterms consid-

ered for this sequence. ThusW (n) must be greater than the sum of the number ofk-subterms

Num(n, k) times the weight ofk-termsW (k), for 0 < k < n. This is guaranteed if:

W (n) >
n−1∑
k=1

((
n

k

)
×W (k)

)
(7.1)

Minimum Weighting Sequences: The minimum weighting scheme for a superincreasing

set ofZ−1 weights, can be evaluated as:

W (n) =
n−1∑
k=1

((
n

k

)
×W (k)

)
+ 1 (7.2)

The resulting (considering that
(

n
k

)
= n!

k!×(n−k)!
) weighing sequences are shown in Ta-

ble 7.1.

n Sequence

1 1
2 1, 3
3 1, 3, 13
4 1, 3, 13, 75
5 1, 3, 13, 75, 541
6 1, 3, 13, 75, 541, 4683

Table 7.1: Minimum weighting sequences.

159

Exponential Weighting Sequences: Assuming a constant uncertainty and thus constant

incremental information content per sequential token in the input text, an exponentially in-

creasingZ−1 weighting model results. Unfortunately, for any particular fixed base, this

exponential model is only superincreasing (in the sense described above) for a limited win-

dow length, and thus fails for longer window lengths. For any given window length, the

exponential weightingW (k) = basek−1 can be evaluated as:

basen−1 >
n−1∑
k=1

((
n

k

)
× basek−1

)
(7.3)

Adding basen−1 on both sides (considering that
(

x
x

)
= 1); multiplying both sides with

baseand adding 1 yields (considering that
(

x
0

)
= 1 andx0 = 1):

2× basen + 1 >
n∑

k=0

((
n

k

)
× basek

)
(7.4)

Applying the Binomial Theorem :(a + b)n =
∑n

i=0

((
n
i

)
an−ibi

)
and settinga = 1,

b = base we get:

2× basen + 1 > (base + 1)n (7.5)

For base = 2 this postulate only holds for up ton = 1; for base = 3 andbase = 4 up to

n = 2; for base = 5 up ton = 3; for base = 6 up ton = 4; for base = 7 up ton = 5; for

base = 8 up ton = 6.

160

The resulting exponential weighting schemas are shown in Table 7.2.

n Sequence

1 1
2 1, 3
3 1, 5, 25
4 1, 6, 36, 216
5 1, 7, 49, 343, 2401
6 1, 8, 64, 512, 4096, 32768

Table 7.2: Exponential weighting sequences.

7.6 Training and Prediction using CRM114

7.6.1 Testing Procedure

In order to test our multiple hypothesis, a standardized spam/nonspam test set from SpamAs-

sassin [110] was used. This test set is extraordinarily difficult to classify, even for humans.

It consists of 1397 spam messages, 250 hard nonspams, and 2500 easy nonspams, for a total

of 4147 messages. These 4147 messages were then shuffled into ten different standard se-

quences.

A full test set for TOE (Train Only Errors) was performed with all memory in the learning

system initialized to zero. The learning system was then presented with each member of a

standard sequence, in the order specified for that standard sequence, required to classify the

message. If the classification was incorrect, the learning system under test was trained on

the message in the correct category. The training system then moved on to the next message

in the standard sequence. The first 4147− 500= 3647 messages formed the “training set”,

161

and the final 500 messages of each standard sequence formed the “testing set” used for final

accuracy evaluation. At no time a system ever had the opportunity to learn on a “testing set”

message before final accuracy evaluation; however systems were permitted to train on errors

made in the final 500 “testing” messages. The final score was the total number of incorrect

classifications made by each classifier in the 500× 10= 5000 testing messages.

This process of zeroing memory, training 3647 “training set” messages, then testing with

the remaining 500 previously unseen “testing set” messages was repeated for each of the ten

standard sequences. Each set of ten standard sequences (41470 messages) with TOE learning

required approximately 2.5 hours of processor time on a TransMeta 933 MHz laptop.

7.6.2 Models Tested

Four differentZ−1 weighting methodologies for differential evaluation of increasingly long

matches were tested. These models correspond to increasingly accurate descriptions of

known situations in the Markov Field Model.

The first model tested was Sparse Binary Polynomial Hashing (SBPH), which uses a con-

stant weighting of 1.0 for all matches, irrespective of the length. With a window length of

1, SBPH is identical to the common Naïve Bayesian model without discarding any features

as “too uncommon” or “too ambivalent”. Testing showed that best results occurred when

the maximum window length was five tokens. The second model tested was the Exponential

162

Superincreasing Markovian model (ESM), which uses an empirically-derived formula that

yields weights of 1, 4, 16, 64, 256, and 1024 for matches of one, two, three, four, five, and

six words, respectively.

The third model tested was the Minimum Weighting System (MWS) model. This model

uses the minimum weight increase necessary to assure that a single occurrence of a feature

of length N words can override a single occurrence of all of its internal features (that is, all

features of lengths1, 2, . . . , N − 1). This is a different notion than the superincreasing ESM

model, and produces weights of 1, 3, 13, 75, 541 and 4683 as deduced above. This model

is also the minimum set of weights necessary to produce a weighting capable of exceeding

the Perceptron limitation and the minimum weighting capable of computing an XOR, so any

model exceeding the MWS model is also capable of computing XOR and is not bound by the

Perceptron limit.

The fourth model tested uses a variable base to form an exponential series (ES), with a

base chosen to assure that the values are always above the MWS threshold for any value of

window length used. For our tests, we used a base of N= 8, yielding weights of 1, 8, 64,

512, 4096, and 32768.

A summary of the term weighting length is shown in Table 7.3.

Model Weighing Sequence

SBPH 1, 1, 1, 1, 1, 1
ESM 1, 4, 16, 64, 256, 1024
MWS 1, 3, 13, 75, 541, 4683

ES 1, 8, 64, 512, 4096, 32768

Table 7.3: A summary of tested models with their weighting sequences.

163

Note that ESM is not above the minimum weight of MWS for features of four words or

longer, implying that ESM cannot compute XORs of more than three terms. An example of

the weighting model used for these tests is presented in the Table 7.4. Here, the phrase “Do

you feel lucky today?” is broken into a series of subfeatures, and the respective weightings

given to those subfeatures in each of SBPH, ESM, MWS, and ES are shown. These weights

are used as multiplicative factors when calculating the local probability of each subfeature

as it is evaluated in an otherwise-conventional Bayesian Chain Rule evaluation. The local

probability of each class in CRM114 is given by

P = 0.5 + (((fc ∗ w)− (f ′
c ∗ w))/(m ∗ ((ftotalhits ∗ w) + n))) (7.6)

wherefc is the number of feature hits in this class,f ′
c is the number of feature hits in the other

class,ftotalhits is the number of the total hits andw is the weight. In our implementation,

m = 16 andn = 1. These experimentally determined constants generate probabilities close

enough to 0.5 so as to avoid numerical underflow errors even over thousands of repeated

applications of the Bayesian Chain Rule.

164

Sub
Feature Text SBPH ESM MWS ES

0 Do 1 1 1 1
1 Do you 1 4 3 8
2 Do< skip >feel 1 4 3 8
3 Do you feel 1 16 13 64
4 Do< skip >< skip >lucky 1 4 3 8
5 Do you< skip > lucky 1 16 13 64
6 Do < skip > feel lucky 1 16 13 64
7 Do you feel lucky 1 64 75 512
8 Do < skip >< skip >< skip > today? 1 4 3 8
9 Do you< skip >< skip >today? 1 16 13 64
10 Do < skip > feel < skip >today? 1 16 13 64
11 Do you feel< skip > today? 1 64 75 512
12 Do < skip >< skip > lucky today? 1 4 3 8
13 Do you< skip > lucky today? 1 64 75 512
14 Do < skip > feel lucky today? 1 64 75 512
15 Do you feel lucky today? 1 256 541 4096

Table 7.4: Example subphrases and relative weights with the models tested.

7.6.3 Test Results

As a matter of convenience, the feature slots available to each of the implementations were

limited to one million features. If feature memory was nearing exhaustion a randomly cho-

sen low-count feature was deleted. All of the variations ran with the same feature elimination

algorithm. The only elements of the software that were varied were the window length pa-

rameter and the term weighting length table. All four models with a window length of 1 are

exactly equivalent to each other and to a pure Bayesian model as postulated by Graham [53].

Each of these advanced models is also more accurate than a pure Bayesian model in every

window length> 1.

165

The results are shown in the Table 7.5 (in errors per500x10 = 5000 final test messages,

smaller numbers means better performance).

Win 1 2 3 4 5 6
SBPH 101 72 70 69 66 76
% A 97.98 98.56 98.6 98.62 98.68 98.48
ESM 101 77 67 62 56 86
% A 97.98 98.46 98.66 98.76 98.88 98.28

MWS 101 78 64 62 60 87
% A 97.98 98.44 98.72 98.76 98.80 98.26
ES 101 76 71 84 60 92

% A 97.98 98.48 98.58 98.32 98.80 98.16

Table 7.5: Errors and accuracy (% A) per 5000 test messages with varying window sizes
(Win).

7.6.4 Discussion

From Figure 7.1 it is evident that even though ESM has a theoretical weakness due to co-

efficients less than the MWS for window lengths of four or greater, it has the best accuracy

for all tested configurations. The increased error rates for all systems as the window length

increased from5 to 6 is not surprising — as at this point the systems exceeds the one-million-

feature slot limit causing seldom-used features to be deleted. Since these seldom-used fea-

tures were actually the high-weighted features, memory reclamation causes considerable in-

crease in the error rate for long window length Markovian Random Field classifiers.

166

Figure 7.1: Comparison of errors in the tested models with variable neighborhood windows.

7.7 Conclusion and Future Work

We have derived a generalized form of weighting schemas for the classifiers with super-

increasing weights. The weighting sequences define a set of clique potentials, where the

neighborhood of a single word is given by the words surrounding it. For a neighborhood

window of size 2, “pairwise only dependence” by [18] is reflected.

Determining a generalized optimal window size may be the subject of future work. An

interesting direction of future research is the combination of Sparse Binary Polynomial Hash-

ing (SBPH) feature combination technique with other learning algorithms. Recently we have

obtained significant improvements by combining a closely related feature combination tech-

nique with a variant of the Winnow algorithm [71] using TIES [120] [105].

167

Chapter 8

Combining Winnow and Orthogonal

Sparse Bigrams for Incremental Spam

Filtering

8.1 Introduction

Spam filtering can be viewed as a classic example of a text categorization task with a strong

practical application. While keyword, fingerprint, whitelist/blacklist, and heuristic–based

filters such as SpamAssassin[110] have been successfully deployed, these filters have expe-

rienced a decrease in accuracy as spammers introduce specific countermeasures. The current

best-of-breed anti-spam filters are all probabilistic systems. Most of them are based on Naïve

Bayes as described by Graham[54] and implemented in SpamBayes[111]; others such as the

168

CRM114 Discriminator can be modeled by a Markov Random Field[30, 128]. Other ap-

proaches such as Maximum Entropy Modeling[131] lack a property that is important for

spam filtering—they are notincremental, they cannot adapt their classification model in a

single pass over the data.

As a statistical, but non-probabilistic alternative we examine the incrementalWinnow

algorithm. Our experiments show that Winnow reduces the error rate by more than 75%

compared to Näive Bayes and by more than 50% compared to CRM114.

The feature space considered by most current methods is limited to individual tokens (uni-

grams) or bigrams. TheSparse Binary Polynomial Hashing (SBPH)technique (cf. Sec. 8.4.1)

introduced by CRM114 is more expressive but imposes a large runtime and memory over-

head. We proposeorthogonal sparse bigrams (OSB)as an alternative that retains the expres-

sivity of SBPH, but avoids most of the cost. Experimentally OSB leads to equal or slightly

better filtering than SBPH. We also analyze the preprocessing and tokenization steps and find

that further improvements are possible here.

In the next section we present the Winnow algorithm. The following two sections are

dedicated to feature generation and combination. In Section 8.5 we detail our experimental

results. Finally we discuss related methods and future work.

169

8.2 The Winnow Classification Algorithm

The Winnow algorithm introduced by [71] is a statistical, but not a probabilistic algorithm,

i.e. it does not directly calculate probabilities for classes. Instead it calculates ascorefor

each class.1

Winnow keeps ann-dimensional weight vectorwc = (wc
1, w

c
2, . . . w

c
n) for each classc,

wherewc
i is the weight of theith feature. The algorithm predicts 1 for a class iff the summed

weights (called the scoreΩ) surpass a predefined thresholdθ:

Ω =
m∑

j=1

wc
j > θ.

Otherwise (Ω ≤ θ) the algorithm predicts 0.m ≤ n is the number of active (present) feature

in the instance to classify.

The goal of the algorithm is to learn a linear separator over the feature space that predicts

1 for the true class of each instance and 0 for all other classes on this instance. The initial

weight of each feature is 1.0. Weights are updated whenever the prediction for a class is

wrong.

If 0 is predicted instead of 1, the weights of all active features are increased by multiplying

them with apromotion factorα, α > 1: wc
j ← α × wc

j . If 1 is predicted instead of 0, the

active weights are multiplied with ademotion factorβ, 0 < β < 1: wc
j ← β × wc

j .

1There are ways to convert the scores calculated by Winnow into confidence estimates, but these are not
discussed here since they are not of direct relevance for the purpose of this chapter.

170

In text classification, the number of features depends on the length of the text, so it varies

enormously from instance to instance. Thus instead of using a fixed threshold we set the

threshold to the numberm of features that are active in the given instance:θ = m. Thus

initial scores are equal toθ since the initial weight of each feature is 1.0.

In multi-classification, where an instance can belong to several classes at once, the algo-

rithm would predict all classes whose result is higher than the threshold. But for the task at

hand, there is exactly one correct class for each instance, thus we employ awinner-takes-all

approach where the class with the highest score is predicted.

This means that there are situations where the algorithm will be trained even though it

did not make a mistake. This happens whenever the scores of both classes2 are at the same

side of the threshold and the score of the true class is higher than the other one—in this case

the prediction of Winnow will be correct but it will still promote/demote the weights of the

class that was at the wrong side of the threshold.

The complexity of processing an instance depends only on the number of active features

na, not on the number of all featuresnt. Similar to SNoW[24], a sparse architecture is

used where features are allocated whenever the need to promote/demote them arises for the

first time. In sparse Winnow, the number of instances required to learn a linear separator (if

exists) depends linearly on the number of relevant featuresnr and only logarithmically on

the number of active features, i.e. it scales withO(nr log na) (cf. [84, Sec. 2]).

2resp. two or more classes in other tasks involving more than two classes

171

Winnow is a non-parametric approach; it does not assume a particular probabilistic model

underlying the training data. Winnow is a linear separator in the Perceptron sense, but by

providing a feature space that itself allows conjunction and disjunction, complex non-linear

features may be recognized by the composite feature-extractor + Winnow system.

8.2.1 Thick Threshold

In our implementation of Winnow, we use athick thresholdfor learning (cf. [36, Sec. 4.2]).

A thick thresholdcauses a training instance to be re-trained even if the classification was

correct if the classifier result was near the threshold. Two additional thresholdsθ+ andθ−

with θ− < θ < θ+ are defined and each instance whose score falls in the range[θ−, θ+] is

considered a mistake. In this way, a large margin classifier will be trained.

8.2.2 Feature Pruning

The feature combination methods discussed in Section 8.4 generate enormous numbers of

features. To keep the feature space tractable, features are stored in an LRU (Least Recently

Used) cache. The feature store is limited to a configurable number of elements; whenever it

is full, the least recently seen feature is deleted. When a deleted feature is encountered again,

it will be considered as a new feature whose weights are still at their default values.

172

8.3 Feature Generation

8.3.1 Preprocessing

In our tests, we did not perform language-specific preprocessing techniques such as word

stemming, stop word removal, or case folding. We did compare three types of email-specific

preprocessing.

• Preprocessing viamimedecode, a utility for decoding typical mail encodings (Base64,

Quoted-Printable etc.)

• Preprocessing via Jaakko Hyvätti’s normalizemime[87]. This program converts the

character set to UTF-8, decoding Base64, Quoted-Printable and URL encoding and

adding warn tokens in case of encoding errors. It also appends a copy of HTML/XML

message bodies with most tags removed, decodes HTML entities and limits the size of

attached binary files.

• No preprocessing. Use the raw mail including large blocks of Base64 data in the

encoded form.

Expect for the comparison of these alternatives, all experiments were performed onnor-

malizemime-preprocessed mails.

173

8.3.2 Tokenization

Tokenization is the first stage in the classification pipeline; it involves breaking the text stream

into tokens (“words”), usually by means of a regular expression. We tested four different

tokenization schemas:

P (Plain): Tokens contain any sequences of printable characters; they are separated by non-

printable characters (whitespace and control characters).

C (CRM114): The current default pattern of CRM114—tokens start with a printable char-

acter; followed by any number of alphanumeric characters + dashes, dots, commas and

colons; optionally concluded by any printable character.

S (Simplified): A modification of the CRM114 pattern that excludes dots, commas and

colons from the middle of the pattern. With this pattern, domain names and mail ad-

dresses will be split at dots, so the classifier can recognize a domain even if subdomains

vary.

X (XML/HTML+header-aware): A modification of theS schema that allows matching

typical XML/HTML markup3, mail headers (terminated by “:”), and protocols such as

“http://” in a token. Punctuation marks such as “.” and “,” are not allowed at the end of

tokens, so normal words will be recognized no matter where in a sentence they occur

without being “contaminated” by trailing punctuation.

3Start/end/empty tags:<tag> </tag>
 ; Doctype declarations:<!DOCTYPE; processing instruc-
tions:<?xml-stylesheet ; entity + character references:— ; attributes terminated by “=”; attribute
values surrounded by quotes.

174

The X schema was used for all tests unless explicitly stated otherwise. The actual tok-

enization schemas are defined as the regular expressions given in Table 8.1. These patterns

use Unicode categories—[ˆ\p{Z}\p{C}] means everything except whitespace and con-

trol chars;\p{L} , \p{M} , \p{N} represent letters, marks, and digits, respectively.

Name Regular Expression
P [ˆ\p{Z}\p{C}]+
C [ˆ\p{Z}\p{C}][-.,:\p{L}\p{M}\p{N}]*[ˆ\p{Z}\p{C}]?
S [ˆ\p{Z}\p{C}][-\p{L}\p{M}\p{N}]*[ˆ\p{Z}\p{C}]?
X [ˆ\p{Z}\p{C}][/!?#]?[-\p{L}\p{M}\p{N}]*(?:["’=;]|

/?>|:/*)?

Table 8.1: Tokenization patterns.

8.4 Feature Combination

8.4.1 Sparse Binary Polynomial Hashing

Sparse Binary Polynomial Hashing(SBPH) is a feature combination technique introduced by

the CRM114 Discriminator[35][127]. SBPH slides a window of lengthN over the tokenized

text. For each window position, all of the possible in-order combinations of theN tokens

are generated; those combinations that contain at least the newest element of the window are

retained. For a window of lengthN , this generates2N−1 features. Each of these joint features

can be mapped to one of the odd binary numbers from1 to 2N − 1 where original features

at “1” positions are visible while original features at “0” positions are hidden and marked as

skipped.

175

It should be noted that the features generated by SBPH are not linearly independent and

that even a compact representation of the feature stream generated by SBPH may be signifi-

cantly longer than the original text.

8.4.2 Orthogonal Sparse Bigrams

Since the expressivity of SBPH is sufficient for many applications, we now consider if it is

possible to use a smaller feature set and thereby increase speed and decrease memory re-

quirements. For this, we consider only word pairs containing a common word inside the

window, and requiring the newest member of the window to be one of the two words in the

pair. The idea behind this approach is to gain speed by working only with anorthogonalfea-

ture set inside the window, rather that the prolific and probably redundant features generated

by SBPH.

Instead of all odd numbers, only those with two bits “1” in their binary representations

are used:2n + 1, for n = 1 to N − 1. With this restriction, onlyN − 1 combinations with

exactly two words are produced. We call themOrthogonal Sparse Bigrams (OSB)—“sparse”

because most combinations have skipped words; only the first one is a conventional bigram.

With a sequence of five words,w1, . . . , w5, OSB produces four combined features:

w4 w5

w3 <skip> w5

w2 <skip> <skip> w5

w1 <skip> <skip> <skip> w5

176

Because of the reduced number of combined features,N − 1 in OSB versus2N−1 in

SBPH, text classification with OSB can be considerably faster than with SBPH. Table 8.2

and Table 8.3 show features generated by SBPH and OSB respectively.

Number SBPH
1 (1) today?
3 (11) lucky today?
5 (101) feel <skip> today?
7 (111) feel lucky today?
9 (1001) you <skip> <skip> today?

11 (1011) you <skip> lucky today?
13 (1101) you feel <skip> today?
15 (1111) you feel lucky today?
17 (10001) Do <skip> <skip> <skip> today?
19 (10011) Do <skip> <skip> lucky today?
21 (10101) Do <skip> feel <skip> today?
23 (10111) Do <skip> feel lucky today?
25 (11001) Do you <skip> <skip> today?
27 (11011) Do you <skip> lucky today?
29 (11101) Do you feel <skip> today?
31 (11111) Do you feel lucky today?

Table 8.2: Features generated by SBPH.

Number OSB
1 (1)
3 (11) lucky today?
5 (101) feel <skip> today?
7 (111)
9 (1001) you <skip> <skip> today?

11 (1011)
13 (1101)
15 (1111)
17 (10001) Do <skip> <skip> <skip> today?
19 (10011)
21 (10101)
23 (10111)
25 (11001)
27 (11011)
29 (11101)
31 (11111)

Table 8.3: Features generated by OSB.

177

Note that theorthogonal sparse bigramsform an almost complete basis set—by “ORing”

features in the OSB set, any feature in the SBPH feature set can be obtained, except for the

unigram (the single-word feature). However, there is no such redundancy in the OSB feature

set; it is not possible to obtain any OSB feature by adding, ORing, or subtracting any other

pairs of other OSB features; all of the OSB features are unique and not redundant.

Since the first term, unigramw5, cannot be obtained by ORing OSB features it seems rea-

sonable to add it as an extra feature. However the experiments reported in Section 8.5.4 show

that adding unigrams doesnot increase accuracy; in fact, it sometimes decreased accuracy.

8.5 Experimental Results

8.5.1 Testing Procedure

In order to test our multiple hypotheses, we used a standardized spam/nonspam test corpus

from SpamAssassin [110]. This test corpus is extraordinarily difficult to classify, even for

humans. It consists of 1397 spam messages, 250 hard nonspams, and 2500 easy nonspams,

for a total of 4147 messages. These 4147 messages were “shuffled” into ten different standard

sequences; results were averages over these ten runs. We re-used the corpus and the standard

sequences from [30, 128].

Each test run begins with initializing all memory in the learning system to zero. Then the

learning system was presented with each member of a standard sequence, in the order speci-

fied for that standard sequence, and required to classify the message. After each classification

178

the true class of the message was revealed and the classifier had the possibility to update its

prediction model accordingly prior to classifying the next message.4 The training system then

moved on to the next message in the standard sequence. The final 500 messages of each stan-

dard sequence were thetest setused for final accuracy evaluation; we also report results on an

extended test set containing the last 1000 messages of each run and on all (4147) messages.

At no time a system ever had the opportunity to learn on a message before predicting the

class of this message. For evaluation we calculated theerror rate E = number of misclassifications
number of all classifications;

occasionally we mention theaccuracyA = 1− E.

This process was repeated for each of the ten standard sequences. Each complete set of

ten standard sequences (41470 messages) required approximately 25–30 minutes of proces-

sor time on a 1266 MHz Pentium III for OSB-5.5 The average number of errors per test run

is given in parenthesis.

8.5.2 Parameter Tuning

We used a slightly different setup for tuning the Winnow parameters since it would have been

unfair to tune the parameters on the test set. The last 500 messages of each run were reserved

as test set for evaluation, while the preceding 1000 messages were used asdevelopment set

for determining the best parameter values. TheS tokenization was used for the tests in the

section.
4In actual usage training will not be quite as incremental since mail is read in batches.

5For SBPH-5 it was about two hours which it not surprising since SBPH-5 generates four times as many
features as OSB-5.

179

Best performance was found with Winnow using 1.23 as promotion factor, 0.83 as demo-

tion factor, and a threshold thickness of 5%.6 These parameter values turned out to be best

for both OSB and SBPH—the results reported in Tables 8.4 and 8.5 are for OSB.

Promotion 1.35 1.25 1.25 1.23 1.2 1.1
Demotion 0.8 0.8 0.83 0.83 0.83 0.9
Test Set 0.44% (2.2) 0.36% (1.8) 0.44% (2.2) 0.32% (1.6) 0.44% (2.2) 0.48% (2.4)

Devel. Set 0.52% (5.2) 0.51% (5.1) 0.52% (5.2) 0.49% (4.9) 0.51% (5.1) 0.62% (6.2)
All 1.26% (52.4) 1.31% (54.3) 1.33% (55.1) 1.32% (54.7) 1.34% (55.4) 1.50% (62.2)

Table 8.4: Promotion and demotion factors.

Threshold thickness. 0% 5% 10%
Test Set 0.68% (3.4) 0.32% (1.6) 0.44% (2.2)

Development Set 0.88% (8.8) 0.49% (4.9) 0.56% (5.6)
All 1.77% (73.5) 1.32% (54.7) 1.38% (57.1)

Table 8.5: Threshold Thickness

8.5.3 Feature Store Size and Comparison With SBPH

Table 8.6 compares orthogonal sparse bigrams and SBPH for different sizes of the feature

store. OSB reached best results with 600,000 features (with an error rate of 0.32%), while

SBPH peaked at 1,600,000 features (with a slightly higher error rate of 0.36%). Further

increasing the number of features permitted in the store negatively affects accuracy. This

indicates that the LRU pruning mechanism is efficient at discarding irrelevant features that

are mostly noise.

6In either direction, i.e.θ− = 0.95 θ, θ+ = 1.05 θ.

180

OSB
Store Size 400000 500000 600000 700000 800000
Last 500 0.36% (1.8) 0.38% (1.9) 0.32% (1.6) 0.44% (2.2) 0.44% (2.2)
Last 1000 0.37% (3.7) 0.37% (3.7) 0.33% (3.3) 0.37% (3.7) 0.37% (3.7)

All 1.26% (52.3) 1.29% (53.4) 1.24% (51.4) 1.26% (52.2) 1.27% (52.5)

SBPH
Store Size 1400000 1600000 1800000 2097152 (221) 2400000
Last 500 0.38% (1.9) 0.36% (1.8) 0.42% (2.1) 0.44% (2.2) 0.42% (2.1)
Last 1000 0.37% (3.7) 0.34% (3.4) 0.38% (3.8) 0.39% (3.9) 0.38% (3.8)

All 1.35% (55.8) 1.28% (53.1) 1.30% (54) 1.30% (54) 1.31% (54.2)

Table 8.6: Comparison of SBPH and OSB with different feature storage sizes.

8.5.4 Unigram Inclusion

The inclusion of individual tokens (unigrams) in addition to orthogonal sparse bigrams does

not generally increase accuracy, as can be seen in Table 8.7, showing OSB without unigrams

peaking at 0.32% error rate, while adding unigrams pushes the error rate up to 0.38%.

OSB only OSB + Unigrams
Store Size 600000 600000 750000
Last 500 0.32% (1.6) 0.38% (1.9) 0.42% (2.1)
Last 1000 0.33% (3.3) 0.33% (3.3) 0.36% (3.6)

All 1.24% (51.4) 1.22% (50.6) 1.24% (51.4)

Table 8.7: Utility of single tokens (Unigrams).

8.5.5 Window Sizes

The results of varying window size as a system parameter are shown in Table 8.8. Again,

we note that the optimal combination for the test set uses a window size of five tokens (our

default setting, yielding a 0.32% error rate), with both shorter and longer windows producing

worse error rates.

181

Window Size Unigrams 2 (Bigrams) 3 4 5 6 7
Store Size all (ca.55000) 150000 300000 450000 600000 750000 900000
Last 500 0.46% (2.3) 0.48% (2.4) 0.42% (2.1) 0.44% (2.2)0.32% (1.6) 0.38% (1.9) 0.42% (2.1)
Last 1000 0.50% (5) 0.43% (4.3) 0.39% (3.9) 0.40% (4) 0.33% (3.3) 0.38% (3.8) 0.37% (3.7)

All 1.43% (59.2) 1.23% (51.2) 1.24% (51.4) 1.26% (52.2) 1.24% (51.4) 1.28% (53)1.22% (50.8)
Store Size all (ca.220000) all (ca.500000) 600000 900000 1050000
Last 500 0.48% (2.4) 0.42% (2.1) 0.42% (2.1) 0.40% (2) 0.46% (2.3)
Last 1000 0.43% (4.3) 0.38% (3.8) 0.38% (3.8) 0.38% (3.8) 0.40% (4)

All 1.24% (51.3) 1.22% (50.6) 1.25% (51.8) 1.27% (52.5) 1.25% (51.7)

Table 8.8: Sliding window size.

This “U” curve is not unexpected on an information-theoretic basis. English text has a

typical entropy of around 1–1.5 bits per character and around five characters per word. If

we assume that a text contains mainly letters, digits, and some punctuation symbols, most

characters can be represented in six bits, yielding a word content of 30 bits. Therefore, at

one bit per character, English text becomes uncorrelated at a window length of six words or

longer, and features obtained at these window lengths are not significant.

These results also show that using OSB-5 is significantly better then using only single

tokens (error rate of 0.46%) or conventional bigrams (0.48%).

8.5.6 Preprocessing and Tokenization

Results withnormalizemimewere generally better than the other two options, reducing the

error rate by up to 25% (Table 8.9). Accuracy on raw andmimedecodedmails was roughly

comparable.

Preprocessing none mimedecode normalizemime
Last 500 0.42% (2.1) 0.46% (2.3) 0.32% (1.6)
Last 1000 0.37% (3.7) 0.35% (3.5) 0.33% (3.3)

All 1.27% (52.5) 1.26% (52.1) 1.24% (51.4)

Table 8.9: Preprocessing.

182

TheS tokenization schema initially learns more slowly (the overall error rate is somewhat

higher) but is finally just as good as theX schema (Table 8.10).P andC both result in lower

accuracy, even though they initially learn quick.

Schema X S C P
Last 500 0.32% (1.6) 0.32% (1.6) 0.44% (2.2) 0.42% (2.1)
Last 1000 0.33% (3.3) 0.33% (3.3) 0.39% (3.9) 0.38% (3.8)

All 1.24% (51.4) 1.32% (54.7) 1.28% (52.9) 1.23% (51.1)

Table 8.10: Tokenization schemas.

8.5.7 Comparison with CRM114 and Näive Bayes

The results for CRM114 and Naïve Bayes on the last 500 mails are the best results reported

in [30]. For a fair comparison, these tests were all run using theC tokenization schema on

raw mails without preprocessing. The best reportedCRM114weighting model is based on

empirically derived weightings and is a rough approximation of a Markov Random Field.

This model reduces to a Naïve Bayes model when the window size is set to 1—the results

for this case are shown in the first column of Table 8.11.

Näive Bayes CRM114 Winnow+OSB
Last 500 2.02% (10.1) 1.12% (5.6) 0.48% (2.4)

All 3.44% (142.8) 2.71% (112.5) 1.35% (55.8)

Table 8.11: Comparison with Naïve Bayes and CRM114.

183

8.5.8 Speed of Learning

The learning rate for the Winnow classifier combined with the OSB feature generator is

shown in Figure 8.1. Note that the rightmost column shows the incremental error rate on

new messages. After having classified 1000 messages, Winnow+OSB achieves error rates

below 1% on new mails.

8.6 Related Work

Winnow has been used for text classification before (e.g. [36]), but not (as far as we know)

for spam filtering and not together with expressive feature combination techniques such as

SBPH or OSB.

Bigrams andn-grams are a classical technique; SBPH has been introduced in [127]. We

propose orthogonal sparse bigrams as a minimalistic alternative to SBPH that is new, to the

best of our knowledge.

An LRU mechanism for feature set pruning has been employed by the first author in

[104]. We suppose that others have done the same since the idea seems to suggest itself; but

currently we are not aware of such usage.

184

Mails Error Rate New Error Rate
(Avg. Errors) (Avg. New Errors)

25 30.80% (7.7) 30.80% (7.7)
50 21.40% (10.7) 12.00% (3)
100 14.00% (14) 6.60% (3.3)
200 9.75% (19.5) 5.50% (5.5)
400 6.38% (25.5) 3.00% (6)
600 4.97% (29.8) 2.15% (4.3)
800 4.09% (32.7) 1.45% (2.9)
1000 3.50% (35) 1.15% (2.3)
1200 3.04% (36.5) 0.75% (1.5)
1600 2.48% (39.7) 0.80% (3.2)
2000 2.12% (42.3) 0.65% (2.6)
2400 1.85% (44.4) 0.53% (2.1)
2800 1.65% (46.2) 0.45% (1.8)
3200 1.51% (48.2) 0.50% (2)
3600 1.38% (49.7) 0.38% (1.5)
4000 1.28% (51.1) 0.35% (1.4)
4147 1.24% (51.4) 0.20% (0.3)

Figure 8.1: Learning curve for the best setting (Winnow1.23,0.83,5% with 1,600,000 features,
OSB-5,X tokenization).

185

8.7 Conclusion and Future Work

We have introducedOrthogonal Sparse Bigrams (OSB)as a new feature combination tech-

nique for text classification that combines a high expressivity with relatively low computa-

tional load. By combining OSB with theWinnowalgorithm we halved the error rate com-

pared to a state-of-the-art spam filter, while still retaining the property ofincrementality. By

refining the preprocessing and tokenization steps we were able to further reduce the error rate

by 33%.7

One obvious direction for future work is to apply the combination of Winnow + OSB

to other classification tasks, some of which will involve more than two classes. For such

tasks we are working on an “ultraconservative” [34] variation of the Winnow algorithm that

according to preliminary results promises to yield better results on problems with three or

more classes.

Currently our Winnow implementation supports only binary features; how often a fea-

ture (sparse bigram) appears in a text is not taken into account. We plan to address this by

introducing astrengthfor each feature (cf. [36, Sec. 4.3]).

Also of interest is the difference in performance between the LRU (least-recently-used)

pruning algorithm used here and the random-discard algorithm used in CRM114 [30]. When

the random-discard algorithm in CRM114 triggered, it almost always resulted in a decrease in

accuracy; here we found that an LRU algorithm could act to provide anincreasein accuracy.

Analysis and determination of the magnitude of this effect will be a concern in future work.

7Our algorithm is freely available as part of theTIESsystem [120].

186

Chapter 9

Reputation Systems

9.1 Introduction

The problem of spam is being tackled with a variety of techniques. Recently, the industry

has started focusing on reputation strategies to complement other spam-fighting techniques.

Blacklist and whitelist are common examples of reputation systems in the present-day Inter-

net email system. We expect use of advanced reputation models in this system soon. We will

therefore describe trust and reputation systems that have already been proposed for realms

such as ecommerce, recommendation systems, and peer-to-peer networks[2][3][26].

187

9.2 Trust and Reputation

In their paper “A Survey of Trust and Reputation Systems for Online Service Provision”[67],

Jφsang etal. very elegantly present state-of-the-art trust and reputation systems. Definitions

for trust and reputationare different for each of these works. For simplicity, we define

trust as a party’s belief in another party based on its own direct experiences;reputationis a

party’s belief in another party based on the recommendations received from other parties and

a summary of its behavior from past transactions.

9.2.1 Common Online Reputation Systems

We now describe some common online reputation systems.

1. Web of Trust

Web of trust is a method to establish authenticity of the association between a public

key and a user. This concept is used in Pretty Good Privacy (PGP) [95]. Key-signing

parties are generally arranged to endorse the association between the public-key and a

user. Note that web of trust is in contrast with the Certification Authorities (CA) used

in the Public Key Infrastructure (PKI), suffering from the problem of scalability.

2. eBay’s Feedback Forum

eBay[47] has a centralized reputation system where feedback for sellers are collected

from buyers after every transaction in the form of ratings (also comments) and a rep-

utation score is returned. The ratings can be positive (1), negative (-1) or neutral (0).

188

The reputation score for a particular seller is computed by deducting unique buyers’

total negative ratings from their total positive ratings. These ratings and comments are

visible to any buyer. Based upon such reputation representation, a buyer can decide

beforehand whether to conduct a transaction with any seller or not.

3. Slashdot Reputation System

Slashdot[108] is a forum for posting articles and sharing comments. The comments

on Slashdot are moderated. Slashdot’s reputation system consists of two moderation

layers, M1 for moderating postings and M2 for moderating M1 moderators. Each

registereduser of Slashdot maintains aKarmawhich can take any of the discrete values

Terrible, Bad, Neutral, Positive, GoodandExcellent. An integer score between -1 to

5 is maintained for each comment. The initial score is 1 but can also be influenced

from the comment provider’s Karma. The purpose of the comment score is to be able

to filter the good comments from the bad[67].

4. Certifications in Advogato[4]

Advogato is a community of open-source developers. Members of the Advogato com-

munity certify each other’s skill levels. The reputation system in Advogato reflects the

extent of reliability of member X’s piece of code. A trust metric evaluates the peer

certificates and decides on a trust level for each member. Advogato is attack-resistant

against fake certifications[70].

189

9.2.2 Reputation Scoring System

A reputation system is very much dependent upon thescoresused to rate the participants

in the system. A good reputation-scoring system, therefore, should have the following

properties[39]:

1. The scoring system should be quite accurate for a long-term performance.

2. The scoring system should have a weight towards current user behavior and should

reflect the opinions of its users.

3. The scoring system should be efficient and convenient for recalculating a score quickly.

4. The scoring system should be robust against attacks.

5. The scoring system should be quite amenable to statistical evaluations; for example, it

should be easy to find outliers.

6. Any scoring system should be easy to verify.

7. The scores generated should realistically imply an attribute that the common users can

understand.

190

9.3 Reputation Network Architectures

The network architecture in a reputation system determines the communication flow of the

reputation scores and ratings among its participants. A reputation system can have either a

centralized or a distributed architecture. These network architectures are explained below.

9.3.1 Centralized Architecture

In centralized reputation systems, a central authority (reputation center) is responsible for

collecting ratings from members who conducted transactions with other members of the com-

munity in the past. This reputation center computes a reputation score for every participant

and makes all scores publicly available. The participants can then use these scores so as to

decide whether to conduct transactions with another party or not.

Note that in these kinds of protocols, parties have bidirectional flow of information with

the reputation center to provide ratings about transactions conducted with other members of

the community, and also to inquire about the ratings of other parties. The reputation systems

of eBay and Slashdot are examples of this type.

191

9.3.2 Distributed Reputation Systems

In distributed reputation systems, there is no centralized authority responsible for maintaining

reputation scores for the members of the community. Instead, each participant simply saves

its experience (i.e. vote/opinion) about transactions conducted with other parties and provides

this information on request from the inquiring parties.

In our paper “A Protocol for Reputation Management in Super-Peer Networks”[29],

Chhabra etal. we describe one such robust protocolSupRepbuilt on the top of Gnutella

v0.6[50]. The SupRep protocol is illustrated in Figure 9.1.

Figure 9.1: SupRep protocol built on the top of Gnutella v0.6. (a) query and poll; (b)-(d)
vote verification; (e) resource download.

192

9.4 Reputation Computation Engines

This section describes algorithms that are used in various reputation systems to compute the

final reputation score after ratings and feedback from the participants are obtained.

9.4.1 Summation/Average of Votes

In the eBay reputation system, the final reputation score for a seller is computed by subtract-

ing its total negative ratings from the total positive ratings. The advantage of this model lies

in its simplicity, but one disadvantage is that this model reflects a poor picture of participants’

reputation score. Amazon[7] and Epinions[48] compute reputation score as the average of all

ratings. Some models in this category compute a weighted average of all the ratings where

the rating weight can be determined by factors such as the reputation of the rater and the age

of the rating, etc.

9.4.2 Bayesian Systems

Bayesian systems take binary votes as input (i.e. positive or negative), and reputation scores

are computed by statistical updating of beta probability density functions.A posteriori(i.e.

the updated) reputation score is computed by combining thea priori (i.e. previous) reputation

score with the new rating[67].

193

9.4.3 Discrete Trust Models

In their paper “Supporting Trust in Virtual Communities,” Rahman etal.[2] describe an exam-

ple of such a class. Trustworthiness of an agent can be assessed in discrete verbal statements

such asVery Trustworthy, Trustworthy, UntrustworthyandVery Untrustworthy. The request-

ing party can consider the weight of the referring agent before taking its referral into account.

9.4.4 Flow Models

In this kind of system, the reputation score is computed by transitive iteration through loops

or through arbitrarily long chains[67]. Google’s PageRank[93] and EigenTrust[69] are ex-

amples of this category.

194

Chapter 10

Conclusion

Spam, phishing and email fraud are very serious problems polluting the Internet at the mo-

ment. Spammers are continuously inventing new tricks and hacks to fool technological so-

lutions. The presence of compromised machines(zombies)over the Internet is aggravating

this problem further. The current spam-fighting solutions are far from perfect; for exam-

ple, spam filters will always have the problem of false positives; most of the greylisting

solutions will malfunction if spammers start incorporating mechanisms for SMTP retrying

in their bulk mailing tools; whitelisting will be rendered useless if spammers steal or forge

origination as a whitelisted sender. Computers have been shown to be better than humans at

single-character recognition used in modern-day CAPTCHAs, and a customized CAPTCHA

breaker can be built in a day at a cost of forty dollars. Spammers have already started deploy-

ing email authentication mechanisms such as the Sender Policy Framework (SPF) in order to

prevent email rejection resulting from authentication failures. Authentication protocols that

195

incorporate cryptography using SHA1 as the hashing algorithm should pay attention to the

recent collision attacks on SHA1 algorithm[124]. Reputation solutions are currently being

considered, but differences in framework and rating assessment in such solutions will lead to

inconsistency. Poor rating of entire blocks of IP addresses can lead to the rejection of cer-

tain legitimate international mail, which conflicts with the original intention behind Internet

email.

A collaborative effort among industry leaders, governments, and Internet users is required

to destroy the spammers’ business model. We have already explained various tricks spam-

mers use to exploit technological solutions. We presented transcripts recovered during the

arrest of the world’s eighth most prolific spammer Jeremy Jaynes. As evident from histo

do list, spamming is a multimillion-dollar business with no cost to the sender, and hence it

becomes a very lucrative business for people willing to spam.

We presented various technological and legal initiatives to solve this problem, including

our work on the CRM114 filter. We illustrated and explained CRM114 usage for small-,

medium-, and large-scale enterprises (for filtering up to one million client email accounts).

We presented the internals of a system using CRM114, implementing the concept of In-

ternet postage known as the CAMRAM. We described a unified model of spam filtration

followed by all the spam filters currently available in the market. We also presented the

Markov Random Field model and Nick Littlestone’s Winnow-based machine learning tech-

niques for spam-filtering, which have shown significant improvements in accuracy over the

Näive Bayesian filtering technique. We hightlighted some reputation solutions proposed in

196

other realms of computer science for the industry considering a robust and consistent repu-

tation solution for future Internet email. We suggest seeking cooperation from domain regis-

trars, as they have all information for tracking fraudsters who buy and throw away thousands

of domain names in their phishing activities.

Spammers and phishers are tainting the merits of email communication by continuously

abusing the Internet, polluting traffic, cheating naïve Internet users, and destroying produc-

tivity. Winning the war against such entities is a responsibility that rests on this current

generation’s leaders.

Overall, we are very confident that, with an aggressive collaborative effort from the tech-

nical industry, cooperation from governments in legal spheres, and awareness among Internet

users, we can destroy the spammers’ business model in the next couple of years, reducing the

problem of spam to an unfortunate event in the history of the Internet.

197

Bibliography

[1] Martin Abadi, Andrew Birrell, Mike Burrows, Frank Dabek, and Ted Wobber. Bank-
able Postage for Network Services. In8th Asian Computing Science Conference,
Mumbai, India, 2003.http://research.microsoft.com/research/sv/
sv-pubs/TicketServer.pdf .

[2] Alfarez Abdul-Rahman and Stephen Hailes. Supporting Trust in Virtual
Communities. In HICSS, 2000. citeseer.ist.psu.edu/article/
abdul-rahman00supporting.html .

[3] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer Information
System. In Henrique Paques, Ling Liu, and David Grossman, editors,Proceedings
of the Tenth International Conference on Information and Knowledge Management
(CIKM01), pages 310–317. ACM Press, 2001.http://citeseer.nj.nec.
com/aberer01managing.html .

[4] Advogato.http://www.advogato.com/ .

[5] Banit Agrawal, Nitin Kumar, and Mart Molle. Controlling Spam E-mail at the Routers.
In IEEE International Conference on Communcations (ICC 05), Seoul Korea, 2005.
http://www.cs.ucr.edu/˜mart/preprints/icc_spam.pdf .

[6] Shabbir Ahmed and Farzana Mithun. Word Stemming to Enhance Spam Filtering. In
Proceedings of the First Conference on Email and Anti-Spam (CEAS), 2004. http:
//www.ceas.cc/papers-2004/167.pdf .

[7] Amazon.http://www.amazon.com .

[8] I. Androutsopoulos, J. Koutsias, K.V. Chandrinos, G. Paliouras, and C.D. Spyropou-
los. An Evaluation of Naive Bayesian Anti-Spam Filtering. InG. Potamias, V. Mous-
takis, and M.n van Someren, editors, Proceedings of the Workshop on Machine Learn-
ing in the New Information Age, 11th European Conference on Machine Learning
(ECML 2000), pages 9–17, Barcelona, Spain, 2000. http://arXiv.org/abs/
cs.CL/0006013 .

[9] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos, and
P. Stamatopoulos. Learning to Filter Spam E-mail: A Comparison of a Naive Bayesian
and a Memory-Based Approach. InH. Zaragoza, P. Gallinari, , and M. Rajman,

198

http://research.microsoft.com/research/sv/sv-pubs/TicketServer.pdf
http://research.microsoft.com/research/sv/sv-pubs/TicketServer.pdf
citeseer.ist.psu.edu/article/abdul-rahman00supporting.html
citeseer.ist.psu.edu/article/abdul-rahman00supporting.html
http://citeseer.nj.nec.com/aberer01managing.html
http://citeseer.nj.nec.com/aberer01managing.html
http://www.advogato.com/
http://www.cs.ucr.edu/~mart/preprints/icc_spam.pdf
http://www.ceas.cc/papers-2004/167.pdf
http://www.ceas.cc/papers-2004/167.pdf
http://www.amazon.com
http://arXiv.org/abs/cs.CL/0006013
http://arXiv.org/abs/cs.CL/0006013

editors, Proceedings of the Workshop on Machine Learning and Textual Information
Access, 4th European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD 2000), pages 1–13, Lyon, France, 2000. http://arXiv.
org/abs/cs/0009009 .

[10] Ion Androutsopoulos, John Koutsias, and Konstandinos V. Chandrinos andCon-
stantine D. Spyropoulos. An Experimental Comparison of Naive Bayesian
and Keyword-Based Anti-Spam Filtering with Personal E-mail Messages. In
Nicholas J. Belkin, Peter Ingwersen, and Mun-Kew Leong, editors, Proceedings
of SIGIR-00, 23rd ACM International Conference on Research and Development
in Information Retrieval, pages 160–167, Athens, GR. ACM Press, New York,
US., 2000. http://www.acm.org/pubs/articles/proceedings/ir/
345508/p160-androutsopo%ulos/p160-androutsopoulos.pdf .

[11] Adam Back. Hashcash, 1997.http://www.cypherspace.org/hashcash/ .

[12] Adam Back. Hashcash - A Denial of Service Counter-Measure.http://www.
hashcash.org/papers/hashcash.pdf , 2002.

[13] Barracuda Networks.http://www.barracudanetworks.com/ .

[14] Bayesian Noise Reduction (BNR) Processing Library. http://www.
nuclearelephant.com/projects/dspam/bnr.html .

[15] BBC News, 04/09/2005, Man Gets Nine Years for Spamming.http://news.
bbc.co.uk/2/hi/americas/4426949.stm .

[16] BBC News, 07/16/2005, Jail for Nigerian Bank Fraudster.http://news.bbc.
co.uk/2/hi/africa/4690031.stm .

[17] BBC News, 08/10/2005, Microsoft in 7m Dollar Spam Settlement.http://news.
bbc.co.uk/2/hi/business/4137352.stm .

[18] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems. InJournal
of the Royal Statistical Society, Series B, volume 36, pages 192–236, 1974.

[19] BlackLists.http://www.email-policy.com/Spam-black-lists.htm .

[20] P. O. Boykin and V. Roychowdhury. Leveraging Social Networks to Fight Spam. In
IEEE Computer, Vol. 38, No. 4, pages 61-68, 2005.http://boykin.acis.ufl.
edu/˜boykin/papers/spamgraph.ps .

[21] Brian Burton. Bayesian Spam Filtering Tweaks. InProceedings of the MIT Spam
Conference, 2003.http://spamprobe.sourceforge.net/paper.html .

[22] Caller ID for E-mail. http://xml.coverpages.org/
draft-atkinson-callerid-00.txt .

199

http://arXiv.org/abs/cs/0009009
http://arXiv.org/abs/cs/0009009
http://www.acm.org/pubs/articles/proceedings/ir/345508/p160-androutsopo% ulos/p160-androutsopoulos.pdf
http://www.acm.org/pubs/articles/proceedings/ir/345508/p160-androutsopo% ulos/p160-androutsopoulos.pdf
http://www.cypherspace.org/hashcash/
http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://www.barracudanetworks.com/
http://www.nuclearelephant.com/projects/dspam/bnr.html
http://www.nuclearelephant.com/projects/dspam/bnr.html
http://news.bbc.co.uk/2/hi/americas/4426949.stm
http://news.bbc.co.uk/2/hi/americas/4426949.stm
http://news.bbc.co.uk/2/hi/africa/4690031.stm
http://news.bbc.co.uk/2/hi/africa/4690031.stm
http://news.bbc.co.uk/2/hi/business/4137352.stm
http://news.bbc.co.uk/2/hi/business/4137352.stm
http://www.email-policy.com/Spam-black-lists.htm
http://boykin.acis.ufl.edu/~boykin/papers/spamgraph.ps
http://boykin.acis.ufl.edu/~boykin/papers/spamgraph.ps
http://spamprobe.sourceforge.net/paper.html
http://xml.coverpages.org/draft-atkinson-callerid-00.txt
http://xml.coverpages.org/draft-atkinson-callerid-00.txt

[23] Camram.http://www.camram.org .

[24] Andrew J. Carlson, Chad M. Cumby, Nicholas D. Rizzolo, Jeff L. Rosen, and
Dan Roth. SNoW User Manual. Version: January, 2004. Technical re-
port, UIUC, 2004. http://l2r.cs.uiuc.edu/˜cogcomp/software/
snow-userguide.ps.gz .

[25] Xavier Carreras and Llus Mrquez. Boosting Trees for Anti-Spam Email Filtering.
In Proceedings of RANLP-2001, 4th International Conference on Recent Advances in
Natural Language Processing, 2001.http://www.lsi.upc.es/˜carreras/
pub/boospam.ps .

[26] Sonja Buchegger Ch. A Robust Reputation System for P2P and Mobile Ad-hoc Net-
works. InBuchegger, S., Boudec, J.Y.L.: In: Proceedings of the Second Workshop on
the Economics of Peer-to-Peer Systems. (2004), 2004. http://citeseer.ist.
psu.edu/article/robust04robust.html .

[27] Kumar Chellapilla, Kevin Larson, Patrice Simard, and Mary Czerwinski. Computers
beat Humans at Single Character Recognition in Reading Based Human Interaction
Proofs (HIPs). InSecond Conference on Email and Anti-Spam (CEAS), 2005.http:
//www.ceas.cc/papers-2005/160.pdf .

[28] Kumar Chellapilla and Patrice Y. Simard. Using Machine Learning to Break
Visual Human Interaction Proofs (HIPs). InAdvances in Neural Informa-
tion Processing Systems 17. Neural Information ProcessingSystems (NIPS 2004).
MIT Press, 2004.http://www.books.nips.cc/papers/files/nips17/
NIPS2004_0843.pdf .

[29] Shalendra Chhabra, Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Para-
boschi, and Pierangela Samarati. A Protocol for Reputation Management in Super-
Peer Networks. In15th International Workshop on Database and Expert Systems Ap-
plications, Zaragoza, Spain, pages 979–983, 2004.http://www.cs.ucr.edu/
˜schhabra/pdmst04.pdf .

[30] Shalendra Chhabra, William S. Yerazunis, and Christian Siefkes. Spam Filtering Us-
ing a Markov Random Field Model with Variable Weighting Schemas. InProceed-
ings of the Fourth IEEE International Conference on Data Mining, (ICDM), 2004.
http://www.cs.ucr.edu/˜schhabra/icdm04.pdf .

[31] CipherTrust, Inc.http://www.ciphertrust.com/ .

[32] W. W. Cohen. Learning Rules that Classify E-mail. InAAAI Spring Symposium on
Machine Learning in Information Access, California, 1996. www.cs.cmu.edu/
˜wcohen/postscript/aaai-ss-96.ps .

[33] Composite Block List (CBL).http://cbl.abuseat.org/ .

200

http://www.camram.org
http://l2r.cs.uiuc.edu/~cogcomp/software/snow-userguide.ps.gz
http://l2r.cs.uiuc.edu/~cogcomp/software/snow-userguide.ps.gz
http://www.lsi.upc.es/~carreras/pub/boospam.ps
http://www.lsi.upc.es/~carreras/pub/boospam.ps
http://citeseer.ist.psu.edu/article/robust04robust.html
http://citeseer.ist.psu.edu/article/robust04robust.html
http://www.ceas.cc/papers-2005/160.pdf
http://www.ceas.cc/papers-2005/160.pdf
http://www.books.nips.cc/papers/files/nips17/NIPS2004_0843.pdf
http://www.books.nips.cc/papers/files/nips17/NIPS2004_0843.pdf
http://www.cs.ucr.edu/~schhabra/pdmst04.pdf
http://www.cs.ucr.edu/~schhabra/pdmst04.pdf
http://www.cs.ucr.edu/~schhabra/icdm04.pdf
http://www.ciphertrust.com/
www.cs.cmu.edu/~wcohen/postscript/aaai-ss-96.ps
www.cs.cmu.edu/~wcohen/postscript/aaai-ss-96.ps
http://cbl.abuseat.org/

[34] Koby Crammer and Yoram Singer. Ultraconservative Online Algorithms for Mul-
ticlass Problems. In14th Annual Conference on Computational Learning Theory
(COLT), pages 99–115, Berlin, 2001. Springer.http://citeseer.ist.psu.
edu/crammer01ultraconservative.html .

[35] CRM114 - the Controllable Regex Mutilator.http://crm114.sourceforge.
net/ .

[36] Ido Dagan, Yael Karov, and Dan Roth. Mistake-Driven Learning in Text Catego-
rization. In Claire Cardie and Ralph Weischedel, editors,Proceedings of EMNLP-
97, 2nd Conference on Empirical Methods in Natural Language Processing, pages
55–63, Providence, US, 1997. Association for Computational Linguistics.http:
//citeseer.ist.psu.edu/552405.html .

[37] Death2Spam.http://www.death2spam.com .

[38] Rachna Dhamija and J. D. Tygar. Phish and HIPs: Human Interactive Proofs to De-
tect Phishing Attacks. InIn Human Interactive Proofs: Second International Work-
shop (HIP 2005), pages 127–141, 2005.http://www.cs.berkeley.edu/
˜tygar/papers/Phish_and_HIPs.pdf .

[39] Roger Dingledine. Accountability. In Andy Oram, editor,Peer to Peer, Harnessing
the Power of Disruptive Technologies. OReilly, 2001.

[40] Distributed Checksum Clearinghouse.http://freshmeat.net/projects/
dcc-source/ .

[41] Domain-Based Email Authentication Using Public-Keys Advertised in the
DNS (DomainKeys). http://www.ietf.org/internet-drafts/
draft-delany-domainkeys-base-02.txt .

[42] DomainKeys Identified Mail (DKIM).http://mipassoc.org/dkim/specs/
draft-allman-dkim-base-00-10dc.txt .

[43] Christine E. Drake, Jonathan J. Oliver, and Eugene J. Koontz. Anatomy of a Phishing
Email. InConference on Email and Anti Spam (CEAS), 2004.http://www.ceas.
cc/papers-2004/114.pdf .

[44] H. Drucker, D. Wu, and V. N. Vapnik. Support Vector Machines for
Spam Categorization. InIEEE Trans. on Neural Networks, pages 1048–1054,
1999. http://www.site.uottawa.ca/˜nat/Courses/NLP-Course/
itnn_1999_09_1048.pdf .

[45] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail.
In Proceedings of CRYPTO’92, Lecture Notes in Computer Science 740, pages
137–147, 1992. http://research.microsoft.com/research/sv/
PennyBlack/junk1.pdf .

201

http://citeseer.ist.psu.edu/crammer01ultraconservative.html
http://citeseer.ist.psu.edu/crammer01ultraconservative.html
http://crm114.sourceforge.net/
http://crm114.sourceforge.net/
http://citeseer.ist.psu.edu/552405.html
http://citeseer.ist.psu.edu/552405.html
http://www.death2spam.com
http://www.cs.berkeley.edu/~tygar/papers/Phish_and_HIPs.pdf
http://www.cs.berkeley.edu/~tygar/papers/Phish_and_HIPs.pdf
http://freshmeat.net/projects/dcc-source/
http://freshmeat.net/projects/dcc-source/
http://www.ietf.org/internet-drafts/draft-delany-domainkeys-base-02.txt
http://www.ietf.org/internet-drafts/draft-delany-domainkeys-base-02.txt
http://mipassoc.org/dkim/specs/draft-allman-dkim-base-00-10dc.txt
http://mipassoc.org/dkim/specs/draft-allman-dkim-base-00-10dc.txt
http://www.ceas.cc/papers-2004/114.pdf
http://www.ceas.cc/papers-2004/114.pdf
http://www.site.uottawa.ca/~nat/Courses/NLP-Course/itnn_1999_09_1048.pdf
http://www.site.uottawa.ca/~nat/Courses/NLP-Course/itnn_1999_09_1048.pdf
http://research.microsoft.com/research/sv/PennyBlack/junk1.pdf
http://research.microsoft.com/research/sv/PennyBlack/junk1.pdf

[46] EarthLink. http://http://www.earthlink.net/ .

[47] eBay, Inc.http://www.ebay.com/ .

[48] Epinions.http://www.epinions.com/ .

[49] False Claims in Spam. http://www.ftc.gov/reports/spam/
030429spamreport.pdf .

[50] Gnutella - A Protocol for a Revolution. http://rfc-gnutella.
sourceforge.net/ .

[51] Joshua Goodman. Spam: Technologies and Policies, Whitepaper, November 2003,
Microsoft Corporation. http://research.microsoft.com/˜joshuago/
spamtech.pdf .

[52] Joshua Goodman and Robert Rounthwaite. Stopping Outgoing Spam. InACM
Conference on E-Commerce, 2004. http://research.microsoft.com/
˜joshuago/outgoingspam-final-submit.pdf .

[53] Paul Graham. A Plan for Spam.http://www.paulgraham.com/spam.html .

[54] Paul Graham. Better Bayesian Filtering. InMIT Spam Conference, 2003. http:
//www.paulgraham.com/better.html .

[55] John Graham-Cumming. The Spammers Compendium. InMIT Spam Conference,
2003.http://www.jgc.org/tsc .

[56] John Graham-Cumming. People and Spam. InMIT Spam Conference, 2005.http:
//www.jgc.org/pdf/spamconf2005.pdf .

[57] J. M. Hammersley and P Clifford. Markov Field on Finite Graphs and Lattices. In
Unpublished, 1971.

[58] Evan Harris. The Next Step in the Spam Control War: Greylisting.http:
//projects.puremagic.com/greylisting/whitepaper.html .

[59] Jose Maria Gomez Hidalgo. Bibliography on Machine Learning for Spam
Detection. http://liinwww.ira.uka.de/bibliography/Ai/
MLSpamBibliography.html .

[60] Geoff Hulten, Joshua T. Goodman, and Robert Rounthwaite. Filtering Spam
E-mail On a Global Scale. InWWW (Alternate Track Papers & Posters),
pages 366–367, 2004. http://research.microsoft.com/˜joshuago/
www2004-submission.pdf .

[61] Geoff Hulten, Anthony Penta, Gopalakrishnan Seshadrinathan, and Manav Mishra.
Trends in Spam Products and Methods. InFirst Conference on Email and Anti-Spam
(CEAS), 2004.http://www.ceas.cc/papers-2004/index.html .

202

http://http://www.earthlink.net/
http://www.ebay.com/
http://www.epinions.com/
http://www.ftc.gov/reports/spam/030429spamreport.pdf
http://www.ftc.gov/reports/spam/030429spamreport.pdf
http://rfc-gnutella.sourceforge.net/
http://rfc-gnutella.sourceforge.net/
http://research.microsoft.com/~joshuago/spamtech.pdf
http://research.microsoft.com/~joshuago/spamtech.pdf
http://research.microsoft.com/~joshuago/outgoingspam-final-submit.pdf
http://research.microsoft.com/~joshuago/outgoingspam-final-submit.pdf
http://www.paulgraham.com/spam.html
http://www.paulgraham.com/better.html
http://www.paulgraham.com/better.html
http://www.jgc.org/tsc
http://www.jgc.org/pdf/spamconf2005.pdf
http://www.jgc.org/pdf/spamconf2005.pdf
http://projects.puremagic.com/greylisting/whitepaper.html
http://projects.puremagic.com/greylisting/whitepaper.html
http://liinwww.ira.uka.de/bibliography/Ai/MLSpamBibliography.html
http://liinwww.ira.uka.de/bibliography/Ai/MLSpamBibliography.html
http://research.microsoft.com/~joshuago/www2004-submission.pdf
http://research.microsoft.com/~joshuago/www2004-submission.pdf
http://www.ceas.cc/papers-2004/index.html

[62] Identified Internet Mail. http://www.identifiedmail.com/
draft-fenton-identified-mail.txt .

[63] Internet Message Access Protocol - Version 4rev1.http://www.faqs.org/
rfcs/rfc3501.html .

[64] Internet Message Format.http://www.faqs.org/rfcs/rfc2822.html .

[65] IronPort Systems, Inc.http://www.ironport.com/ .

[66] Markus Jakobsson and Ari Juels. Proofs of Work and Bread Pudding Protocols.
In In B. Preneel, Editor, Communications and Multimedia Security, pages 258-
272, Kluwer Academic Publishers, 1999. http://www.rsasecurity.com/
rsalabs/node.asp?id=2049 .

[67] Audun Josang, Roslan Ismail, and Colin Boyd. A Survey of Trust and Reputation
Systems for Online Service Provision. InDecision Support Systems, 2005. http:
//security.dstc.edu.au/papers/JIB2005-DSS.pdf .

[68] Richard Jowsey. Death2spam.http://www.death2spam.net/ .

[69] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The Eigen-
Trust Algorithm for Reputation Management in P2P Networks. InTwelfth Interna-
tional World Wide Web Conference, 2003. http://citeseer.ist.psu.edu/
551866.html .

[70] Raph Levien. Attack Resistant Trust Metrics. InPhD Thesis, UC Berkeley, 2004.
http://www.levien.com/thesis/compact.pdf .

[71] Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New
Linear-threshold Algorithm.Machine Learning, 2:285–318, 1988.http://ai.
stanford.edu/˜pabbeel/depth_qual/littlestone1988.pdf .

[72] David Madigan. Statistics and the War on Spam. InIn Statistics, A Guide to the
Unknown, 2004. http://www.stat.rutgers.edu/˜madigan/PAPERS/
sagtu.pdf .

[73] Mail Abuse Prevention System.http://www.mail-abuse.com .

[74] Mail Routing and the Domain System.ftp://ftp.is.co.za/rfc/rfc974.
txt .

[75] MailFrontier, Inc.http://www.mailfrontier.com/ .

[76] MailFrontier Phishing IQ Test. http://survey.mailfrontier.com/
survey/quiztest.html .

203

http://www.identifiedmail.com/draft-fenton-identified-mail.txt
http://www.identifiedmail.com/draft-fenton-identified-mail.txt
http://www.faqs.org/rfcs/rfc3501.html
http://www.faqs.org/rfcs/rfc3501.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.ironport.com/
http://www.rsasecurity.com/rsalabs/node.asp?id=2049
http://www.rsasecurity.com/rsalabs/node.asp?id=2049
http://security.dstc.edu.au/papers/JIB2005-DSS.pdf
http://security.dstc.edu.au/papers/JIB2005-DSS.pdf
http://www.death2spam.net/
http://citeseer.ist.psu.edu/551866.html
http://citeseer.ist.psu.edu/551866.html
http://www.levien.com/thesis/compact.pdf
http://ai.stanford.edu/~pabbeel/depth_qual/littlestone1988.pdf
http://ai.stanford.edu/~pabbeel/depth_qual/littlestone1988.pdf
http://www.stat.rutgers.edu/~madigan/PAPERS/sagtu.pdf
http://www.stat.rutgers.edu/~madigan/PAPERS/sagtu.pdf
http://www.mail-abuse.com
ftp://ftp.is.co.za/rfc/rfc974.txt
ftp://ftp.is.co.za/rfc/rfc974.txt
http://www.mailfrontier.com/
http://survey.mailfrontier.com/survey/quiztest.html
http://survey.mailfrontier.com/survey/quiztest.html

[77] Bart Massey, Mick Thomure, Raya Budrevich, and Scott Long. Learning Spam: Sim-
ple Techniques for Freely-available Software. InIn Proceeding of the 2003 Usenix An-
nual Technical Conference, Freenix Track, 2003. http://nexp.cs.pdx.edu/
twiki-psam/pub/PSAM/PsamDocumentation/spam.pdf .

[78] T.A Meyer and B Whateley. SpamBayes: Effective Open-source, Bayesian Based,
Email Classification System. InProceedings of the First Conference on Email and
Anti-Spam (CEAS), 2004.http://www.ceas.cc/papers-2004/136.pdf .

[79] Eirinaios Michelakis, Ion Androutsopoulos, Georgios Paliouras, George Sakkis, and
Panagiotis Stamatopoulos. Filtron: A Learning-Based Anti-Spam Filter. InPro-
ceedings of the First Conference on Email and Anti-Spam (CEAS), 2004. http:
//www.ceas.cc/papers-2004/142.pdf .

[80] Minsky and Papert. Perceptrons. Cambridge, MA, 1969. MIT Press.

[81] Mirapoint, Inc.http://www.mirapoint.com/ .

[82] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies.http://www.ietf.org/rfc/rfc2045.txt .

[83] Multipurpose Internet Mail Extensions Part Three: Message Header Extensions for
Non-ASCII Text.http://www.ietf.org/rfc/rfc2047.txt .

[84] Marcia Munoz, Visin Punyakanok, Dan Roth, and Dav Zimak. A Learning Approach
to Shallow Parsing. Technical Report UIUCDCS-R-99-2087, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1999.
http://citeseer.ist.psu.edu/333381.html .

[85] Moni Naor. Verification of a Human in the Loop or Identification via the Turing Test,
1996.http://citeseer.ist.psu.edu/naor96verification.html .

[86] New Michigan and Utah Child Protection Registry Laws.http://www.spamfo.
co.uk/index.php?option=com_content\&task=view\&id=000344 .

[87] normalizemime v2004-02-04.http://hyvatti.iki.fi/˜jaakko/spam/ .

[88] Henrik Nottelmann and Norbert Fuhr. Learning Probabilistic Datalog Rules
for Information Classification and Transformation. InProceedings of the
Tenth International Conference on Information and Knowledge Management
(CIKM), 2001. http://ls6-www.informatik.uni-dortmund.de/ir/
publications/2001/Nottelma%nn_Fuhr:01.html .

[89] Cormac O’Brien and Carl Vogel. Comparing SpamAssassin with CBDF Email
Filtering. In Proceedings of the 7th Annual CLUK Research Colloquium, 2004.
http://www.cs.tcd.ie/Cormac.OBrien/spamAss.pdf .

204

http://nexp.cs.pdx.edu/twiki-psam/pub/PSAM/PsamDocumentation/spam.pdf
http://nexp.cs.pdx.edu/twiki-psam/pub/PSAM/PsamDocumentation/spam.pdf
http://www.ceas.cc/papers-2004/136.pdf
http://www.ceas.cc/papers-2004/142.pdf
http://www.ceas.cc/papers-2004/142.pdf
http://www.mirapoint.com/
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2047.txt
http://citeseer.ist.psu.edu/333381.html
http://citeseer.ist.psu.edu/naor96verification.html
http://www.spamfo.co.uk/index.php?option=com_content&task=view&id=000344
http://www.spamfo.co.uk/index.php?option=com_content&task=view&id=000344
http://hyvatti.iki.fi/~jaakko/spam/
http://ls6-www.informatik.uni-dortmund.de/ir/publications/2001/Nottelma%nn_Fuhr:01.html
http://ls6-www.informatik.uni-dortmund.de/ir/publications/2001/Nottelma%nn_Fuhr:01.html
http://www.cs.tcd.ie/Cormac.OBrien/spamAss.pdf

[90] T. Oda and T. White. Developing an Immunity to Spam. InGenetic and Evolution-
ary Computation - GECCO, Chicago, IL, USA. Lecture Notes in Computer Science,
Vol. 2723, Springer, pages 231–242, 2003.http://terri.zone12.com/doc/
academic/spam_gecco2003.pdf .

[91] T. Oda and T. White. Increasing the Accuracy of a Spam-detecting Artificial
Immune System. InProceedings of the Congress on Evolutionary Computation
(CEC 2003), 2003. http://terri.zone12.com/doc/academic/spam_
cec2003.pdf .

[92] Cormac OBrien and Carl Vogel. Spam Filters: Bayes vs. Chi-squared; Letters vs.
Words. InProceedings of the International Symposium on Information and Com-
munication Technologies, 2003. http://www.cs.tcd.ie/publications/
tech-reports/reports.03/TCD-CS-2003-1%3.pdf .

[93] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical report, Stanford Dig-
ital Library Technologies Project, 1998.http://citeseer.ist.psu.edu/
page98pagerank.html .

[94] Patrick Pantel and Dekang Lin. Spamcop: A Spam Classification and Organiza-
tion Program. InLearning for Text Categorization: Papers from the 1998 Work-
shop, Madison, Wisconsin, 1998. AAAI Technical Report WS-98-05, 1998. http:
//www.cs.ualberta.ca/˜ppantel/Download/Papers/aaai98.pdf .

[95] PGP: Pretty Good Privacy.http://www.pgpi.org/ .

[96] Pobox.http://pobox.com .

[97] Post Office Protocol- Version 3.http://www.ietf.org/rfc/rfc1939.txt .

[98] Project Honey Pot.http://www.projecthoneypot.org/ .

[99] Purported Responsible Address in E-Mail Messages.http://www.ietf.org/
internet-drafts/draft-lyon-senderid-pra-01.txt .

[100] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A Bayesian
Approach to Filtering Junk E-mail. InLearning for Text Categorization: Papers from
the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report WS-98-05.
http://research.microsoft.com/˜horvitz/junkfilter.htm .

[101] Sender Authentication.http://www.spf.pobox.com/whitepaper.pdf .

[102] Sender ID: Authenticating E-Mail. http://xml.coverpages.org/
draft-ietf-marid-core-03.txt .

205

http://terri.zone12.com/doc/academic/spam_gecco2003.pdf
http://terri.zone12.com/doc/academic/spam_gecco2003.pdf
http://terri.zone12.com/doc/academic/spam_cec2003.pdf
http://terri.zone12.com/doc/academic/spam_cec2003.pdf
http://www.cs.tcd.ie/publications/tech-reports/reports.03/TCD-CS-2003-1%3.pdf
http://www.cs.tcd.ie/publications/tech-reports/reports.03/TCD-CS-2003-1%3.pdf
http://citeseer.ist.psu.edu/page98pagerank.html
http://citeseer.ist.psu.edu/page98pagerank.html
http://www.cs.ualberta.ca/~ppantel/Download/Papers/aaai98.pdf
http://www.cs.ualberta.ca/~ppantel/Download/Papers/aaai98.pdf
http://www.pgpi.org/
http://pobox.com
http://www.ietf.org/rfc/rfc1939.txt
http://www.projecthoneypot.org/
http://www.ietf.org/internet-drafts/draft-lyon-senderid-pra-01.txt
http://www.ietf.org/internet-drafts/draft-lyon-senderid-pra-01.txt
http://research.microsoft.com/~horvitz/junkfilter.htm
http://www.spf.pobox.com/whitepaper.pdf
http://xml.coverpages.org/draft-ietf-marid-core-03.txt
http://xml.coverpages.org/draft-ietf-marid-core-03.txt

[103] Sender Policy Framework (SPF) for Authorizing Use of Domains in E-
MAIL, version 1. http://www.ietf.org/internet-drafts/
draft-schlitt-spf-classic-02.txt .

[104] Christian Siefkes. A Toolkit for Caching and Prefetching in the Context of Web Appli-
cation Platforms. Diplomarbeit, TU Berlin, 2002.http://www.siefkes.net/
diplom/ .

[105] Christian Siefkes, Fidelis Assis, Shalendra Chhabra, and William S. Yerazunis.
Combining Winnow and Orthogonal Sparse Bigrams for Incremental Spam Filter-
ing. In Proceedings of the 15th European Conference on Machine Learning and
8th European Conference on Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD 2004), Lecture Notes in Computer Science. Springer, 2004.
Copyright Springer-Verlag, 2004. http://www.cs.ucr.edu/˜schhabra/
winnow-spam.pdf .

[106] Simple Mail Transfer Protocol. http://www.faqs.org/rfcs/rfc821.
html .

[107] Simple Mail Transfer Protocol. http://www.faqs.org/rfcs/rfc2821.
html .

[108] Slashdot.http://www.slashdot.org/ .

[109] SPAM Track, TREC 2005. http://plg.uwaterloo.ca/˜gvcormac/
spam/ .

[110] SpamAssassin.http://spamassassin.apache.org/ .

[111] SpamBayes.http://spambayes.sourceforge.net/ .

[112] SpamCop Blocking List (SCBL).http://www.spamcop.net/bl.shtml .

[113] SpamProbe.http://spamprobe.sourceforge.net/ .

[114] Standard for the Format of ARPA Internet Text Messages.http://www.faqs.
org/rfcs/rfc822.html .

[115] Symantec Corporation.http://www.symantec.com/ .

[116] Text Retrieval Conference (TREC).http://trec.nist.gov/ .

[117] The Domain Naming Convention for Internet User Applications.ftp://ftp.is.
co.za/rfc/rfc819.txt .

[118] The Penny Black Project.http://research.microsoft.com/research/
sv/PennyBlack/ .

[119] The Spamhaus Project.http://www.spamhaus.org .

206

http://www.ietf.org/internet-drafts/draft-schlitt-spf-classic-02.txt
http://www.ietf.org/internet-drafts/draft-schlitt-spf-classic-02.txt
http://www.siefkes.net/diplom/
http://www.siefkes.net/diplom/
http://www.cs.ucr.edu/~schhabra/winnow-spam.pdf
http://www.cs.ucr.edu/~schhabra/winnow-spam.pdf
http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc2821.html
http://www.faqs.org/rfcs/rfc2821.html
http://www.slashdot.org/
http://plg.uwaterloo.ca/~gvcormac/spam/
http://plg.uwaterloo.ca/~gvcormac/spam/
http://spamassassin.apache.org/
http://spambayes.sourceforge.net/
http://www.spamcop.net/bl.shtml
http://spamprobe.sourceforge.net/
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc822.html
http://www.symantec.com/
http://trec.nist.gov/
ftp://ftp.is.co.za/rfc/rfc819.txt
ftp://ftp.is.co.za/rfc/rfc819.txt
http://research.microsoft.com/research/sv/PennyBlack/
http://research.microsoft.com/research/sv/PennyBlack/
http://www.spamhaus.org

[120] Trainable Incremental Extraction System.http://www.inf.fu-berlin.de/
inst/ag-db/software/ties/ .

[121] TRUSTe.http://www.truste.org/ .

[122] Tumbleweed Communications Corporation./http://www.tumbleweed.com/ .

[123] Vipul’s Razor.http://razor.sourceforge.net/ .

[124] Xiaoyun. Wang, Yiqun Lisa Yin, and Hongbo. Yu. Finding Collisions in the Full SHA-
1. In Crypto05. Santa Barbara,CA, 2005. http://theory.csail.mit.edu/
˜yiqun/pub.html .

[125] Rebecca Wetzel. Tackling Phishing. http://www.netforecast.com/
Articles/RW-Phishing-BCR05,02.pdf .

[126] Wikipedia. The Free Encyclopedia.http://en.wikipedia.org/wiki/
Main_Page .

[127] William S. Yerazunis. Sparse Binary Polynomial Hashing and the CRM114 discrimi-
nator. In2003 Spam Conference, Cambridge, MA, 2003. MIT.http://crm114.
sourceforge.net/CRM114_paper.html .

[128] William S. Yerazunis. The Spam-Filtering Accuracy Plateau at 99.9% Accuracy and
How to Get Past It. In2004 Spam Conference, Cambridge, MA, 2004. MIT.http:
//crm114.sourceforge.net/Plateau_Paper.pdf .

[129] William S. Yerazunis, Shalendra Chhabra, Christian Siefkes, Fidelis Assis, and Dim-
itrios Gunopulos. A Unified Model of Spam Filtration. InMIT Spam Conference,
2005.http://www.cs.ucr.edu/˜schhabra/UnifiedFilters.pdf .

[130] Jonathan Zdziarski. The DSPAM Project.http://www.nuclearelephant.
com/projects/dspam/ .

[131] Le Zhang and Tian Yao. Filtering Junk Mail with A Maximum Entropy Model. In
Proceeding of 20th International Conference on Computer Processing of Oriental
Languages (ICCPOL03), 2003. http://www.nlplab.cn/zhangle/paper/
junk.pdf .

207

http://www.inf.fu-berlin.de/inst/ag-db/software/ties/
http://www.inf.fu-berlin.de/inst/ag-db/software/ties/
http://www.truste.org/
/http://www.tumbleweed.com/
http://razor.sourceforge.net/
http://theory.csail.mit.edu/~yiqun/pub.html
http://theory.csail.mit.edu/~yiqun/pub.html
http://www.netforecast.com/Articles/RW-Phishing-BCR05,02.pdf
http://www.netforecast.com/Articles/RW-Phishing-BCR05,02.pdf
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://crm114.sourceforge.net/CRM114_paper.html
http://crm114.sourceforge.net/CRM114_paper.html
http://crm114.sourceforge.net/Plateau_Paper.pdf
http://crm114.sourceforge.net/Plateau_Paper.pdf
http://www.cs.ucr.edu/~schhabra/UnifiedFilters.pdf
http://www.nuclearelephant.com/projects/dspam/
http://www.nuclearelephant.com/projects/dspam/
http://www.nlplab.cn/zhangle/paper/junk.pdf
http://www.nlplab.cn/zhangle/paper/junk.pdf

Vita

Shalendra Chhabra was born in India on November 29, 1980. He was awarded the Gold

Medal by the Lions Club and the Merit Certificate by the Government of India for securing

first place in the district in the 1996 High School Examination. After clearing the Indian

Institute of Technology Joint Entrance Examination (IIT-JEE) in 1999, he joined the Institute

of Technology, Banaras Hindu University (ITBHU) in Varanasi, India, where he received

a Bachelor of Technology (BTech) with Honors in Electrical Engineering in 2003. During

his undergraduate studies he won numerous awards and competitions, including a Certifi-

cate of Achievement and Honorable Mention at the ACM International Collegiate Software

Programming Contest (Asia Zone) in 2001 and a medal from IEE UK for placing first in an

All-India Engineering Contest in 2002. He was a Student-Fellow of the Indian Academcy of

Sciences (IAS) (2001) and has worked at the Tata Institute of Fundamental Research (TIFR)

(National Center of Government of India for Nuclear Science and Mathematics) (2001); Lab-

oratoire Sṕecification et V́erification, Ecole Normale Superieure De Cachan (LSV, ENS De

Cachan) (France) (2002) and University of Milan, Crema (Italy) (2003).

He joined the Department of Computer Science and Engineering, University of Califor-

nia, Riverside (UCR), as a graduate student in September 2003. He is a recipient of the

Dean’s Fellowship and is completing a Master’s Degree in Computer Science (MS) in Oc-

tober 2005. He has been with Mitsubishi Electric Research Laboratories, MA (MERL), for

the summers of 2004 and 2005. During his academic studies he has published 4 papers and

has presented his work at the Massachusetts Institute of Technology (MIT), Stanford Univer-

sity and Cisco Systems. He is on the development team of an open source spam filter, the

CRM114 Discriminator, and he has been cited on Slashdot. His Erdős Number is 3.

He is a dancer by hobby and is working on his movieThe BackBenchersat the University

of California, Riverside.

He is joining Microsoft Corporation as a Program Manager in the MSN Safety Team.

208

209

	List of Tables
	List of Figures
	Introduction
	Contributions
	Papers
	Presentations
	Postings on Slashdot
	Slashdot Book Reviews
	Articles
	Volunteer Work
	Surveys
	Thesis Structure

	Background
	Email, Spam and Phishing
	Email
	Spam
	Phishing

	Internet Email Agents
	Email Address
	Mail User Agent (MUA)
	Mail Transfer Agent (MTA)
	Mail Delivery Agent (MDA)

	Internet Email Flow
	Internet Email Format
	Details of the Simple Mail Transfer Protocol (SMTP)
	SMTP - Objective and Model
	Mail Object: Envelope and Content
	Message Transfer
	SMTP Commands
	SMTP Commands and Arguments
	SMTP Reply Codes
	SMTP Mail Transaction
	Difference between Envelope Sender and From Address
	Open Mail Relays

	Spam - Origin, Categories, False Claims and Exploits
	Geographical Origins of Email and Spam
	Categories of Spam
	False Claims in Spam
	Trends in Spam Products and Exploits

	Phishing - Attack Taxonomy, Lifecycle and Anatomy
	Phishing Attack Taxonomy and Lifecycle
	Anatomy of a Phishing Email
	Tricks Used in Fraudulent Web Sites

	Spam and the Law
	CAN-SPAM Act of 2003
	Jeremy Jaynes Sentence

	People and Spam
	Spam Survey at University of California, Riverside

	Related Work
	Whitelist, Blacklist and Greylist
	Whitelist
	Blacklist
	Greylist

	Email Authentication
	Sender Policy Framework (SPF)
	Sender ID Framework (SIDF) from Microsoft Corporation
	Email Authentication Score Card
	Identified Internet Mail (IIM) from Cisco Systems, Inc.
	Domain Keys (DK) from Yahoo!, Inc.

	Machine Learning Approach
	Sender Pays/Sender Verification/Sender Compute
	Challenge Response
	Human Interactive Proofs (HIP) (CAPTCHA)
	Proof of Work (PoW)
	Micropayments

	Controlling Spam at the Router Level
	Social Networks
	Distributed Collaborative Filtering
	Special Purpose One Time/Disposable Email Addresses
	Tracking Harvesters through the Project Honey Pot
	Accreditation and Reputation Services
	AOL's Enhanced Whitelisting
	Habeas SafeList Program
	Return Path's Bonded Sender Program
	CipherTrust's TrustedSource Reputation Service
	IronPort's SenderBase Reputation Service

	Anti-Spam Appliances

	A Unified Model of Spam Filtration
	Introduction
	The Filtering Pipeline
	Initial Transformation
	Feature Extraction
	Feature Weighting
	Weight Combination
	Final Thresholding

	Emulation of Other Filtering Methods
	Emulating Whitelists and Blacklists in the Generalized Model
	Emulation of Heuristic Filters in the Generalized Model
	Examples of Popular Spam Filters in the Generalized Model
	Conclusion and Future Work

	The CRM114 Discriminator Framework
	Introduction
	CRM114 Discriminator and the Text Retrieval Conference (TREC) 2005
	Implementing CRM114 at Mailservers
	A Generalized Configuration Mode for Implementing CRM114 at Mailservers
	CRM114 Configuration Mode for Large Scale Enterprises

	The CAMRAM System
	Introduction
	Architecture of the CAMRAM System
	CAMRAM Inbound Filter
	CAMRAM Outbound Filter
	CAMRAM User Interface
	Snapshots of CAMRAM Interfaces

	Spam Filtering Using a Markov Random Field Model
	Introduction
	Related Work
	Markov Random Fields
	Markov Random Field Model and CRM114
	Features Vectors in the Chosen Neighborhood
	Training and Prediction using CRM114
	Testing Procedure
	Models Tested
	Test Results
	Discussion

	Conclusion and Future Work

	Combining Winnow and Orthogonal Sparse Bigrams for Incremental Spam Filtering
	Introduction
	The Winnow Classification Algorithm
	Thick Threshold
	Feature Pruning

	Feature Generation
	Preprocessing
	Tokenization

	Feature Combination
	Sparse Binary Polynomial Hashing
	Orthogonal Sparse Bigrams

	Experimental Results
	Testing Procedure
	Parameter Tuning
	Feature Store Size and Comparison With SBPH
	Unigram Inclusion
	Window Sizes
	Preprocessing and Tokenization
	Comparison with CRM114 and Nave Bayes
	Speed of Learning

	Related Work
	Conclusion and Future Work

	Reputation Systems
	Introduction
	Trust and Reputation
	Common Online Reputation Systems
	Reputation Scoring System

	Reputation Network Architectures
	Centralized Architecture
	Distributed Reputation Systems

	Reputation Computation Engines
	Summation/Average of Votes
	Bayesian Systems
	Discrete Trust Models
	Flow Models

	Conclusion
	Bibliography

