
On Fair Scheduling in Heterogeneous Link
Aggregated Services

Satya R. Mohanty and Laxmi N. Bhuyan
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
satya,bhuyan@cs.ucr.edu

Abstract— Provisioning Quality of Service (QoS) across an
aggregate of transmission entities (e.g. link aggregation) or
processing elements (e.g. network processors) is a challenging
problem. The difficulty lies in simultaneously satisfying fairness
to flows (with different bandwidth requirements) and ensuring
minimized intra-flow reordering. This problem is crucial to many
applications (that utilize parallel communication or processing
paths) like multi-path load distribution, multi-path storage I/O,
web service, data processing by network processors in the data-
path of routers, trans-coding multimedia flow traffic content
over the Internet to name a few. We present two algorithms for
multi-link systems that aim at reducing undesired reordering,
ensure fair sharing of flows and optimal utilization of the links.
Our algorithms are based on a new approach of dynamically
partitioning flows among links. We perform simulations on real
Internet traces to validate our algorithmic approach.

I. INTRODUCTION

Link aggregation increases transmission bandwidth by si-
multaneously introducing multiple physical links to the same
destination that together carry the aggregate traffic. The ad-
vantages of this method in addition to the linear scaling
of bandwidth between the two end devices are increased
reliability and load balancing. Implementations in the market
place include the Cisco Etherchannel in the Cisco ONS 1500
Series based on the proprietary Inter-Switch trunking (ISL),
Adaptec’s Duralink port aggregation, 3COM, Bay Networks,
Extreme Networks, Hewlett Packard and Sun, to name a few.

Implementing Quality of Service (“Fairness”) requires that
communication traffic be serviced selectively so that customers
who pay more, or customers with critical requirements receive
better service. This is usually done by dividing the traffic into
disjoint flows (a flow can be thought of as a unique source-
destination “conversation”; its packets are always stored in
a logically distinct per-conversation queue at a router), and
treating them in accordance with their reserved rates of service.
Fairness ensures immunity from misbehaving flows, thereby
resulting in effective congestion control and rate-adaptive
applications. Stringent Quality of Service (QoS) requirements
also lead to strict delay bounds and better throughput by
selective admission control.

This paper addresses the quality of service issue for multi-
link systems. Nevertheless an identical situation resides in
the Network Processor NP context. Several microengines
process packets simultaneously with a main core performing
the scheduling or allocation policy to individual microengines.

Thus, although our algorithms are in the link context, they are
analogous to the NP scheduling area. In fact if the time for
packet transmission on a link is replaced with the estimated
time of processing in an NP, the two problems are one
and the same. References [13], [8] relate to the problem of
scheduling the workload across multiple processing engines
of a network processor. While [8] assumes that the traffic is
always backlogged, [13] assumes that the workload is known.
A recent work [11] addresses the same problem but obviates
the need for a known workload by using an on-line estimator
with less complexity.

Recent research in Fair Queuing [1], [5], [7], [10], [12]
has addressed the QoS issue in the single link context i.e.
scheduling competing flows over a single link in accordance
with their reserved rates of service. QoS scheduling over a
multi-link system does not follow trivially from the single link
scheduling case. An issue that was non-existent in the single
link case manifests prominently in a multi-link setting.

Reordering of packets is likely whenever a flow is concur-
rently serviced and may actually increase when link rates vary.
However, enforcing strict order may cause the multi-link sys-
tem utilization and thus the throughput to drop substantially.
On the other hand, it is also well known that, reordering of
packets has direct bearing on the transmission control protocol
(TCP). TCP is designed to handle reordering, however this in-
volves additional processing at the TCP end points. Reordering
has also been proved to be detrimental to TCP performance.
Blanton and Allman [3] state that reordering causes per-
formance problems for TCP’s fast retransmission algorithm,
which uses the arrival of duplicate acknowledgments to detect
segment loss. TCP for Persistent Reordering [4] (TCP-PR) is
a variant of TCP that attempts to improve TCP performance
in the presence of persistent reordering phenomena. But this
is a software solution, feasible only at the end-hosts. Hence
imposition of QoS over a heterogeneous multi-link system
deserves consideration of an additional factor over that of the
single link case.

The problem of provisioning QoS among competing flows
over a system of links was addressed by Blanquer and
Özden [2]. Their algorithm, Multi Server Fair Queueing
(MSFQ) is based on the Generalized Processor Sharing
(GPS) [10] system, an idealized service discipline, that is
also representative of a perfectly fair system. MSFQ simply
selects the next packet that would leave in the associated GPS

system and sends it over the next available link (algorithm
PGPS [10]). Although MSFQ is defined for the case when all
links are homogeneous (all links operate at the same rate), the
algorithm itself may be applied to a system of heterogeneous
links (individual links operate at different rates).

Cobb and Lin [6] propose a general technique of
constructing a multi-link scheduling algorithm from a single
link one. They also consider several sorting techniques
to avoid packet reordering that require access to upper
layer protocol headers and thus potentially incur significant
overhead.

Our Contributions
We take a completely different approach from the work cited
above. We present two algorithms, each of which reduce the
reordering problem while still providing a good approximation
of GPS by assigning the output links to flows. Whenever a
link is idle and packets are outstanding to be scheduled, only
head of line (HOL)packets of flows that are assigned on that
link are eligible to be scheduled. Once this assignment is done
any Fair Queuing algorithm for a single link system can work
in conjunction to determine the final order in which the packets
should be sent.

We perform various simulation tests and evaluate packet
reordering using several different metrics. The experiments
show that our algorithms outperform MSFQ no matter which
metric is used to quantify packet reordering. In some cases,
even for homogeneous systems, our algorithms outperform
MSFQ drastically.

II. BACKGROUND

A. Generalized Processor Sharing

If φi is a reservation assigned to flow i and B(t) de-
notes the set of backlogged flows at time t, then φi(t) =
φi/

∑

j∈B(t) φj , is the fraction of the total available bandwidth
that flow i requires at time t. GPS is a work conserving service
discipline that can be described as follows: Let Wi(t, t + τ)
denote the number of bits transmitted by the GPS system
from flow i in time interval [t, t+ τ]. Then the GPS always
ensures that for any two flows i, j

Wi(t, t+ τ)

Wj(t, t+ τ)
≥
φi(t)

φj(t)
(1)

holds true for a time interval [t, t+ τ] during which the set of
backlogged flows does not change. This is possible only if we
assume that packets are infinitely divisible. In reality it is not
possible to keep the inequality (1) satisfied at all times, so an
effort is made to approximate the GPS system. In the single
link case, this was achieved by simulating the GPS system,
and transmitting the packets in the order they would depart in
the GPS system.

In the multi-link case, any scheduling algorithm not only
needs to make the decision of which packet to transmit next,
but also which link should be used to transmit the packet. The
following approach was taken by Blanquer and Özden [2]. Let
N be the number of links and let R be the individual link rate.

R 1

R 3

R N

R 2

...

scheduler

flows
links

sender

...

receiver

Fig. 1. System model

R iΣ

...

flows

scheduler

link

sender

receiver

Fig. 2. Aggregated system

(In [2], it is assumed that Rj = R, a constant, for every link
j.) See Figure 1. Then MSFQ schedules the next packet that
would depart in the reference GPS system operating at rate
NR (see Figure 2) on the next available link. Such a reference
system is often referred to as (GPS, 1, NR), denoting a single
link, operating at a rate NR serviced by the GPS discipline.
The MSFQ algorithm is denoted hereby as (MSFQ, N , R).

Two things should be noted at this point. First, the order
of departure times of packets in MSFQ and in the reference
GPS system is not always the same, since packets may
arrive while all MSFQ links are busy. These packets may
start receiving service in GPS immediately and may depart
even before MSFQ begins their transmission. This is a well
understood phenomenon and exists even in the single link
case. Second, in the multi-link case packets that start receiving
service later in time can depart before packets that started
receiving service earlier. This happens because of concurrent
service of different length packets of the same flow on different
links. This problem is prominent in the scenario when the rates
of the links vary.

B. Notation

We provide some notation here. Let N be the number of
output links in the system. Link i operates at rate Ri. By
Rmax and Rmin we denote the rates of the fastest and slowest
links respectively. The aggregate rate of the multi-link system
is therefore Rag =

∑N

i=1 Ri. This is the rate at which the
reference GPS link operates for MSFQ. When all the links
have the same rate R, then Rag is simply NR. By Lk we
denote the length of packet k. By Lmax and Lmin we denote

the maximum and the minimum packet length respectively. By
n we denote the number of backlogged flows at a given time.

C. Packet reordering

Quantifying packet reordering is not easy, as different
protocols may be able to tolerate sequences with quite different
reorder degree and type. Consider for example sequences (2,
3, 4, 5, 6, 7, 8, 1) and (2, 1, 4, 3, 6, 5, 8, 7). In the first one,
only one packet is “out-of-order”. However, if an application
needs to read the packets in the original order to process the
whole sequence, the second sequence seems to have a lower
degree of reordering (only two consecutive numbers need to
be read to restore the original sequence.)

We therefore need a proper definition of reordering and
relevant performance metrics. In this paper, we adopt the
definitions of packet reordering from the IETF draft by Mar-
ton et al. [9]. The reordering measures stated there, apart
from defining reorder and quantifying its degree also have
relevance to receiver design that can impact TCP and Real-
time application performance. In the following, without loss of
generality, we assume that only a single flow is incident. Let
si be the original sequence number of the i’th packet received
by the destination. The following code determines if a packet
is received in order. It uses a variable NextExp which is
initially set to the index number of the first received packet of
that flow.

Algorithm II.1: ON PACKET ARRIVAL(s)

if (si ≥ NextExp) then
//packet with seq. num si is in-order
NextExp++;

else
//packet with seq. num si is reordered

We now briefly present the metrics.
Reordered ratio. Reordered ratio is simply the ratio of packets
that were received out of order to the total number of packets.
Reordering extent. Reordering extent of packet si is defined
to be i− j for the smallest value of j such that sj > si. The
reordering extent is a rough estimate on the size of the buffer
needed to restore the original order.
Reorder free run. Reorder free run is the count of packets that
arrived in order, since the last reordered packet.

III. BANDWIDTH PARTITIONING ALGORITHM

MSFQ chooses the packet with smallest virtual time to
transmit on the link. This decision needs to be done more
carefully in the heterogeneous system, as transmitting packets
with high reservations on slow links (or, conversely, transmit-
ting packets with low reservations on fast links) may result in
local unfairness and high packet reordering rate. Consider the
following example:
Example: Fix a flow i and let pk be a maximum length packet
of this flow. Suppose that the next packet to leave the system
is pk and the only available link is the one with the lowest
rate. If packet pk is scheduled on this link, then after time

δ, (δ ≈ 0), all the other links may become available and a
large number of packets of flow i with minimum length may
arrive. If the GPS finishing times of all these packets are
smaller than the GPS finishing time of all other packets in
the system then potentially (N − 1)

⌊

RmaxLmax

RminLmin

⌋

packets of
flow i, with sequence numbers greater than pk can leave the
system completely before pk does.

It is obvious that MSFQ does not take into account a flow’s
individual reservation or how many links it is spanned across at
any given moment in time. We build on this intuition and aim
at a corresponding match between flows and links such that
an individual flow gets fair service and is minimally spread
across links within the limits of discrete packet transmission.
The match or partition is the key feature of our algorithm.

A. Partitions and Partitioning

We discuss partitions in this section. A partition of a flow on
a link is an assignment of some fraction of the link’s bandwidth
to that flow. The idea is to have the partitions proportional to
the backlogged reservations.
Partitions: For a fixed time step t, normalize the reservations,
by setting

φi(t) = φi(t)Rag

where Rag is defined as the aggregate bandwidth of all the

links. A partition is denoted by
(

ψj
i

)1..N

1..n
, where ψj

i is simply
the fraction of flow i that is assigned to link j.

We say, that a partition is canonical, if it satisfies the
following conditions:

(C1)
∑N

j=1 ψ
j
i = φi(t), (total bandwidth assigned to

flow i is equal to its normalized reservation)
(C2)

∑n

i=1 ψ
j
i = Rj (total bandwidth of flows

assigned to link j does not exceed its rate)

Let Pj = {i : ψj
i > 0} be the set of flows assigned to link

j and let Qi = {j : i ∈ Pj} be the set of links on which flow
i can be scheduled. We leave the question of how to compute
appropriate partitions to the subsequent section. Before that
we describe some desirable properties of any partition.

The algorithms use two main components: (1) a component
to compute canonical partitions and sets (Pj)j=1,...,N , (2) a
Fair Queuing FQ algorithm for single link system.

The algorithm FQ is used to determine the order in which
the packets would leave the system (FQ, 1, Rag). This order
is used to schedule the packets in the main algorithm in the
way described below.

When an output link j becomes idle, the set Pj is computed.
The packet that is transmitted over link j is the HOL packet
of a flow in Pj that would depart the (FQ, 1, Rag) system
first. In other words the algorithm FQ is used to assign a
departure sequence number to packets for the pending flows,
and the main algorithm chooses the one with the minimum
such sequence number among packets belonging to flows Pj .
Note that once the sets Pj are computed, the main algorithm
does not base its decision of which packet to send next on

the values ψj
i but, rather, on the departure sequence number

obtained from FQ only.
We would like to show that MSFQ is also canonical. Indeed,

it is enough to consider partition ψj
i = φi(t)Rj/Rag and set

FQ = PGPS. We obtain Pj = {1, 2, . . . , N} for any j, so
the next packet to leave the system GPS, 1, Rag is always
send over the next available link. It is worth noticing that the
partition defined in this way is canonical. Indeed,

N
∑

j=1

ψj
i = φi(t)

N
∑

j=1

Rj/Rag

= φi(t)
n

∑

i=1

ψj
i = Rj/Rag

n
∑

i=1

φi(t)

= Rj

The time complexity of the algorithms depends on the
complexity of the algorithms used to compute the partition and
the algorithm FQ. It, however, is at least O(log n) per packet,
as at each step a packet with minimum sequence number needs
to be found.

B. Partition Detection Algorithm

Partitioning is invoked at certain epochs. These epochs
coincide with the scheduling time of some packet that just
starts to receive service in the system. The condition for
partitioning is simple: Whenever a link is idle, a check is
done to determine if the set of flows has changed since
the last partitioning instance. If the flow set changes, then
the partitioning needs to be computed. If t1 and t2 are two
consecutive packet departure times in the aggregated link
system and nt1 and nt2 are the corresponding backlogged flow
sets, a naive algorithm that performs the partitioning check
through direct sort and compare is of complexity O(n′ logn′),
where n′ = max(nt1 , nt2). This is clearly prohibitive at high
speed links since this check needs to be done at every packet
scheduling time. We propose a simple yet efficient algorithm to
solve this problem. The algorithm makes use of two queues, a
Vanish and Arrival Queue, denoted by V Q and AQ, and whose
sizes are N and 1 respectively. When a new flow arrives, the
algorithm first checks if the flow is already present in V Q. If
the flow is present, its entry is removed from V Q (this means
the flow only disappeared temporarily). If the flow did not
appear in V Q, and AQ is empty, an entry of the flow is made
in AQ. Otherwise no bookkeeping is done in the detection
algorithm. The Pseudo-code is presented in Figure 3. Let the
migration degree of flow i be |Qi|. We will say that a flow
migrates if its migration degree is greater than 1. Reordering
is caused by migrations. The larger migration degree, the more
likely it is for the reordering to take place. The second factor
that influences the degree of reordering is the difference in
link rates between which a flow migrates.

C. Algorithms for computing partitions

Algorithm BestFit:
The BestFit algorithm tries to localize backlogged (here

Upon arrival of a packet Pk of flow f s.t no packets of
flow f except those being transmitted are backlogged:
ToPartition = FALSE

• If ((ToPartition == FALSE) ∧ (f ∈ V Q))
Enqueue Pk onto F lowQ[f]
Delete flow f from V Q

• If F lowQ[f] == Φ
Enqueue Pk onto F lowQ[f]
If (ToPartition == FALSE)

ToPartition := TRUE
Enqueue f onto AQ

When a link is free

• If ToPartition == TRUE
Do Partition

• If scheduled packet causes flow f to disappear
Enqueue flow f onto V Q.

Fig. 3. Algorithm 1. Partition Detection Algorithm

backlogged means flows which have packets pending to be
transmitted in real time, not in GPS) flows with high reserva-
tions to the faster links (with high bandwidth), as these flows
are most likely to migrate. BestFit proceeds by recursively
mapping the flow with the largest remaining reservation to
the link with the largest remaining bandwidth. At initiation of
the mapping process, each link’s share is its nominal rate and
each backlogged flow’s share is its instantaneous reservation.

In the following Fi is an unmapped portions of flow i and
Tj is the remaining bandwidth of link j. The algorithm simply
takes the flow with the largest unmapped portion and assigns
it to the link with the largest unmapped bandwidth. The excess
bandwidth of either the link or the flow is their available band-
width for the next iteration. The canonical property ensures
that that once the BestFit algorithm terminates, no excess
bandwidth is unmapped.

Algorithm III.1: BESTFIT(Φ, R)

for i← 1 to n, j ← 1 to N do
Fi ← Φi(t); Tj ← Rj ; ψj

i ← 0

while (
∑

i Fi > 0) do
i← argmax(Fi)
j ← argmax(Tj)

ψj
i = ψj

i + min(Fi, Tj)
Fi = max(Fi − Tj , 0)
Tj = max(Tj − Fi, 0)

The last two steps are performed in parallel.

Algorithm FirstFit:
The second algorithm, FirstFit uses similar approach, but
is faster since it does not sort the flows according to the
reservations. At initiation both the links and flows are arranged
in descending order of bandwidth rates and reservations. The

flow with the highest reservation is mapped to the link with
the highest bandwidth. Any surplus of either is mapped to the
corresponding next of the other entity. As can be seen the
canonical property assures that no excess bandwidth remains
unmapped after the mapping process.

Algorithm III.2: FIRSTFIT(Φ, R)

for i← 1 to n, j ← 1 to N do
Fi ← Φi(t); Tj ← Rj ; ψj

i ← 0

for i← 1 to n do
while (

∑

i Fi > 0) do
j ← argmax(Tj)

ψj
i = ψj

i + min(Fi, Tj)
Fi = max(Fi − Tj , 0)
Tj = max(Tj − Fi, 0)

As in case of BestFit, the last two steps are performed in
parallel.

Time complexity:
In our case FQ= PGPS and the partition is calculated in
time O(N logN + n logn), so the time complexity of our
algorithms is O(N logN + n logn).

IV. SIMULATIONS

A. Simulation and Results

Simulation settings: We simulated a 4 link system with indi-
vidual rates equal to R1 = 0.025, R2 = 0.075, R3 = 0.15 and
R4 = 0.25MB respectively. Flows were grouped into four
classes; the assigned reservations of these classes were in the
ratio 10 : 20 : 40 : 80.

We used traces from the NLANR Auckland-II link. To
simulate buffering we merged several (actually 6) such traces,
into one monolithic dense trace and decreased the throughput
of the link by half. After filtering out flows with a low
number of packets we obtained approximately 5000 flows.
Since the traces do not carry any QoS information we gen-
erated additional information in two different ways. In the
first case, flows were assigned to classes based on their size
(this approach is referred to as “by size” later in the text
and in the figures). This classification was motivated by the
fact that QoS streams with high priority (i.e. video or audio
stream) usually carry a large amount of traffic. To perform
the classification we ordered the flows by increasing size and
classified the first 2

3 into the 1st class. The remaining flows
were classified into classes 2, 3 recursively; class 4 contained
the remaining flows after the assignment to classes 1, 2, 3 was
done. In the second case, flows were classified to classes
randomly with the probability of a flow belonging to the
lowest or highest classes low (the exact probabilities were 1

7 ,
3
7 , 2

7 , 1
7 for classes 1, 2, 3, 4 respectively). This approach takes

into account the “economical” aspects, with the assumptions
being that only few users will be able to afford the high

 0

 200

 0 0.01 0.02 0.03

K
ilo

b
yt

es

time (sec)

Throughput of Class 2 and 3 (ByLength with real)

MSFQ-3
FirstFit-3
BestFit-3
MSFQ-2

FirstFit-2
BestFit-2

Fig. 4. Service Curve of Flows 2 and 3 with Classification “by size real”

priority class. We think that the problem of classifying the
flows into QoS classes is very important, and deserves much
consideration on its own. We initially tried to assign QoS
values (reservations) to flows based on the the source and
destination port numbers (i.e. the original protocol used in the
Internet trace). Accordingly, we took into account flows using
port numbers between 1 and 1024, and classified the flows into
4 different categories. Class 1, consisted of low priority flows
(like SMTP), Class 2 contained file transfer protocols like
FTP, SAMBA, MS data sharing, rsync etc. Class 3 included
protocols like DNS, HTTP, IMAP etc. and Class 4 consisted
of the highest priority protocols that require hard real-time
response like SSH, TELNET, and RTSP for streaming media.
After performing this classification we filtered out flows which
contained less than 100 packets. We did so, because these
flows greatly perturb the reorder ratio metric (for example, if
in a flow with two packets only one packet gets reordered,
the reorder ratio reaches 50%, which isn’t very meaningful
in the scope of the full simulation.) For each of the above
classification schemes, we divided the simulation further into
two parts. In the first one packets maintained their original
sizes. In the second one, the size of each packet was generated
randomly from a uniform distribution over [1, 1500]. It can be
observed that in the real Internet traces packets belonging to
a single flow very frequently have the same size. The set of
experiments with random packet lengths was to show how
important this observation is.
Simulation results: The simulation results are presented in
terms of the service per reservation (“throughput”) and the
reordering metrics. Since the simulations were performed
for four different flow classifications and four scheduling
algorithms (GPS, MSFQ, BestFit and FirstFit), only the
results pertaining to certain flows and reordering information
is shown. Figure 4 shows the service curve for classes 2 and 3
when the trace is generated according to the “by size with real
packet length” criterion (In Fig. 4 MSFQ-3 denotes the service
curve of class 3 under MSFQ scheduling policy and similarly).
Similarly, Figures 5 and 6 show the service curves for classes
3 and 4 respectively by each of the three (for clarity the GPS

 0

 200

 0 0.01 0.02

K
ilo

b
yt

es

time (sec)

Throughput of Class 3, Class Randomly Random

MSFQ
FirstFit

Best Fit

Fig. 5. Service Curve of class 3 with Classification “Randomly random”

 0

 200

 0 0.01 0.02 0.03

K
ilo

b
yt

es

time (sec)

Throughput of Class 4, Class Randomly Random

MSFQ
FirstFit
BestFit

Fig. 6. Service Curve for Class 4 with Classification “Randomly random”

is excluded) algorithms with traffic classification “randomly
with random packet length”. Note how closely the partitioning
algorithms FirstFit and BestFit approximate MSFQ in terms
of service. Simulation results show that the packet delay and
work per flow of BestFitand FirstFit are similar to MSFQ.
However, it is important to state, and we do not show for
purposes of brevity, that a tight bound does not exist for
the partitioning algorithms unlike that as in PGPS. This will
happen when a particular flow will frequently be mapped to
different links and is a rarity and the proof is outside the scope
of this paper.

Figure 7-10 and Table I summarizes the reordering in-
formation. Figure 7-10 shows the top 100 flows (and thus
the class) with the maximum reorder ratio for the different
types of experiments (two types of QoS classification and two
types of packet lengths.) The results show that the packets
from the highest class experience the highest reordering. The
simulations also show that both BestFit and FirstFit give
superior performance as far as reordering is concerned. In
fact, in all the scenarios, the number of flows that undergo
reordering is significantly higher in case of MSFQ than in case
of BestFit or FirstFit, often, an order of magnitude more. The
experiments also show that introducing randomness (either

though a random QoS classification, or random packet lengths)
increases the reordering greatly. The reordering free run data
sets are not presented because of brevity reasons, but from the
simulations it is found that they are higher for the partitioning
algorithms as compared to corresponding values for MSFQ.

Fig. 7. Reorder ratio with “randomly real” traffic

Fig. 8. Reorder ratio with “by size random” traffic

The simulation results reported in Table I (BFit and FFit there
refer to BestFit and FirstFit respectively) show the number of
flows with a particular reorder extent. (For example an entry
88 in row 1 means that there were 88 flows with reordering
extent equal to 1.) We see that this metric for MSFQ (for
any class) is substantially higher than the same for BestFit
and FirstFit algorithms. Recall that the reordering extent is an
approximation of the size of a buffer which is required at the
client side to restore the original order. This observation shows
that the dynamic partitioning algorithms imply a reduction
in the total size of reordering buffers. Our simulations are
performed for a large number of flows. As the number of
flows increase, the reordering is expected to decrease for all
the algorithms because the probability that a given flow is
concurrently serviced decreases. It is also very likely that for
links with a high throughput and low load the performance of
all algorithms is similar. This is because all the algorithms are
work conserving and tolerate reordering to some extent.

TABLE I

THE NUMBER OF FLOWS WITH A GIVEN MAXIMAL REORDER EXTENT.

R.Ext. by size, real by size, random random, real random, random
MSFQ BFit FFit MSFQ BFit FFit MSFQ BFit FFit MSFQ BFit FFit

1 88 56 98 82 50 44 48 33 27 55 42 44
2 10 2 1 17 0 1 51 1 3 43 2 3
3 2 1 1 1 1 1 1 1 0 2 1 1

Fig. 9. Reorder ratio with “randomly random” traffic

Fig. 10. Reorder ratio with “by size real” traffic

V. CONCLUSIONS AND FUTURE WORK

We present dynamic partitioning algorithm for the QoS
provisioning problem for a multi-link system. We also present
an algorithm of low complexity to detect if partitioning needs
to be done. This is done at the line rate. In relation to the
algorithms themselves, these aims at fair sharing of bandwidth
and minimize the intra-flow reordering. We furnish simulation
results and evaluate reordering quantitatively through relevant
metrics. We also note that both algorithms, FirstFit and
BestFit behave similarly and it is difficult to say which is
to be preferred when selective service is required. However,
it appears that BestFit performs better when reordering is
taken into account. The overall improvement suggests that
FirstFit and BestFit are useful in the context of a busy LAN
traffic with a relatively low number of persistent flows where
trunking is employed to scalably increase bandwidth. Similarly
although our algorithms were presented in the link context

the same scenario is applicable to the network processor
scheduling realm, where packets with different urgency and
bandwidth criteria have to be scheduled onto micro engines
that operate in parallel. Last but not least, they are relevant
to QoS aware backup strategies in the Storage Area Network
(SAN) space, where traffic of varying importance needs to be
selectively stored to remote repositories.

Future work can address the issue of hard real-time guar-
antees in the dynamic partitioning framework. It appears from
the literature that MSFQ is the only algorithm in the multi-link
system that provides hard real time guarantees. An area worth
exploring is whether is it possible to find efficient partitioning
based work-conserving algorithms that provide provably real-
time guarantees.

Acknowledgement

The authors wish to thank Wojciech Jawor for the idea of
traffic classification and helpful discussions.

REFERENCES

[1] J.C.R Bennet and H. Zhang. WF 2Q: Worst-case fair weighted fair
queueing. Proceedings of the IEEE INFOCOM,, March 1996.

[2] Josep M. Blanquer and Banu Özden. Fair queueing for aggregated
multiple links. Proceedings of the ACM SIGCOMM, October 2001.

[3] E. Blanton and M. Allman. On making TCP more robust to packet
reordering. ACM Computer Communication Review, 32(1), January
2002.

[4] Stephan Bohacek, Joao P. Hespanha, Junsoo lee, chansook Lim, and
Katia Obraczka. TCP-PR: TCP for persistent reordering. Proceedings
of the IEEE 23rd Int. Conf. on Distributed Computing Systems, pages
222-231, May 2003.

[5] Guo Chuanxiong. SRR: an O(1) time complexity packet scheduler
for flows in multi-service packet networks. Proceedings of the ACM
SIGCOMM,, August 2001.

[6] Jorge A. Cobb and Miaohua Lin. A theory of multi-channel schedulers
for quality of service. J. High Speed Netw., 12(1,2):61–86, 2003.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. Internetworking: Research and Experience, 1(1),
1990.

[8] Jiani Guo, Jingnan Yao, and Laxmi Bhuyan. An efficient packet
scheduling algorithm in network processors. In IEEE INFOCOM ’05,
2005.

[9] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and J. Perser.
Packet reordering metric for IPPM. Technical report, IETF, August
2004.

[10] Abhay K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to flow control in integrated services networks: The
single-node case. IEEE/ACM Transactions on Networking, June 1993.

[11] Fariza Sabrina and Sanjay Jha. Scheduling resources in programmable
and active networks based on adaptive estimations. 28th Annual IEEE
International Conference on Local Computer Networks, October 2003.

[12] M. Shreedhar and George Varghese. Efficient fair queueing using deficit
round robin. Proceedings of the ACM SIGCOMM,, August 1995.

[13] Tilman Wolf, Prashanth Pappu, and Mark A. Franklin. Predictive
scheduling of network processors. Computer Networks,, 41(5):601–621,
April 2003.

