
  

Loop Level Analysis of Security and Network 
Applications 

Dinesh C Suresh, Satya R. Mohanty, Walid A. Najjar, Laxmi N. Bhuyan and Frank Vahid      

Department of Computer Science 
 University of California, Riverside      

Riverside, California, 92521 
{dinesh, satya, najjar, bhuyan, vahid}@cs.ucr.edu                                  

                                

   
Abstract--It has been known that loops constitute the most 

executed segments of programs and therefore are the best 
candidates for hardware implementation. We present a set of 
profiling tools that are specifically dedicated to loop profiling and 
do support combined function and loop profiling. One tool relies 
on an instruction set simulator and can therefore be augmented 
with architecture and micro-architecture features simulation 
while the other is based on compile-time instrumentation of gcc 
and therefore has no slow down compared to the original 
program 

Instruction profiling tools can be broadly classified into 
two categories – instrumentation based instruction 
profilers and simulation based instruction profilers.  An 
instrumentation based profiler instruments the compiler 
to add counters to various basic blocks of the program. 
During execution the counter values are written to a 
separate file. On the other hand, a simulation based 
instruction profiler uses an instruction set simulator to 
accomplish instruction profiling. Simulation based 
profilers can be further classified into static profilers and 
dynamic profilers. In dynamic profiling the instruction 
profile is obtained during the execution of the code on an 
instruction-set simulator while in static profiling the 
execution is written to a trace and the trace is processed 
to get instruction counts. For very large applications, the 
trace generated by a static profiler can grow to 
unmanageable proportions.  Even though a dynamic 
profiling method is slow compared to the compiler-
based instrumentation approach, a variety of 
architectural parameters can be tuned and studied while 
a program gets profiled on the simulator. 

 
Index Terms—Loop analysis, profiling, hardware software 

partitioning 

I. INTRODUCTION 

Software programs spend most of the time in a small 
fraction of code, a feature known as the “90-10 rule” – 
90% of the execution time comes from 10% of the code. 
In order to speed up program execution, we need to 
identify the critical code that contributes to the bulk of 
the execution time. For embedded system applications, 
this frequently executed portion of the code is often 
made up of a few loops. Besides optimization, mapping 
the frequently executed portion to hardware would be an 
efficient way of speeding up program execution. For 
mapping an application to hardware, knowledge of the 
time spent in different portions of the application is 
necessary. Profilers like gprof are helpful to the extent of 
determining the time spent on function calls. However, 
to make judicious hardware/software partitioning 
decisions, knowledge of the program execution time at 
the granularity of loops is imperative. Instruction 
profiling tools can be tuned to provide useful 
information regarding the percentage of time spent in 
different parts of a   program. 

 
In this paper, we present a loop analysis tool set that is 
equipped with two different instruction profilers - an 
instrumentation based instruction profiler and a 
simulation based instruction profiler. We call our toolset 
as Frequent Loop Analysis Toolset (FLAT). FLAT 
consists of two major tools – FLATC, an 
instrumentation based loop analysis tool and FLATSIM, 
a simulation based loop analysis tool. We use FLAT to 
analyze well-known cryptographic algorithms and 
network applications and report the speedup that can be 
achieved by mapping time-consuming loops in these 
applications to hardware.  
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Figure 1: Tool flow for compiler based instruction 
profiling 

Figure 2 Tool flow for simulation based 
instruction profiling 
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II. RELATED WORK  
  

trace generation. The analyzer code is generated 
dynamically and is cached for reuse. ALTO [13]  

Harvard Atom Like Tool (HALT [4]) provides a 
flexible way to add routines to program produced by the  

develops whole-program data flow analysis and code 
optimization techniques for link time program 
optimization and is targeted to the DEC Alpha 
architecture.  

SUIF compiler. Users indicate interesting parts of the 
program by labeling them with SUIF annotations. Then 
Halt looks for these annotations, and inserts function 
calls to analysis routines that match the type of the 
annotation. Halt ships with a number of useful analysis 
routines; users may modify these or supply their own. 
Using different analysis routines, Halt provides a 
number of hardware simulators, performs branch-stream 
analysis, and records statistics for profile-driven 
optimizations. Halt and its associated libraries have been 
used in projects on branch prediction, code layout, 
instruction scheduling, and register allocation. It has 
been ported to MIPS and ALPHA processors 

 
Intel’s Vtune [14] performance analyzer collects, 
analyzes and displays software performance data from 
the program-level down to a specific function, module or 
instruction in a developer's source code. Vtune runs on 
windows and linux and is targeted for all Intel 
processors. 
 
[2], [3] provide a detailed analysis of cryptographic 
algorithms. They propose addition of new instructions to 
the instruction set in order to speedup the execution of 
security applications. In this paper, rather than analyzing 
the applications at the instruction level, we study them at 
the granularity of loops and functions. We present a 
toolset that is dedicated to performing loop-level 
analysis of applications. We also examine the 
performance benefits associated with mapping the first 
four frequent loops or functions of each application to 
hardware. 

Optimally profiling and Tracing Programs [10] inserts 
counters at all nodes in the control flow graph in order to 
record the execution count of the basic blocks and the 
program. ProfileMe [6] samples instructions as they 
move through an out-of-order issue pipeline and reports 
statistics like cache miss rates. LooAn [1] is a profiling 
tool that gives loop and function level information. 
However, since it is a static profiler, trace files scale up 
to unmanageable proportions for very large programs. 

 
 SpixTool [15] is an instruction profiling toolset intended 

for the SPARC architecture and it consists of the 
following two tools – Spix and Spixstat. Spix generates 
basic block execution profile; while Spixstat generates 
statistics on instruction count, branch behavior, opcode 

Shade [12] combines instruction set simulation with 
trace generation capability. It uses a user-specified trace 
analyzer to control program execution and the extent of  

 



usage, etc. Loop information can be easily deduced from 
the tool’s output.   
 
Cacheprof [16] is an execution-driven memory simulator 
for the x86 architecture. It annotates each instruction that 
reads and writes memory and links a cache simulator 
into the resulting executable. Upon execution, the data 
references are trapped and sent to the simulator. Besides 
producing a procedure-level summary, Cacheprof 
reports number of memory references and the number of 
misses for each line of the source code. 
 
FLAT is intended to provide loop/function level 
information for a wide variety of platforms. FLAT_C 
works for all platforms to which the GNU C Compiler 
(gcc) has been ported. FLAT_SIM is capable of 
producing loop level statistics for a variety of platforms 
like x86, Strong ARM, MIPS and SPARC. FLAT_SIM 
can produce loop information from the executable even 
when the source code is not available.  
 

III. FREQUENT LOOP ANALYSIS TOOL SET (FLAT) 
Instruction profiling tools provide information based on 
which useful hardware/software partitioning decisions 

can be made.  Frequent Loop Analysis Tool set (FLAT) 
is a profiling tool written in python and it provides the 
execution time of a given application at the granularity 
of both loops and functions. Loop profiles can be 
obtained through two different ways. The first method is 
to instrument the compiler to output the frequency of a 
loop. The second method is to use an instruction set 
simulator to find the execution count of loops. Both 
methods have their own advantages and disadvantages.   

Table 1: FLAT_C’s output for 3DES application       

Loop 
 Name  

 
Frequency 

 Loop  
  Size  

Total  
Instructions  % 

<Program>  1 13171 4394609445 100.00
<permute.1>  6051888 357 1792703712 40.79
<doencrypt.1.1>  3025944 51 98175072 2.23
<doencrypt.1>  2689728 262 90442126 2.06
<perminit.1.1.1>  33280 287 1967104 0.04
<perminit.1.1>  32768 331 404672 0.01
<spinit.2.1.1>  2560 136 199680 0.00
<setkey.2.2>  784 262 110176 0.00
<spinit.2.1>  2048 303 95200 0.00
<setkey.2.1>  912 161 86200 0.00
          
 Functions         

Function Name  
 
Frequency 

 Loop  
  Size  

Total 
Instructions  %  

<f>  5379456 387 2001157632 45.54
<permute>  5379456 491 1944000912 44.24
<doencrypt>  336215 321 193996674 4.41
<endes>  336216 487 150288552 3.42
<perminit>  32 475 2379512 0.05
<spinit>  32 591 332845 0.01
<setkey>  56 813 238733 0.01
<main>  8 1158 4588 0.00
<desinit>  1 375 235 0.00
<_init>  0 48 0 0

The instrumentation-based approach is a lot faster while 
the simulation-based approach is more effective in 
tuning the various architectural aspects of the 
application. 
 
During hardware/software partitioning, frequently 
executed functions often prove to be the favorite 
candidates for hardware mapping. However, a frequently 
executed function could have lots of infrequently 
executed loops that contribute towards the total 
execution time of the function. Since loops perform the 
bulk of computation, returns for the silicon real estate 
would be maximized if a frequently executed loop of the 
program were chosen instead of the frequent function 
mentioned above. The output provided by FLAT is 
useful in deciding whether a loop or function needs to be 
mapped onto hardware. FLAT considers functions as 
loops that iterate once for each call. FLAT comprises of 
two profiling tools  - FLATC and FLATSIM. 
  
FLATC uses the GNU C Compiler to profile the 
application for basic block frequencies. The source 
program to be compiled is compiled with the “-a” 
option. This ensures that a file containing basic block 
frequencies is written after execution. FLATC uses the 
disassembled instructions to identify the presence of 
loops and functions. Every loop in the source program 
corresponds to a short backward branch instruction in 
the assembly program. Once the loops and function calls 
are identified, the percentage execution is determined 
from the execution percentage of basic blocks. 

FLATSIM uses the Simics [11] instruction set simulator 
to do the instruction profiling. Simics™ is a full system 
simulation platform, capable of simulating high-end 
target systems. Simics can boot and run operating 
systems and commercial workloads. It provides a 
controlled, deterministic, and fully virtualized 
environment for a variety of hardware and software 
engineering tasks. Hence, we chose to instrument the 
Simics modules to get realistic loop profile estimates. 

Simics is not an open source simulator. However, the 
source code for the add-on modules is included with the 



distribution. The functionality of the simulator can be 
extended by modifying the existing modules or by 
creating custom modules.  One such module that is 
supplied with the Simics distribution is the id-splitter 
module. The id-splitter module in Simics handles all 
cache accesses and redirects them to the instruction or 
data cache accordingly. FLAT_SIM relies on getting the 
instruction profile from a modified version of the id-
splitter module. The suggested modification to the id-
splitter module is as follows.  A tree structure containing 
all the loop-addresses is introduced into the id-splitter 
module. During execution, if an instruction belongs to 
one of the loops, the counter associated with the loop is 
incremented. Finally information about loops and 
function calls are written to a file. FLAT_SIM analyses 
this file and prints out information regarding the loop 
execution.  

Table 1 shows the output of FLAT for 3DES application. 
Each entry in the table contains a loop name, number of 
times the loop was called, the static loop size in bytes, 
total number of instructions executed in the loop and the 
percentage of instruction cycles contributed by the loop. 
FLAT maintains a Directed Acyclic Graph (DAG) like 
representation for handling loops and functions. Every 
loop and function is associated with a name. The loops 
and functions are named in a hierarchical fashion. For 
example, the loop name <doencrypt.1> in table 1 points 
to the first loop in the function called doencrypt.  The 
first sub-loop of this loop would be named as 
<doencrypt.1.1>. The function statistic consists of the 
function name, number of times it was called, static size, 
total number of instructions executed inside the function 
and percentage of time spent in the function. 
 
 FLAT obtains loop information from the disassembled 
object code. Hence, if the compiler resolves the 
dependencies across threads and schedules the 
instructions accordingly, multithreaded applications can 
also be profiled effectively. 
  

IV. BENCHMARKS 
 
We analyze an extensive collection of security (AES, 
3DES, rc4, rc6, idea, blowfish, seal [21] and sha1 [22]) 
and network applications (crc, dh, ipchains, drr, nat, 
route and md5  - all from Netbench [6]). 
DES [20] was published in 1977 and it is based on 
IBM's work on Lucifer. It uses a 56-bit key to generate 
sixteen 48 bit per-round keys, by taking a different 48-
bit subset of the 56 bits for each of the keys. The 64-bit 
input is subjected to a series of permutations and the 
encryption of a given block also depends on the previous 

encrypted block. 3-DES (pronounced Triple DES) is an 
extension to DES, it performs DES three times using 
three different unrelated keys and achieves a high level 
of security. 
 
 IDEA [18] is best known as a component of Pretty 
Good Privacy (PGP). It is a block cipher that uses a 128-
bit length key to encrypt successive 64-bit blocks of 
plaintext. The procedure is quite complicated using sub 
keys generated from the key to carry out a series of 
modular arithmetic and XOR operations on segments of 
the 64-bit plaintext block. The encryption scheme uses a 
total of fifty-two 16-bit sub keys. The cipher Blowfish 
[19] is a symmetric block cipher that takes a variable 
length key from 32 to 448 bits and is considered an 
alternative to DES or IDEA. RC4 [23] is a stream cipher 
algorithm devised by Ron Rivest. It uses a variable 
length key from 1 to 256 bytes to initialize a 256-byte 
state table. This table is used for generating pseudo-
random bytes and then a pseudo-random stream that is 
XORed with the plaintext to give the cipher text. The 
key is often limited to 40 bits but can be as much as 
2048 bits. RC6 [24] is a cipher first introduced by the 
RSA Labs. Circular shifts and a quadratic function are 
some nonlinear elements that provide security to this 
cipher. It uses 44 keys each 32 bits long. Rijndael is a 
block cipher invented by Joan Daemen and Vincent 
Rijmen and it is the current AES [17] standard. It has a 
variable block and key length, both of which can be 
multiples of 32 bits. 
 

 In this paper we also focus attention on Netbench 
applications. The Netbench applications comprise of 
about 9 applications that are representative of 
commercial applications for network processors. There 
are two micro-level programs CRC: the CRC-32 
checksum calculation program and TL, which is the 
Table Lookup algorithm for radix tree routing tables. 
There are four IP-Level programs, so named because 
they base decisions on source or destination IP of the 
packet. Route, NAT, DRR and IPCHAINS constitute the 
IP-Level programs. Route implements the table lookup 
along with the Internet checksum. DRR (Deficit Round 
Robin) is a scheduling method used in network switches 
and it is characterized by the presence of different 
queues for all the different connections through the 
routers. Network Address Translation (NAT) operates 
on a router and translates private addresses in a network 
to legal addresses before forwarding the packets onto 
another network. IPCHAINS is a firewall application 
that filters incoming IP packets according to some well-
defined policies.  

 



To demonstrate the usefulness of our profiling tools we 
consider a System on a Configurable Platform (SoCP) 
that consists of an FPGA with an embedded CPU. 
Examples of such system include the Xilinx Virtex II 
Pro [8], the Altera Excalibur [7] and the Triscend A7 [9].                  

Finally there are some application level programs with 
intensive processing requirements. DH (Diffie-Hellman) 
is a public key based encryption/decryption algorithm 
and is widely deployed in several Virtual Private 
Networks.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MD5 (Message Digest Algorithm) creates a secure 
signature for each outgoing packet. The signature is 
verified at the destination and packets without matching 
signature are discarded. 

Table 2. Percentage Execution for the first four loops 
of security/network applications  

 

V. ANALYSIS OF PROFILE DATA 
Table 2 shows the percentage execution time for the first 
four most frequent loops of security and network 
applications. We find that the first four frequent loops 
take up roughly 20% of the code size and contribute 
nearly 88% towards the total execution time. Compile-
time optimizations, algorithmic improvements and 
hardware mapping are the different alternatives available 
to speedup the application. Normally, large code size 
often proves to be a hindrance in hardware mapping as it 
consumes a lot of programmer hours. Since the frequent 
loops take up a fraction of the code size and still provide 
a major contribution towards the execution time, they 
are ideal candidates for hardware mapping. Figure 3 
shows the percentage of the total execution time spent in 
the first four loops of cryptographic and network 
applications. 
 

 
 
Table 3. Overall Speedup for the first four loops of
security/network applications 
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Loop2 

 
Loop3

 
Loop4

AES 3.75 8.15 15.9 15.9 
Blowfish 2.41 5.59 8.07 9.48 
CRC 5.61 13.78 14.07 14.17 
DES 1.75 5.36 6.9 8.89 
DH 1.5 1.88 2.45 2.82 
DRR 1.21 1.36 1.56 1.77 
IDEA 1.83 4.36 5.9 8.12 
Ipchains 2.13 3.81 4.57 5.17 
MD5 1.43 2.14 3.57 4.03 
NAT 1.48 2.02 3.18 4.23 
RC4 9.1 9.1 9.11 9.11 
RC6 5.32 5.72 5.72 5.72 
Route 2.01 2.98 3.55 4.31 
Seal 2.16 6.92 7.43 7.86 
SHA1 3.44 8.69 12.98 16.21 
Average 2.19 3.61 4.67 5.4 
   
Benchmark 

 
Loop1 

 
Loop2 

 
Loop3

 
Loop4

AES 77.79 15.32 6.34 0.00 
Blowfish 62.06 25.10 5.82 1.96 
CRC 87.23 11.20 0.16 0.06 
DES 45.54 40.79 4.41 3.45 
DH 35.39 14.31 13.12 5.66 
DRR 18.08 10.15 10.05 7.74 
IDEA 48.10 33.68 6.36 4.92 
Ipchains 56.41 21.88 4.63 2.7 
MD5 32.17 24.47 19.77 3.38 
NAT 34.24 19.32 19.18 8.30 
RC4 94.47 0.01 0.01 0.00 
RC6 86.19 1.37 0.00 0.00 
Route 53.45 17.10 5.63 5.29 
Seal 56.97 33.83 1.05 0.78 
SHA1 75.31 18.61 4.04 1.62 
Average 57.56 19.14 6.71 3.06 
n such systems it is possible to migrate the most 
mmonly executed code segment onto hardware by 
plementing it as a circuit on the FPGA. The obvious 
jective is the speed-up that can be achieved. In this 
ction we describe an analysis of this speed-up based 
 the results obtained from the profiling tool. Note that 
 this analysis we will not assume any overlap in 
mputation between the CPU and the FPGA on the 

oCP. This is a pessimistic but fair assumption. 
 
CP time = CPU time + FPGA time 

PU time = SW_only time – SW_Loop time 

PGA time = SW_Loop time/HW_speedup 

here SW_only time is the time from a software only 
ecution and the SW_Loop time is the time taken on a 

PU by the loop that will be mapped to hardware. The 
W_speedup is the speedup expected on the loop by 
apping it to hardware. From past results [1] we have 
mputed this speedup to be 17 in number of cycles.  
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te that the speedup is a direct function of the loop 
cution time.  Figure 4 shows the speed-up values for 

ferent applications. Applications like RC4, CRC, 

RC6, AES and sha1 have significantly higher speedups 
than the rest of the applications. For these applications, 
the first frequent loop/functions contributes more than 
75% of the execution time. Roughly 90% of the 
execution time is contributed by the first two loops of 
security applications and the first 3 loops of the network 
applications. On an average, the first loop contributes 
about 58% of the total execution time while the first 2 
frequent loops contribute nearly 78% of the total 
execution time.  
 
In our current implementation, the loop names in the 
output of FLAT correspond to the high-level source code 
only when the program is not optimized. Possible future 
work includes extending FLAT to provide loop-level 
analysis for optimized applications.  
 



 

VI   CONCLUSION 

 
In this paper, we perform loop-level analysis of a few 
popular cryptographic and network applications. We 
propose a toolset that identifies the time consuming 
portions of these programs at the granularity of loops as 
well as functions.  We report the possible speed-ups that 
can be realized by mapping the first four frequent loops 
to hardware.  Our results support a strong case for 
hardware/software co-design of these applications. 
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