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Abstract— We address the Quality of Service (QoS) provision-
ing problem in an aggregated multi-server environment. The
input packet stream traffic to the system is categorized at a macro
level into a few “flow-classes” that require service differentiation;
each class is further subdivided into “flows” at the micro-level.
Flows can be serviced by any server: however; the service rate is
a function of the class and the particular server. Given such an
environment, we have a multi-criteria optimization objective (i)
provide differentiated service to flows (ii) achieve load balancing
of the servers and (iii) maximize their throughput (amount of
bytes serviced). We present an on-line fluid-based approximation
scheme to schedule packets. Modeling the accumulated traffic in
a class as fluid we use linear programming to first determine
the optimal fractions that should be directed to different servers
while ensuring fairness and high server throughput. We propose
a packet scheduling strategy for the multi-server framework (by
extending a well-known fair round-robin algorithm for single
link systems) that effectively incorporates the optimal service
fractions determined in the previous step. We validate the
proposed algorithm with extensive simulations. The results show
that the algorithm imparts high throughput with good service
differentiation. We also evaluate reordering of packet requests
within flow streams by presenting relevant metrics that quantify
reordering.

I. INTRODUCTION

Applications using the ubiquitous Internet infrastructure like
video and audio conferencing, image processing, distributed
gaming, peer-to-peer applications etc. continue to proliferate.
Diverse applications have different service requirements and
needs. Service differentiation is usually accomplished by di-
viding the traffic stream into disjoint flows (a distinguishable
source-destination pair, whose data packets are always stored
in a logically distinct per-conversation queue at a router), and
treating the flows in accordance with their reserved rates of
service.

We consider aggregated multi-server systems in which each
server can perform a variety of services. In addition to the
increase in throughput because of availability of many pro-
cessing entities such systems have the added advantages of
increased reliability and load balancing. The input to these
systems are different flows with varying service requirements.
Flows are aggregated into classes. A flow consist of packet
streams and each packet is associated with some task.

The problem domain addressed in this work is not specific
to any one application but applies at large to the multi-server
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Fig. 1. Aggregated multi-server model with class-server rate coupling

context. One formulation applies to a scenario when arriving
requests to a heterogeneous web-server cluster demand differ-
ent service rates at different servers [1]. Another motivating
example is a network processor system in which the different
network processors are of different rates and make [2], [3] and
the throughput of each processor depends on the application
workload. The formulation can apply to as disparate contexts
as service differentiation in a clustered networked environ-
ment [1], link striping [4] and even to the time-varying channel
rates in the wireless scheduling context [5]. Yet, another
application domain can be a transcoding cluster in which each
server in the cluster provides the same transcoding function,
but, at a rate that depends on its configuration parameters and
the level of transcoding required [6], [7].

In such multi-server systems, an issue of overriding impor-
tance is the fair sharing of the aggregated server resource
amongst the contending flows. Fairness ensures immunity
from misbehaving flows and allows for better congestion
control and rate-adaptive applications. Stringent QoS require-
ments also lead to strict delay bounds and better throughput
by selective admission control. We consider such “fairness”
issues in the aggregated multi-server context. We generalize
the problem formulation by incorporating the requirement that
the rate of service depends on both the class to which the flow
belongs and the server on which it is scheduled i.e. there exists
a flow-server rate-coupling. Figure 1 shows such a system with
3 different servers and 4 flow-classes and the service is flow-
server dependent.

The system model under consideration is very general.
Addressing the “fairness” provisioning problem this way im-
plicitly takes into consideration the heterogeneity of the servers
and flow-server affinity in the aggregated system. Our focus is
to study these type of fair resource allocation problems from



a mathematical perspective and model them analytically.
The formulation requires that flows be associated with a

quality of service (QoS) parameter. Our optimization objec-
tives are manifold. We aim to simultaneously (i) provide
differentiated quality of service to backlogged flows, (ii)
ensure high server utilization and (iii) achieve high throughput.
To the best of our knowledge such a formulation has not been
addressed elsewhere in the literature.

Mathematically, we abstract the problem into two distinct
components. Using linear programming on an idealized fluid
model, we first determine the fractional volumes of flow-
classes (fluid) that need to be allocated to different servers.
Next, once these volume fractions are determined, actual
scheduling of tasks is based on a direct application of the
Smoothed Round Robin [8] (SRR) algorithm (a fair round-
robin algorithm proposed for single link systems). We give this
two-component algorithm a name: Linear Programming based
scheduling algorithm for multi-servers (LP-M). Algorithms
like SRR and Deficit Round Robin (DRR) are meant for
single-link systems. We extend them in an obvious way to
the problem domain in the multi-server setting. We call the
corresponding extensions SRR-M and DRR-M respectively.

We perform extensive simulations with all three algorithms
LP-M, SRR-M and DRR-M using the same packet trace
and pre-specified server-flow rates for an example prototype.
The simulation results reveal that these obvious extensions
of single link round-robin algorithms to solve the multi-
server multi-class with differentiated service problem give
sub-optimal performance. Using LP-M on the other hand, the
throughput and utilization of the system can be substantially
increased while ensuring the inter-class fairness requirement.
In short all our objectives are satisfied. In addition the “intra-
class inter-flow” reordering is considerably reduced.

A. Our Contributions

We develop a fair scheduling algorithm for the multi-
server flow-server rate coupled problem domain using a linear
programming approach. The framework consists of solving
an on-line optimization problem to generate desired service
rates that give optimal performance in the fluid model. We
propose a round-robin based packeted scheduler that takes
these rates as inputs and then schedules packets. Thus we
decouple the problem into two parts and solve the first sub-
problem. The output of the first sub-problem serves as input
to the second sub-problem but the algorithm in the second
sub-problem is itself independent of the first sub-problem. We
verify the proposed algorithm with simulation results.

The paper is organized in the following way: Section II
describes the related work. In section III (only for the purpose
of analysis and without any loss of generality) we consider the
case when the set of competing flow-classes is invariant i.e.
the flows are always backlogged. We consider two cases (i)
the aggregate bandwidth is shared proportionally according to
the class’ reservations and (ii) each class states its need using
two independent parameters, a minimum rate to be guaranteed
(floor rate) and the maximum rate it could use of (target).

For each of these cases we determine the rates at which the
servers should serve the flow-classes. In section IV we present
an algorithm for scheduling these flow-classes (based on a
round-robin algorithm that takes into account the computed
rates in section III). The simulation results along with their
interpretations are provided in section V. Section VI concludes
the paper.

II. RELATED WORK

A whole body of recent research in Fair Queuing [9], [8],
[10], [11], [12], [13] has addressed the issue of scheduling
competing flows fairly over an individual link in accordance
with their reserved rates of service. QoS scheduling mecha-
nisms for the single link do not trivially extend to the multi link
case as they do not consider problematic out-of-order packet
delivery issues especially when the links operate at different
rates (an application adversely affected is TCP Blanton and
Allman [14]). Another issue is maintaining packet order may
cause considerably low link utilization and throughput.

Link striping algorithms that achieve load balance of mul-
tiple links in the presence of variable length packets and
guarantee in-order packet delivery at the receiver application
were proposed by Adiseshu et al. [4]. Cao et al. [15] discuss
performance of load balancing schemes for multiple links by
different hashing methods. Jo et al. [16] introduce a dynamic
hashing with flow volume algorithm that achieves load balanc-
ing and also reduces reordering. Shi et al. [17] propose a load
balancing scheme that exploits the bursty nature of Internet
flows and present a scheme that achieves load balancing,
reduces reordering and also attempts to preserve temporal
locality by mapping flows to particular forwarding engines
for high system utilization. However, no QoS is discussed.

The problem of provisioning QoS among competing flows
over a system of links was addressed by Blanquer and
Özden [18]. Their algorithm (MSFQ) is based on the Gen-
eralized Processor Sharing system (GPS) [12]: an idealized
service discipline. Xiao et al. [19] provide an analysis of
multi-server round robin scheduling disciplines. Cobb and
Lin [20] propose a general technique of constructing a multi-
link scheduling algorithm from a single link one. They also
consider several sorting techniques to avoid packet reordering.
However the methods that they propose entail sorting algo-
rithms at the end hop to correct the packet reordering. The
work in [21] address the same problem and provide scheduling
algorithms based on dynamic partitioning and flow mappings;
however the schemes cannot provide guarantees on hard dead-
lines. Zhu et al. [1] describe a demand driven service differen-
tiation scheme in a clustered network server environment that
operates via a dynamic scheduling scheme aware of varying
request resource demands and periodic server partitioning. The
system is modeled as a multi-class open queuing network,
and the performance metric is the stretch factor (determined
through an unconstrained minimization problem). Fariza et
al. [2] consider an interesting fairness problem in allocation of
multiple resources in a network processor. In all of the above
works there is no notion of the rate of the server as a function



of the flow, i.e. there is no flow-server rate-coupling. In the
wireless domain a somewhat similar work is by Liu et al. [5].
They consider a multi-user scheduling problem in which the
goal is to maximize total system throughput and ensure long-
term deterministic and probabilistic fairness. In this work the
air channel rate varies with time and the algorithm consists of
an optimization problem and a control-update problem. Again
an off-line problem in heterogeneous task processing using
the generalized stable marriage technique has been discussed
in [22].

III. LINEAR PROGRAMMING FORMULATION

Assumptions:
We only make a few simplifying assumptions in this work.

As can be seen these assumptions are rather mild. We list these
as follows.

• The rate of service of all flows belonging to a class on
any one server is constant.

• The processing time of a packet depends on its length.
This means that shorter length packets take smaller pro-
cessing time than longer packets of the same flow on the
same server.

• The number of flow-classes are few compared to the total
number of flows which can be in the millions.

The last assumption is reasonable with the standardization
efforts taken by the Internet Engineering Task Force (IETF)
on Differentiated Services [23]. The Differentiated Services
framework relies on a small number of service levels, or Per
Hop Behaviors (PHBs), that each specify how a routers should
treat the corresponding packet.

Our starting point is the fluid model. It is helpful to keep in
mind that a flow-class may consist of many flows. Accordingly
we treat each flow-class as fluid which can be served at any
continuous rate. We formulate the problem mathematically in
the form of a linear program (LP) [24]. Let n be the number
of flow-classes and m the number of servers. Let φi be the
reservation or weight associated with flow-class i. Let rij

(rij ∈ R+) be the rate at which flow-class i is processed
by server Sj . Let xij be the time-fraction at which flow-class
i is serviced by server Sj . These rates can be arranged in the
form of a matrix and denoted by R and X , i.e.

R =




r11 r12 . . . r1m

r21 r22 . . . r2m

...
... . . .

...
rn1 rn2 . . . rnm




and

X =




x11 x12 . . . x1m

x21 x22 . . . x2m

...
... . . .

...
xn1 xn2 . . . xnm


 .

Let Γ be the instantaneous throughput of the overall system.
The goal is to maximize Γ while ensuring fairness to each
flow-class.

A. Elastic applications

In the first formulation we target fairness for elastic traffic in
which available bandwidth is shared according to the weights
or reservations.

The problem formulation takes the following optimization
form:

Maximize Γ = Σi∈n,j∈mxijrij (1)

subject to
(i) Work Conservation
We only deal with work-conserving systems in which the
servers are never idle. This means that fractions of flow-classes
incident on any individual server add up to 1.

Σixij = 1 ,∀j (2)

0 ≤ xij ≤ 1 ,∀j

(ii) Fairness
The rate of service received by flow-class i in the fluid
model in the time interval (t, τ) is denoted by Wi(t, τ) where
Wi(t, τ) = (Σjxijrij)(τ −t). Fairness requires that Wi(t,τ)

φi
=

Wj(t,τ)
φj

. Accordingly we have the equation

Σkxikrik

φi
=

Σkxjkrjk

φj
∀i, j i �= j (3)

Example: Assume that the normalized server rate for each
flow-class in the system shown in Figure 1 is given by

R =




0.8 0.6 0.4
0.6 0.5 0.8
0.5 0.9 0.6
0.8 0.6 0.5


 (4)

and the vector of weights associated with the flow-classes
[φ1 φ2 φ3 φ4] = [40 25 20 15].

Solving the LP posed by equation (1) under the constraints
of equations (2) and (3) via the Matlab linprog function gives

X =




0.8129 0.4248 0.0
0.0 0.0 0.7072
0.0 0.5029 0.0

0.1871 0.0723 0.2928




with a throughput equal to Γ = 2.263 as against a maximum
feasible throughput of Γ = 2.5 (which will however not be
fair according to the definition). The service rate of flow-class
1 is 0.8129 ∗ 0.8 + 0.4248 ∗ 0.6 i.e. ∂

∂tW1(t) = 0.9052 and
similarly for flow-class 2 . . . 4. The rates are as shown below




∂
∂tW1(t)
∂
∂tW2(t)
∂
∂tW3(t)
∂
∂tW4(t)


 =




0.9052
0.56576
0.45261
0.33946




As can be verified the service rate ratios are almost exactly
40 : 25 : 20 : 15, as desired.



B. Adaptive applications

In the case of adaptive flows, we do not have a reservation
as such but we consider that each flow-class i specifies its
demand by two independent parameters, (i) a minimum rate
that needs to be guaranteed, denoted by fi and referred to as
the floor rate and (ii) a maximum rate that it could use of and
denoted by ti (referred to as the target rate) (See [25] and
references therein). We require the scheduler ensures that

Wi(t, τ) − (t − τ)fi

Wj(t, τ) − (t − τ)fj
=

ti
tj

(5)

Example: Suppose that the set of flow-classes and servers is
the same as in the example of section III-A. However instead
of a unique φ (reservation), each flow-class has a floor and
target allocation as shown in the table I.

TABLE I

TABLE FOR FLOOR AND TARGET RATES

Flow-class floor rate target rate
1 0.6 1.0
2 0.4 0.8
3 0.4 0.7
4 0.3 0.6

The solution to the new LP taking into account the fairness
requirement in equation (5) is

X =




0.7470 0.3178 0.0
0.0 0.0 0.6883
0.0 0.5909 0.0

0.2530 0.0913 0.3117




and the rate of service given by



∂
∂tW1(t)
∂
∂tW2(t)
∂
∂tW3(t)
∂
∂tW4(t)


 =




0.7883
0.5506
0.5318
0.4310




As can be seen once again, the computed rates are higher
than the floor rates and the for any two flow-classes i and j
equation 5 is always satisfied i.e.

∂
∂tWi(t) − fi
∂
∂tWj(t) − fj

=
ti
tj

∀i, j

C. Existence of Solutions to the Linear Program

We state without proof that the solution to the linear pro-
gram formulation in section III-A always exists. This may not
hold necessarily for the second formulation (i.e. the adaptive
case). However the feasibility of the linear problem in section
III-B can be characterized by checking for the consistency
of the dual. Refer for example Chvátal [24], (Chapter 9 for
details).

This section presented LP based algorithmic techniques
to determine desirable rates at which backlogged individual
classes of traffic need to be serviced in the fluid model (an
idealized abstraction). In the next section we provide a round-
robin based algorithm that utilizes these desirable rates to
optimally schedule flow packets.

IV. ROUND ROBIN SCHEDULING ALGORITHMS

The unique feature of the flow-server rate-coupling is that
the rate at which the ideal fluid server operates varies with
the backlogged flow-classes. It is not clear how to design
a time-stamp based packeted scheduler that tracks the fluid
model closely within a bounded approximation. We postpone
the exploration and applicability of such designs for future
research. For the present paper we adopt round-robin based
schemes which are inherently short-time unfair (cannot guar-
antee the GPS fairness) but are easer to implement. Recent
works in fair scheduling of contending flows over a single
link (based on the round robin based approach) include Group
Ratio Round-Robin [26], Stratified Round Robin [27], Fair
Round Robin [28]. Though any of these algorithms could be
adopted in principle, for our purpose, we choose to employ
two other well-known round robin schemes (i) the older
deficit round robin (DRR) and (ii) the newer Smoothed Round
Robin (SRR) for scheduling packets in the present setting.
These algorithms work in conjunction with the rate parameters
determined in the previous section. Thus we come up with an
algorithm that is sensitive to a class’s reservations and aware
of its service rate on any server.

In DRR a flow is continuously served for a pre-specified
amount of time given by the flow’s “quantum”. This results
in a burst scheduling for each flow. In SRR on the other
hand, the burst is “smoothed” by employing a scheduling
technique that uses a weighted spread spectrum (WSS) in
conjunction with an associated weight matrix (WM). Suppose
there are 3 flows f1, f2, f3 with rates r1 = 64 Kbps, r2 =
128 Kbps, r3 = 256 Kbps, competing for a single link of
capacity 512 Kbps. The normalized weights of the flows are
w1 = 1, w2 = 2, w3 = 4. Then the WM is given by

WM =




WV1

WV2

WV3


 =




0 0 1
0 1 0
1 0 0




and corresponding WSS is 1, 2, 1, 3, 1, 2, 1. The flow service
sequence will be given by

f3, f2, f3, f1, f3, f2, f3.

We extend DRR and SRR scheduling algorithms to the
multi-class multi-server fair queueing case in a natural and
straightforward way. Instead of flows we now operate at the
granularity of flow-class. As usual each flow-class has an
associated quantum (number of bytes served) and the flows are
served in rounds (interleaved, in case of SRR). During a round
whenever a server becomes free, the algorithm first checks if
the head-of-line packet of the flow-class (to which the round
belongs) can be accommodated in the remaining portion of the
quantum. Otherwise the next flow-class that gets to “own” the
round is eligible and can then send its packets to the multi-
server system. We refer to these algorithms as DRR-M and
SRR-M. These algorithms are oblivious to flow-server rate
coupling.

To employ SRR effectively in the flow-server rate coupled
model, we have to determine what flow-classes are allowed to



be scheduled on any server. This is fairly easy. For any server j
we need to consider only those flow-classes i for which xij in
the solution of the LP in section III is non-zero. The adaptive
case is exactly similar. Henceforth it must be understood that
flow i will be scheduled for a fraction of time xij on server
j whenever xij is non-zero.

The scheduler also maintains a weight matrix of flows for
each server. How to determine the weights of these flows in
the matrix? Notice that the amount of work done per unit
time by server j on two flows i1 and i2 is in the ratio
of xi1jri1j : xi2jri2j . Hence the weight of the flows on
each server can be generated from the entry-wise product
(Hadamard product [29]) of the two m × n matrices X and
R, denoted by (X • R) i.e. the m × n matrix given by
(X •R)ij = xijbij and suitably multiplying by an appropriate
power of 10 so that they are all integers. The weights in
the weight matrix for an individual server are listed in the
corresponding column of (X • R). For instance, referring to
the example in the elastic case (section III-A), the entry-wise
product (after an entry-wide multiplication by 100000) is

(X • R) =




65032 25488 0
0 0 56576
0 45261 0

14968 4338 14640


 (6)

and the WM for server 0 is


1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0




Similarly in the example for the adaptive case (section III-B)
(X • R) is

(X • R) =




59760 19068 0
0 0 55064
0 53181 0

20240 5478 15585


 (7)

and the WM’s can be computed accordingly. Since the weights
are now determined, the algorithm is fairly direct. We name
our LP and SRR based algorithm Linear Programming based
scheduling algorithm for multi-servers (LP-M), presented for-
mally as Algorithm 1 (only scheduling routine shown). Flows
are arranged in a doubly linked list. Refer to [8] for details.

Any fair scheduling algorithm in the literature for single link
sharing suffices for servicing individual flows within a flow-
class. For simplicity, we adopt DRR as the preferred schedul-
ing algorithm at this granularity. Thus ours is a hierarchical
scheduler. It employs LP-M at the class level and DRR at the
flow level.

V. SIMULATIONS

A. Packet reordering

Quantifying packet reordering is not trivial, as different
protocols may be able to tolerate sequences with quite different
reorder degree and type. Consider for example sequences (2,

Algorithm 1 LP based SRR scheduling, LP-M
Input: Given: (i) set of class-server specific rates (ii) flow-

class reservations Φi’s.
Output: Linear Programming and SRR based fair scheduling

1: Pdl: Pointer to doubly linked list; deff : deficit of flow f ;
Lmax: Maximum Length Packet

2: Compute server specific weight matrix for server j, i.e.
WMj , and associated spectrum WSSj ∀sj

3: for all Servers s′js in the system do
4: X := 0, Ψ = Φ
5: while busy do
6: Pdl → fid

7: deff+ = Lmax

8: while deff > 0 do
9: if (Lf ≤ deff ) then

10: dequeue(Pf );
11: send(Pf );
12: deff− = Lf ;
13: else
14: break;
15: end if
16: end while
17: end while
18: if (Pdl → next! = tailcol) then
19: Pdl = Pdl → next
20: end if
21: end for

3, 4, 5, 6, 7, 8, 1) and (2, 1, 4, 3, 6, 5, 8, 7). In the first one,
only one packet is “out-of-order”. However, if an application
needs to read the packets in the original order to process
the whole sequence, the second sequence seems to have a
lower degree of reordering (only two consecutive numbers
need to be read to restore the original sequence). We adopt
the definitions of packet reordering as described by Marton et
al. [30] (An alternative framework is described in [31]). The
reordering definitions and metrics therein have relevance to
receiver design that can impact TCP and Real-time application
performance. In the following let si be the original sequence
number of i-th packet received by the destination. We maintain
a variable NextExp, which is equal to the highest sequence
number of the packets received so far plus 1. A packet is
received in order if its sequence number is greater than or
equal to NextExp. Otherwise, a packet is reordered. We only
report the two most important out of several metrics.
Reordered ratio (RR): Reordered ratio is simply the ratio of
packets that were received out of order to the total number of
packets.
Reordering extent (RE): The Reordering extent of a reordered
packet with sequence number si is defined to be i − j for
the smallest value of j such that sj > si. The first arriving
packet is always in-order by definition, and has undefined
reordering extent (as all packet which are received in order).
The reordering extent of a flow is the maximum over the
reordering extents of all the reordered packets. The reordering



extent is a rough estimate on the size of the buffer which is
required to store the out of order packets in order to restore
the original sequence order.

Since we focus on work-conserving algorithms, the packet
reordering cannot be completely eliminated. This is easy to
see by considering two packets, one with length 1 and the
other with length 1

2 arriving at time 0, both belonging to
the same flow. If only two servers of the same rate are
available, then any work conserving algorithm must schedule
these packets at time 0. They will, therefore, always leave the
system reordered.

B. Simulation Experiments

Simulation settings:
We simulated the multi-class multi-server system using the

parameters in the example of section III-A. The class-specific
rates are determined by multiplying every entry in the rate-
matrix of equation 4 by 1000000. Thus R11 is 0.8MB, R12

is 0.6MB and so on. Flows were grouped into four classes;
the assigned reservations of these classes were in the ratio 40 :
25 : 20 : 15. Simulations were performed on a synthetic trace
consisting of 10 million packets. We considered a completely
backlogged system in which packet sizes were uniformly dis-
tributed between 40 and 1500 bytes respectively. The decision
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to generate synthetic traces instead of using the traces from
NLANR [32] should not detract from the expected results. In
the flow-server rate coupled model a service rate is associated
with each flow and server. Such information is however not
present in the real traces available on-line. However Internet
traces are bursty and exhibit strong temporal locality. For a
meaningful resemblance with realistic Internet applications,
flow-packets with consecutively increasing sequence numbers
are contiguously assigned in the trace in “bursts”. The range
of this “burst” is taken from a uniform distribution between
[0, BURSTSIZE], where BURSTSIZE is a simulation parameter.
Generating packet lengths from the uniform distribution leads
to more reordering and hence easier evaluation by all three
algorithms.

Simulation results:

Simulations were carried out on the same trace as input to
the multi-server system employing each of the three different
algorithms in turn DRR-M,SRR-M and LP-M with a flow-size
of 1000 per class and BURSTSIZE = 16. The performance
is evaluated through service figures and relevant reordering
metrics. Figures 2 and 3 show the service performance for
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class I and class II respectively while Figures 5 and 6 show
the service performance for class III and class IV respectively.
As can be seen the performance of LP-M is much superior
to that of SRR-M and DRR-M. Also DRR-M and SRR-M
perform very similarly. This can be seen from the respective
service curves which are very closely spaced. However from a
closer inspection it is seen that SRR-M is less bursty in general
compared to DRR-M (agreeing with theory). This is evident
from Figure 4 which focuses on a short time window. The
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degree of the burst will depend in general on the difference in
flow-server specific service rates.

The simulation results as illustrated in the service curves
establish that using LP-M, the throughput increases to almost
24.99% for class I, 25.01% for class II, 25.57% for class III
and 24.95% for class IV over that obtained by SRR-M or
DRR-M (i.e. almost by a fourth more, with a confidence



interval of 99.9%). The throughput curves for the system
can be deciphered from the service curves under various
algorithms by simply adding the latter for various classes.
We note that the overall throughput increases substantially
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when LP-M is employed. The simulations are performed for
a completely backlogged system but can easily be extended
to the on-line case. Each time a class becomes backlogged
or vanishes the new service rates can easily be computed.
With moderately high number of classes, the complexity is
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almost polynomial is time (the revised simplex method [24]).
As mentioned earlier the Differentiated Services standards [23]
specify only a few service classes, reinforcing this point.

The reordering information is provided with the relevant re-
ordering metrics (i) the reordering extent and (ii) the reordered
ratio. We performed simulations with different BURSTSIZE
and different number of flows within a class. Results are
reported only for the case when BURSTSIZE = 16 and
the number of flows in a flow-class equals 100 and 1000
respectively.

The reordered-ratio of the top twenty flows with the highest
reordered ratio is also shown in Figure 7 and 8. LP-M results
in the lowest RR, almost half that of SRR-M or DRR-M.

 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 0  5  10  15  20

R
eo

rd
er

ed
 R

at
io

Flow Rankings

Reorder Ratio of twenty highest flows 

DRR-M
SRR-M

LP-M

Fig. 7. Reorder Ratio (Flow-Size=100)

SRR-M performs better than DRR-M. This is to be expected
since SRR-M is less bursty than DRR-M (a higher probability
exists under DRR-M of same-flow packets being concurrently
serviced by multiple servers). It may be noticed that the degree
of reordering actually increases (by a small percentage) with
the increase in the number of flows when the same packet
trace is classified into many flows. This is explained by the
fact given the total number of packets stays invariant, the
number of packets per flow decreases with an increase in
the number of flows. Therefore, even though the absolute
number of packets that undergo reordering decreases, the RR
is ,therefore, likely to increase. The simulations also show that
the classes with higher reservation have higher reordered ratio
rates. Table II shows the RE of flows of the different classes
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(flow-size=1000) under each of the three algorithms. All flows
under DRR-M and SRR-M have an RE of 2 whereas all class
1 flows under LP-M have an RE equalling 1. Class 2 and 3
flows do not undergo any reordering since they are scheduled
on one server. Under LP-M, some 55 flows in class 4 have an
RE of 1 whereas the rest 945 have an extent equal to 2. These
numbers (although by no means exhaustive), nevertheless, are
suggestive of improvement in reordering performance.



TABLE II

THE NUMBER OF FLOWS WITH A GIVEN REORDER EXTENT (RE)

Class Reorder Extent DRR-M SRR-M LP-M
1 1 0 0 1000

2 1000 1000 0
2 1 0 0 0

2 1000 1000 0
3 1 0 0 0

2 1000 1000 0
4 1 0 0 55

2 1000 1000 945

VI. CONCLUSIONS AND FUTURE WORK

We present the LP-M algorithm for the QoS provisioning
problem in multi-server systems with flow-server rate cou-
pling. LP-M aims at increased throughput for each class,
fair sharing of bandwidth across flow-classes and optimum
utilization of servers. Simulation results show that LP-M
provides better throughput and service differentiation to flows
compared to natural extensions of packeted round-robin al-
gorithms (for single server systems) to the multiple server
system. Evaluating reordering quantitatively through relevant
metrics indicate that intra-flow reordering is also minimized.

One may suspect, that when the number of flows is in-
creased (keeping the packet count of each flow invariant) the
reordering decreases for all algorithms, as the probability that
the same flow is serviced concurrently decreases. It is also very
likely that when servers are of similar rates the performance
of all the three algorithms is similar. Ours is an on-line work-
conserving algorithm. The only assumption is that the number
of flow-classes is not very large and the flow-server rate-
coupling is quantified apriori. The first assumption is met
by most current QoS classification schemes like DiffServ.
The second assumption may be satisfied in case of a known
workload. Future work can focus on hard guarantees, other
effective extension of single server scheduling algorithms to
the multi-server case, and extensive evaluation of reordering
via the proposed metrics [30], [31]. The overall improvement
suggests that LP-M appears to be potentially useful in the
context of a multi-server setting like the web-server, multi-
media transcoding and applications, and other task processing
systems where flow-server rate coupling exists.
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