Voice eBlock Final Report

by

Eric Frohnhoefer

&

Ron Feliciano
[image: image1.jpg]

Section 1: eBlock Introduction:

EBlocks is a system of embedded building blocks designed to bring the ability to create and design complicated home automation and control systems to people with no electrical, programming or digital logic experience. This is done through the use of logic-enabled components. Theoretically, these eBlocks, when connected in a sequence will configure and communicate amongst its neighbors in order to perform their functions.

So far the project is in its infancy, thus only a small number of possible eBlocks have been designed. Of those designed, only a few have made it to the prototype stage. All currently available eBlocks are of the Boolean (Yes/No) variety. These eBlocks, based on their state, will output a “Yes” or a “No”. Other eBlocks would then receive that Yes or No and perform an action accordingly. No programming is necessary; the user need only connect the eBlocks in a very common-sense manner to achieve the desired results.

Yes/No eBlocks are divided into 6 categories. The first category is Sensor eBlocks. These eBlocks output a Yes or No based on external stimuli. Examples include, a button eBlock that outputs a Yes or No depending on if the button is being pressed, a motion sensing eBlock that outputs based on if movement is detected, a light-beam eBlock which outputs a Yes if the light beam is broken, and 10-key entry eBlock which outputs a Yes if the proper (user-defined) sequence of keys are entered, etc.

The second category is Output or Display eBlocks. These are the opposite of sensor eBlocks in that they perform an action based on the input they receive from another eBlock. Examples include, beeper eBlock which makes a sound if it is receiving a Yes, light eBlock that turns on if a yes is received, an electric relay eBlock which controls another electrical device plugged into it, depending on the input it’s receiving, and even an electric lock eBlock, which locks and unlocks depending on input received.

The third category of eBlocks is designed to replace the wire connecting eBlocks. They are entitled “Communication eBlocks”. These include a wireless transmitter/receiver combo, which enables eBlocks to be connected for long distances wirelessly, a splitter eBlock which takes its input and splits it into 4 separate lines. There is even an Internet Controller eBlock, whose output can be controlled from the Internet.

A smaller category of eBlocks is called “Timer eBlocks”. These eBlocks output certain values based on time. Examples include, Clock timer eBlock which toggles (flips) it’s output based on a user specified time, Up/Down timer eBlock which basically will count up to or down from a user specified time interval, and the Alarm Clock timer which an audible alarm is sounded at a user specified time.

The next category is Arithmetic or Logic eBlocks. These may be the most complicated of the eBlocks, from a user’s standpoint. All these eBlocks take a certain number of inputs (1, 2, or 3) and produce an output based on comparisons of the inputs. For example, the inverter eBlock would take its input and output the reverse value. The 2 and 3 input logic blocks have a chart and a dipswitch that corresponds to all the possible combinations of inputs that the Logic eBlock can receive. Based on the position of the dipswitch the Logic eBlock will output "Yes" or "No" if a particular combination is received. For example if a user wanted to have the 2 input logic eBlock to only output a yes when both of it’s inputs are yes, then they need only find the row on the chart that corresponds with “yes yes” inputs and set that dip-switch to “yes”, the rest of the dip-switches will be set to “no”.

The final category of eBlock is the Miscellaneous eBlock section. This category is more of a catch all for the remaining eBlocks that don’t quite belong to any of the other groups. These include, a toggle eBlock that toggles it’s output based on the input and what it was outputting before, a tripper eBlock that outputs a yes when it receives a yes but keeps outputting a yes, regardless of input, until it is reset, and a Pulse generating eBlock which outputs yes and no in small intervals, one after the other whenever it receives a yes.

These examples only scratch the surface of the available eBlocks. Please refer to: http://www.cs.ucr.edu/~eBlock/pages/blist/list_index.html for a complete listing of all available eBlocks.

Voice eBlock:

We have created an early prototype of a Voice activated eBlock. This eBlock is designed to output a Yes or No depending on the spoken commands of the user. To enable use of multiple voice eBlocks in close proximity, each eBlock is given a name (user-defined). This prototype has set name in the firmware but a future prototype could include dipswitches to allow the user to choose a different name. To operate the eBlock a user need only speak in a clear, normal voice, at least 1 foot away from the microphone, the eBlocks name (in this case “one”) and the desired output (“Yes” or “No”). The eBlock would then output that desired value. The eBlock has a red LED attached, this is to inform the user that the eBlock has recognized it’s own name and is awaiting the output command. The eBlock will continue to output this value until it is told to change.

Section 2: Tradeoff analysis:

Clapper Type

This type of eBlock is very simple. Using common and cheap components we can create a type of eBlock that responds to claps. One clap makes it output a “No” another makes it output a “Yes”. This design is very simple, very cheap, and relatively easy to design and get working. We already have a few examples of clapper designs that can be converted to the eBlock protocol. Unfortunately, because of it's simplicity it isn't very flexible.

Clapper Design: http://www2.ece.wpi.edu/~mcneill/2011/labs/lab3.pdf

	Part Description
	Cost

	
	

	PIC Microcontroller
	$2.00

	IC Holder
	$1.00

	2 x 741 Op Amp
	$1.34

	7 Resistors
	$0.21

	Diode
	$0.03

	2 Capacitors
	$0.06

	Microphone
	$0.53

	Wire
	$0.50

	
	

	Total
	$5.67

Not factored into the costs are development and programming time because our group will do that.

Design Time:

The author of the site given above has already worked out most of the design issues. Only issues left to work out would be to interface the design to the PIC processor and possibly find ways to lower the power consumption and costs. Costs can be found by finding sources that give discounts when components are bought in bulk.

Estimated design time: ~ 2 weeks

Power:

According to the power estimation assignment, the PIC processor should draw about 0.00852 A when idle and 6.2 uA when in normal computation. From the estimation, the PIC spent .0864 seconds processing per day. If we add an extra second (more than doubling the time) to cover any processing done for the clapper, we see that the PIC would only draw ~ 2.778 joules a day. All the other components draw should also be negligible.

Performance:

As shown by the author of the site, a small microcontroller can more than handle the load placed on it by simple clapper program and also the eBlock protocol.

Size:

The PCB, PIC and all other components should be able to fit into the standard eBlock prototype box.

User Interface: / Flexibility

From the user point of view it's very simple to operate, just clap your hands. But it doesn't really fulfill the requirement of a VOICE eBlock. Also, by being so simple, it's not a very flexible design (varied # of claps, or different outputs would require some major modifications).

Overall:
This is a very simple, and doable design. But does not fulfill the requirement of the assignment. This will be our fallback design; also it will be used to help learn the eBlock protocol, programming the PIC, and the creation process.

VR w/ PIC

Cost:

Design Time:

Design time would probably the greatest hindrance to this project. The amount of time it would take to reliably learn just the basics of Voice Recognition technology and apply it to a small processor like the PIC would be tremendous. Just by skimming the short-course on Long’s website I think it would take at least a month just to learn enough about voice recognition to get a good idea about the problem. I would estimate another 1-2 months researching the various algorithms and trying to understand how they work. It would take another 1-2 months trying to optimize the provided algorithms to enable them to work on a microcontroller. Finally it would take another 1-2 months to design the hardware required and to debug the entire system.

Total that’s about 5-8 months of time to design and possibly create a Voice eBlock using a microcontroller.

Power:

If this were possible to implement on a PIC, this would mean the PIC would be processing a considerable amount of time. If we were to put multiple PICs on the board to help with the computation, then this would take much more power than the clapper. Still, the PIC when running full speed takes about as much power as the VE chip uses in low power mode. This design takes middle ground between the power requirements of the clapper and the VE IC.

Performance:

From some source files I found online, the total space needed to hold a very basic speech recognition program is about 25k. Let’s say that 90% of the execution time is spent on 10% of the code (from the ADES book). That’s about 2.5k. But that’s 2.5k of C instructions. If those were converted to assembly, it could easily balloon to 25k of assembly instructions if we take into account data structures and complex floating-point instructions. One derivative of the PIC can process instructions at 3.7 million instructions per second. While it seems that the PIC could handle the necessary computations, we must remember that the 25k does not include the necessary headers. Plus all this computation is just to process a given sample. If samples had to be recorded and processed concurrently, the small PIC would be overwhelmed quite easily. To help alleviate some of this computational load, there have been suggestions on partitioning the design through multiple CPUs.

Size:

All these components should be able to fit in the standard eBlock prototype box.

Usability, Flexibility:

Good usability from the user's point of view. They could say a command at, or near normal speaking level. There would be no training required.

If fully implemented, adding more functionality later on should be possible. Assuming the hardware could handle it
Overall:
From the user's point of view, this design works. It does what we would like it to do.

From an engineering point of view it's very different. The design and implementation time would be too long. The power constraints are also in question. Plus there's the fact that most of us don't think it can be done at all.

Full VR w/ VE

Cost:

Prototype costs:

	Parts Description
	Cost

	
	

	PIC Microcontroller
	$3.95

	Voice Extreme Toolkit
	$129.00

	Wire
	$0.50

	
	

	Total
	$133.45

Production Costs (>100k Units):

	Parts Description
	Cost

	
	

	PIC Microcontroller
	$2.00

	Wire
	$0.50

	Voice Extreme IC
	$2.65

	WINBOND 29C020 Flash EEPROM
	$1.22

	Microphone
	$0.53

	Various Resistors, Power Reg, etc.
	$1.00

	
	

	Total
	$7.90

Note: The price for the Voice Extreme IC is $8.95 if in quantities of less than 100k. If the entire module is desired then the price rises to $59.99.

Design Time:

By having the development board and the necessary equipment, creating a prototype voice eBlock using the Voice Extreme development board, and PIC processor should not take more than 2-3 weeks. Converting that prototype into a product that would somewhat resemble a sellable product should take about a month or so.

Estimated time ~2 months

Power:

The Voice Extreme IC itself draws 10mA (average) when in normal operation. There is a power down mode available, which draws less than 5 micro amps of power. Compared to the power requirements of the VE, the requirements of the PIC are negligible.

Performance:

The Voice Extreme was specifically designed to process Voice signals; it has some dedicated hardware to speed up that processing. We’ve tested the Voice Extreme and it is more than capable of handling what we need it to do.

Size:

The development board itself is much too big for a production-class eBlock. However, if we were to use just the VE IC, a PIC and the necessary components, I’m confident we can fit the entire assembly into a normal eBlock prototype sized box.

Usability, Flexibility:

Good usability from the user's point of view. The user would only need to say the words “Yes” or “No” in a slightly higher than normal voice level and the eBlock would act accordingly.

Additionally, this solution will allow the user to be able to differentiate between multiple Voice eBlock that are in close proximity. For example the user could be require saying some unique keyword, to identify the appropriate Voice eBlock, then the words “Yes” or “No”.

Adding more functionality should be as simple as tapping into more of the chip's capabilities. Some of these could include a dependent mode or a speaker verification mode.
Overall:

This is what we chose as our "big project". It seems much more likely to succeed than the PIC implementation. Because the VE chip takes care of the more complex functions of Voice Recognition, we would be able to get this product working within the time limit.

Section 3: Design Process and Issues:

For the Voice eBlock we were able to see the design process from beginning to end. During this design process, we tried to follow the circular design pattern mentioned in “Art of Designing Embedded Systems” by Jack Ganssle. During this cycle continually improved our design and prototype by continually researching all aspects of our project. The bulk of the cycle was spent researching, creating a design, researching problems with the design, and then altering the design to reflect what we learned.

Research:

Research took the biggest of our total development time. After almost every step we had to return to this step. Almost every problem we encountered was solved by more research. We actually had to devote the first few weeks of the quarter to just researching. We researched what kind of off the shelf solutions were available for the problem we had. From all our research, we decided on a few possible solutions. From these possible few, we came up with what we thought would be the most promising fit for our project.

Design:

We went through a sizeable number of designs before we could come up with a design that we thought was good enough to try to prototype. Our tradeoff analysis outlines the many decisions we made. Our design process had a tendency to cycle between research and design. We would see component or technique in our research that we thought would go well with our project. After trying to alter our design to incorporate that new component, we would sometimes run into problems that require us to research some more.

Prototype 1:

This prototype was done on the Voice Extreme development board. A portion of our development time was devoted to learning how the development board worked, and how to use it to program the Voice Extreme module itself. In this prototype we were able to get the Voice Extreme to recognize two words, “yes” and “no”. We were also able to interface the Voice Extreme with a PIC processor. The PIC was used to carry out the eBlock protocol. By using both the Voice Extreme and PIC processor, prototype 1 was able to communicate with the other eBlocks. But this prototype had numerous problems. Problems included, power consumption (it had to be plugged in), accuracy (false-positives were common), cost and packaging (the prototype still used the development board which was both quite large and expensive).

Prototype 2:

Prototype 2 was quite a bit different from prototype 1. The development board was completely eliminated. The Voice Extreme module was moved to a solder less breadboard, as was the microphone and the status LEDs. The PIC and VE module were consolidated onto one breadboard. The entire system was also moved from wall plug to battery power. Accuracy was also improved by the addition of the “naming” system. Instead of the VE listening for only one word (“yes” or “no”), it was now required to listen for a combination of two words. It’s own name (“one”) and the command (“yes” or “no”). This system also provided a new feature, by allowing the eBlock to be named; it was possible to have multiple eBlocks within close proximity without interfering with each other.

Final Prototype and Packaging:

Our final prototype is also quite a bit different from either of the previous prototypes. For the final prototype we used a prototype board and a socket. This socket enables us to not have to solder the VE onto the board, and also enables us to change out LEDs and microphones w/o having to solder again. Schematics and working drawings of the final prototype are available in the appendix. Also for the final prototype we implemented sleep and interrupt functions into the PIC. This was done in order to save what little power we could (our research showed that putting the VE to sleep was not possible for our purposes). Also by implementing interrupt-driven sleep in the PIC, we hoped that this same technique could be applied to all the other eBlocks, thus saving them considerable power.

Documentation:

We decided that the best way to create documentation for our project was to write it as we designed and created the eBlock. In this way, we concluded that there would be less chance for us to leave a detail out or remember a detail wrong. Whenever we thought of or added a feature to the design of the Voice eBlock, we wrote some notes about it for documentation purposes. When the final prototype was done, it was relatively simple for us to turn our notes into a datasheet.

Issues:

We faced both hardware and software issues in the creation of the Voice eBlock. Some issues were relatively simple to diagnose and remedy while others presented quite a challenge. As an added hindrance, a number of issues were hardware based, and our experience with hardware troubleshooting is dwarfed by our experience with software debugging.

An example of a particularly challenging bug we had to face involved the idea of ground. We were still getting familiar with the VE development board, but we were able to program the VE module to accept the two basic commands. We also programmed the PIC to send a “yes” or “no” based on a pin that was being controlled by the VE. The VE seemed to be asserting and de-asserting the pin at the proper times but the LED eBlock would only display the error state. We combed through the VE datasheets, quick start manuals and users guide, trying to solve the problem. We were sure that the problem had to be with the development board and our lack of experience with it. After we exhausted every possibility with the VE, we surmised that the problem had to be with how we were programming the PIC. We then went through everything that could have happened with the PIC, but everything seemed to be working. Finally, after every possible combination was exhausted, we finally found the problem. It turned out that the ground on both circuits had to be connected. It was something that any EE major would have noticed first, but we just never thought of it. This issue taught us to think outside of what we know and to consider the solutions outside our domain.

We also had a few general difficulties with the project. A good example was when trying to implement the interrupt driven sleep mode; we had trouble making sure the PIC was actually sleeping. Also we had intermittent timing issues between the PIC and the VE, the entire circuit had to be shutdown after a short amount of time and restarted before the two processors would sync. Eventually we figured from the datasheet that an internal pull-up had to be set, to keep the timing in sync.

Of course we also had our fair share of small, almost careless mistakes. We had LED on backwards and loose wires repeatedly. It was a common occurrence to have a short somewhere from a loose connection. We even got into the practice of making sure no component got too hot, and to watch the draw of our circuit to make sure a short circuit didn’t occur.

Section 4: What we learned:

We learned many lessons during our experience with the eBlock. We learned to work together as a team, and to plan a big project and to see it from beginning to completion. As part of the process, we had to research and choose the right materials, consider trade-offs, and understand a domain we were very unfamiliar with. To complete the project we had to effectively use the tools of engineering, some of which we were very new to us. On the more specific, technical side we learned to program a PIC, read datasheets, work better the multi-meter and soldering iron.

We had to learn to work together as a team to complete the project. We had to create a time schedule for everyone to adhere to. We also had to delegate responsibilities to each person so that the project could progress faster. Our work had to be correct and finished in a timely manner or else the project would come to a halt until the person’s part was done. This type of interdependence showed a level of trust in each person, in that we believed that they could finish what was assigned to them. This also helped us utilize people’s strengths and weaknesses. Some people were really good at designing circuits and other was very good with software. Though everyone had some experience with all aspects of the project, the bulk of what each person did was related to what they were good at.

We were also able to start a project and see it progress until completion. In the beginning we learned how to research possible materials and techniques. From the many available materials and techniques we chose a few that we felt would fit into our requirements the best. From those choices we created a tradeoff analysis to study what the strengths and weaknesses of each combination was. Based on the information in the tradeoff analysis, we chose one design that seemed best for us. From that initial design, we researched and refined that design until we felt that it was ready for prototyping. We created a first prototype with a limited set of features. From what we learned from this prototype we researched the problems, and improved our design. We then created a second prototype, which was more sophisticated and closer to what we ultimately wanted. This was then researched and improved even further. Finally we created a final prototype that we felt was the closest to the requirements as we could get in the time allotted. After this final prototype was created, documented and packaged our work. It was a great experience to go through all the steps from beginning to end on a project.

Through this project we had to learn a domain that was very unfamiliar to us. Before doing this eBlock, it would have been a safe bet that none of us knew anything about the implementation of Voice/Speech recognition. We had to learn about what exactly was involved, what kind of computation and steps were required, and what kinds of product solutions were available.

Last but not least, we learned some very hands, and technical skills from the project. We learned how to solder better, learn to use a multi-meter more effectively, and even how to program a PIC processor. We also got much better at reading and understanding datasheets, mostly from the sheer number of times we had to read them in order to get our equipment working.

By going through the entire design process, from beginning to end, we were able to experience what it felt like to be in true industry. We had to make the decisions that real engineers in the field have to make, and we delegated responsibility to the team as needed. We created prototypes and had to reevaluate our designs based off the data observed from those prototypes. Finally we learned to write documentation and present our work in a professional setting.

