

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 1

Studying the Language and Structure in
Non-Programmers’ Solutions to Programming

Problems

John F. Pane, Chotirat “Ann” Ratanamahatana

*

 and Brad A. Myers

Computer Science Department and Human Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA
pane+natprog@cs.cmu.edu

http://www.cs.cmu.edu/~NatProg

Keywords

End-user programming, natural programming, novice programming, psychology of programming, user
studies.

Abstract

Programming may be more difficult than necessary because it requires solutions to be expressed in ways
that are not familiar or natural for beginners. To identify what is natural, this article examines the ways
that non-programmers express solutions to problems that were chosen to be representative of common
programming tasks. The vocabulary and structure in these solutions is compared with the vocabulary and
structure in modern programming languages, to identify the features and paradigms that seem to match
these natural tendencies as well as those that do not. This information can be used by the designers of
future programming languages to guide the selection and generation of language features. This design
technique can result in languages that are easier to learn and use, because the languages will better match
beginners’ existing problem solving abilities.

Introduction

Programming is a very difficult activity. Some of the difficulty is intrinsic to programming, but this
research is based on the observation that programming languages make the task more difficult than neces-

* Current address: Child Hall Room #317, 26 Everett Street, Cambridge, MA 02138.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 2

sary because they have been designed without careful attention to human-computer interaction issues
(Newell & Card, 1985). In particular, programmers are required to think about algorithms and data in
ways that are very different than the ways they already think about them in other contexts. For example, a
typical C program to compute the sum of a list of numbers includes three kinds of parentheses and three
kinds of assignment operators in five lines of code; in contrast, this can be done in a spreadsheet with a
single line of code using the

sum

 operator (Green & Petre, 1996). The mismatch between the way pro-
grammers think about a solution and the way it must be expressed in the programming language makes it
more difficult not only for beginners to learn how to program, but also for people to carry out their pro-
gramming tasks even after they become more experienced.

The

Natural Programming Project

 seeks to influence future programming languages by collecting a
human-centered body of facts that can be used to guide design decisions (Myers, 1998). This will allow
the language designer to be more aware of the areas of potential difficulty, as well as suggest alternate
approaches that more closely match the ways that people think. This article describes a pair of new stud-
ies that examine the language and structure of problem solutions written by non-programmers, and con-
trasts these findings with the requirements imposed by popular modern programming languages.

The first study focuses on children because they are the audience for a new programming language the
authors are designing. In addition, children are less likely to be programmers, so their responses should
reveal problem solving techniques that have not been influenced by programming experience. The exer-
cises in this study are drawn from the domain of computer games and animated stories, because children
are often interested in building these kinds of programs. The second study then examines how the results
of the first study generalize to a broader audience and a different domain.

Related Work

There has been a wealth of relevant research in the fields of

Psychology of Programming

 and

Empirical
Studies of Programmers

. In these fields, programming is often defined as a process of transforming a
mental plan that is in familiar terms into one that is compatible with the computer (e.g. Lewis & Olson,
1987). Among others, Hoc & Nguyen-Xuan (1990) have shown that many bugs and difficulties arise
because the distance between these is too large. This concept is called

closeness of mapping

 by Green &
Petre (1996, p. 146): “The closer the programming world is to the problem world, the easier the problem-
solving ought to be.... Conventional textual languages are a long way from that goal.” In that article they
provide an extensive set of

cognitive dimensions,

 which can be used to guide and evaluate language
designs. More concretely, Soloway, Bonar & Erlich (1989) found that the looping control structures pro-
vided by modern languages do not match the natural strategies that most people bring to the program-
ming task. Furthermore, when novices are stumped they try to transfer their knowledge of natural
language to the programming task. This often results in errors because the programming language defines
these constructs in an incompatible way (Bonar & Soloway, 1989). For example,

then

 is interpreted as

afterwards

 instead of

in these conditions

. Many similar findings are summarized in an earlier report (Pane
& Myers, 1996). While these studies identify many of the problems with existing languages, they do not
prescribe solutions. The goal of the current work is to discover alternatives that can avoid or overcome
these problems.

Striving for naturalness does not necessarily imply that the programming language should use natural
language. Programming languages that have adopted natural-language-like syntaxes, such as Cobol
(Sammet, 1981) and HyperTalk (Goodman, 1987), still have many of the problems that are listed above,
as well as other usability problems. For example, Thimbleby, Cockburn & Jones (1992) list many ways
that HyperTalk violates the human-computer interaction principle of consistency. There are also many

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 3

ambiguities in natural language that are resolved by humans through shared context and cooperative con-
versation (Grice, 1975). Novices attempt to enter into a human-like discourse with the computer, but pro-
gramming languages systematically violate human conversational maxims because the computer cannot
infer from context or enter into a clarification dialog (Pea, 1986). The use of natural language may com-
pound this problem by making it more difficult for the user to understand the limits of the computer’s
intelligence (Nardi, 1993). However, these arguments do not imply that the algorithms and data structures
should not be close to the ways people think about the problem. In fact, Bruckman & Edwards (1999)
have found that leveraging users’ natural-language-like knowledge in a more formalized syntax is an
effective strategy for designing end-user-programming languages.

There are many motivations for why a more natural programming language might be better. Naturalness
is closely related to the concept of directness which, as part of

direct manipulation

, is a key principle in
making user interfaces easier to use. Hutchins, Hollan & Norman (1986) describe directness as the dis-
tance between one’s goals and the actions required by the system to achieve those goals. Reducing this
distance makes systems more direct, and therefore easier to learn. User interface designers and research-
ers have been promoting directness at least since Shneiderman (1983) identified the concept, but it has
not been a consideration in most programming language designs.

User interfaces in general are also recommended to be

natural

 so they are easier to learn and use, and will
result in fewer errors. For example, Nielsen (1993, p. 126) recommends that user interfaces should “speak
the user’s language” which includes having good mappings between the user’s conceptual model of the
information and the computer’s interface for it. One of Hix & Hartson’s usability guidelines is to

Use
Cognitive Directness

 (1993, p. 38), which means to “minimize the mental transformations that a user
must make. Even small cognitive transformations by a user take effort away from the intended task.”
Conventional programming languages require the programmer to make tremendous transformations from
the intended tasks to the code design.

The current studies are similar to a series of studies by Lance Miller in the 1970s (1974; 1981). Miller
examined natural language procedural instructions generated by non-programmers and made a rich set of
observations about how the participants

naturally

 expressed their solutions. This resulted in a set of rec-
ommended features for computer languages. For example, Miller suggested that

contextual referencing

would be a useful alternative to the usual methods of locating data objects by using variables and travers-
ing data structures. In contextual referencing, the programmer identifies data objects by using pronouns,
ordinal position, salient or unique features, relative referencing, or collective referencing (Miller, 1981, p
213).

Although Miller’s approach provided many insights into the natural tendencies of non-programmers,
there have only been a few studies that have replicated or extended that work. Biermann, Ballard & Sig-
mon (1983) confirmed that there are many regularities in the way people express step-by-step natural lan-
guage procedures, suggesting that these regularities could be exploited in programming languages.
Galotti & Ganong (1985) found that they were able to improve the precision in users’ natural language
specifications by ensuring that the users understood the limited intelligence of the recipient of the instruc-
tions. Bonar & Cunningham (1988) found that when users translated their natural-language specifications
into a programming language, they tended to use the natural-language semantics even when they were
incorrect for the programming language. It is surprising that the findings from these studies have appar-
ently not had any direct impact on the designs of new programming languages that have been invented
since then.

The studies reported in this article differ from the prior art in several ways. For example:

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 4

•

Miller’s studies used verbose problem statements, raising the risk that the language used in the partici-
pants’ responses was biased by the materials. In fact, one of the frequently-observed keywords actually
appeared in the problem statement that was given to the participants. The current studies take great
care to minimize this kind of bias by using terse descriptions along with graphical depictions of the
problem scenarios.

•

Miller’s studies placed constraints on the participants’ solutions, such as: they were broken into

steps

,
each a line of text limited to 80 characters; steps had to be retyped completely in order to edit them;
and, a minimum of five steps was required in a solution. The current studies are much less constrained,
allowing users to write or draw as much or as little text and pictures as they need to convey their solu-
tions.

•

Miller’s tasks were typical database problems from the era of his studies. The current studies investi-
gate a broader range of tasks that incorporate modern graphical user interfaces and media such as ani-
mations.

•

Miller’s participants were all college students. The current studies investigate a broader age range.
Thus, the current studies may yield more reliable information about the natural expressions of a wider
audience, on a broader range of algorithms and domains.

The Studies

In the studies reported here, participants were presented with programming tasks and asked to solve them
on paper using whatever diagrams and text they wanted to use. Before designing the tasks, the authors
enumerated a list of essential programming techniques and concepts that are needed to program various
kinds of applications. These include: use of variables, assignment of values, initialization, comparison of
values and boolean logic, incrementing and decrementing of counters, arithmetic, iteration and looping,
conditionals and other flow control, searching and sorting, animation, multiple things happening simulta-
neously (parallelism), collisions and interactions among objects, and response to user input.

Because children often express interest in creating games and animated stories, the first study focused on
the skills that are necessary to build such programs. The authors chose the PacMan video game as a fertile
source of interesting problems that require these skills. Instead of asking the participants to implement an
entire PacMan game, various situations were selected from the game because they touch upon one or
more of the above concepts. This allowed a relatively small set of exercises to broadly cover most of the
concepts in a limited amount of time. The skills that were not covered in the first study were covered in
the second, which used scenarios that involved database manipulation and numeric computation.

A risk in designing these studies is that the experimenter could bias the participants by the language used
in asking the questions. For example, the experimenter cannot just ask: “How would you tell the monsters
to turn blue when the PacMan eats a power pill?” because this may lead the participants to simply parrot
parts of the question back in their answers. To avoid this, a collection of pictures and QuickTime movie
clips were developed to depict the various scenarios, using very terse captions. This enabled the experi-
menter to show the depictions and ask vague questions to prompt the participants for their responses. An
example is shown in Figure 1. Full details about these studies, including copies of the materials and com-
plete tabulation of the results are available in a supplementary report (Pane, Ratanamahatana & Myers,
2000).

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 5

Study One

The first study examines children’s solutions to a set of tasks that would be necessary to program a com-
puter game.

Participants

Fourteen fifth graders at a Pittsburgh public elementary school participated in this study. The participants
were equally divided between boys and girls, were racially diverse, and were either ten or eleven years
old. All of the participants were experienced computer users, but only two of them (both boys) said they
had programmed before. All of the analyses in this article examine only the twelve non-programmers.
The participants were recruited by sending a brief note and consent form to parents. The participants
received no reward other than the opportunity to leave their normal classroom for a half hour, and the
opportunity to play a computer game for a few minutes.

Materials

A set of nine scenarios from the

PacMan

 game were chosen, and graphical depictions of these scenarios
were developed, containing still images or animations and a minimal amount of text. The topics of the
scenarios were: an overall summary of the game, how the user controls PacMan’s actions, PacMan’s
behavior in the presence and absence of other objects such as walls, what should happen when PacMan
encounters a monster under various conditions, what happens when PacMan eats a power pill, scorekeep-
ing, the appearance and disappearance of fruit in the game, the completion of one level and the start of the
next, and maintenance of the high score list. Figure 1 shows one of the scenario depictions. The partici-
pants viewed the depictions on a color laptop computer, and wrote their solutions on blank unlined paper.

Procedure

After a brief interview to gather background information, participants were shown each scenario and
asked to write down in their own words and pictures how they would tell the computer to accomplish the
scenario. When a response was judged to be incomplete or unsatisfactory, the experimenter attempted to
elicit additional information by asking the participant to give more detail, by demonstrating an error in
the existing answer, or by asking questions that were carefully worded to avoid influencing the responses.
The sessions were audiotaped.

Content Analysis

The authors developed a rating form to be used by independent raters to analyze each participant’s
responses. Each question on the form addressed some facet of the participant’s problem solution, such as
the way a particular word or phrase was used, or some other characteristic of the language or strategy that
was employed. Many of these questions arose from the results of a pilot study. In addition, preliminary
review of the participant data revealed trends in the solutions that the authors thought were important, so
the rating form was supplemented with questions to explore these as well.

Each question was followed by several categories into which the participant’s responses could be classi-
fied. The rater was instructed to look for relevant sentences in the participant’s solution, and classify each
one by placing a tickmark in the appropriate category, also noting which problem the participant was
answering when the sentence was generated. Each question also had an

other

 category, which the rater
marked when the participant’s utterance did not fall into any of the supplied categories. When they did
this, they added a brief comment.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 6

Five independent raters categorized the participants’ responses. These raters were experienced computer
programmers, who were recruited by posting to Carnegie Mellon University’s electronic bulletin boards,
and were paid for their assistance. They were given a one-page instruction sheet describing their task.
Each analyst filled out a copy of the 17-question rating form for each of the participants. Figure 2 shows
one of the questions from the rating form for study one.

Results

The participants’ solutions ranged from one to seven pages of handwritten text and drawings. The raters
were instructed to use each utterance (statement or sentence) as the unit of text to analyze. Since each
rater independently partitioned the text into these units, the total number of tickmarks differed across rat-
ers, so the results are normalized by looking at the proportion of the tickmarks credited to each category
rather than the raw counts. Although there were variances among the results from individual raters, their
ratings were generally similar. So the results are reported as averages across all raters (n=5) and all of the
non-programmer participants (n=12).

The results for each rating form question are summarized with an overall

prevalence

 score followed by

frequency

 scores for each category sorted from most frequent to least frequent. The prevalence score mea-

FIGURE 1. Depiction of a problem scenario in study one.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 7

sures the average count of occurrences that each rater classified for each participant when answering the
current question. In study one, this score varies from 1.0 to 23.2, indicating the relative amount of data
that was available to the raters in answering the question. The frequency scores then show how those
occurrences were apportioned across the various categories, expressed as percentages. The frequencies
may not sum to exactly 100% due to rounding errors. The examples are quoted from the participants’
solutions. Table 1 summarizes the results that follow, which are sorted into four general categories: the
overall structure of the solutions, the ways that certain keywords are used, the kinds of control structures
that are used, and the methods used to effect various aspects of computation.

Overall Structure

Programming Style

The raters classified each statement or sentence in the solutions into one of the following categories based
on the style of programming that it most closely matches.

Prevalence: 22.7 occurrences per participant.

•

54% - production rules or event-based, beginning with

when

,

if

, or

after

.

Example: When PacMan eats all the dots, he goes to the next level.

•

18% - constraints, where relations are stated which should always hold.

Example: PacMan cannot go through a wall.

•

16% - other (98% of these were classified by the raters as declarative statements).

Example: There are 4 monsters.

•

12% - imperative, where a sequence of commands is specified.

Example: Start with this image. Play this sound. Display “Player One Get Ready.”

Perspective

Beginners sometimes confuse their role or perspective while they are developing a program. Instead of
thinking about the program from the perspective of the programmer, they might adopt the role of the end-

FIGURE 2. A question from the rating form for study one.

3. Please count the number of times the student uses these various methods to express concepts about
multiple objects. (The situation where an operation affects some or all of the objects, or when different
objects are affected differently.)

a) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___

Thinks of them as a set or subsets of entities and operates on those, or specifies them with plurals.

Example: Buy all of the books that are red.

b) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___

Uses iteration (i.e. loop) to operate them explicitly.

Example: For each book, if it is red, buy it.

c) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___

Other (please specify) ____________________________

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 8

user of the program, or in the case of games and stories, one of the characters portrayed by the program.
The raters classified the participants’ statements according to the perspective or role that they indicated.

Prevalence: 23.2 occurrences per participant

•

45% - player’s or end-user’s perspective.

Example: When I push the left arrow PacMan goes left.

•

34% - programmer’s perspective.

Example: If arrow for Player 1 is “left” move PacMan left.

•

20% - other (99% of these were classified by the raters as

third-person perspective

).

Example: If he eats a power pill and he eats the ghosts, they will die.

Modifying State

The raters examined places where the participants were making changes to an entity.

Prevalence: 4.6 occurrences per participant.

•

61% - behaviors were built into the entity, in an object-oriented fashion.

Example: Get the big dot and the ghost will turn colors...

TABLE 1. Summary of results from the first study. Items with frequencies below 5% do not appear.

Programming Style Perspective Modifying State
54% Production rules / events 45% Player or end-user 61% Behaviors built into objects
18% Constraints 34% Programmer 20% Direct modification
16% Other (declarative) 20% Other (third-person) 18% Other
12% Imperative

Pictures
67% Yes

AND OR THEN
67% Boolean conjunction 63% Boolean disjunction 66% Sequencing
29% Sequencing 24% To clarify or restate a prior item 32% “Consequently”, or “in that case”

8% “Otherwise”
5% Other

Operations on Multiple Objects Complex Conditionals Looping Constructs
95% Set / subset specification 37% Set of mutually exclusive rules 73% Implicit

5% Loops or iteration 27% General case, with exceptions 20% Explicit
23% Complex boolean expression 7% Other
14% Other (additional uses of exceptions)

Remembering State Mathematical Operations Insertion into a Data Structure
56% Present tense for past event 59% Natural language style - incomplete 48% Insert first then reposition others
19% “After” 40% Natural language style - complete 26% Insert without making space
11% State variable 17% Make space then insert

6% Discuss future events Motions 8% Other
5% Past tense for past event 97% Expect continuous motion

Sorted Insertion
Tracking Progress Randomness 43% Incorrect method
85% Implicit 47% Precision 28% Correct non-general method
14% Maintain a state variable 20% Uncertainty without using “random” 18% Correct general method

18% Precision with hedging
15% Other

Computation

Keywords

Overall Structure

Control Structures

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 9

•

20% - direct modification of the properties of entities.

Example: After eating a large dot, change the ghosts from original color to blue.

•

18% - other.

Pictures

In addition to the above classifications done by the raters, the experimenter examined each solution to
determine whether pictures were drawn as part of the solution.

•

67% - included at least one picture.

•

33% - used text only.

Keywords

AND

The raters examined the intended meaning when the participants used the word

AND

.

Prevalence: 6.3 occurrences per participant.

•

67% - boolean conjunction.

Example: If PacMan is travelling up and hits a wall, the player should...

•

29% - for sequencing, to mean

next

 or

afterward.
Example: PacMan eats a big blinking dot, and then the ghosts turn blue.

•

3% - other
Example: Every level the fruit should stay for less and less seconds.

OR
The raters examined the intended meaning when the participants used the word OR.

Prevalence: 1.5 occurrences per participant.
• 63% - boolean disjunction.

Example: To make PacMan go up or down, you push the up or down arrow key.
• 24% - clarifying or restating the prior item.

Example: When PacMan hits a ghost or a monster, he loses his life.
• 8% - meaning otherwise.
• 5% - other.

THEN
The raters examined the intended meaning when the participants used the word THEN.

Prevalence: 2.2 occurrences per participant.
• 66% - sequencing, to mean next or afterward.

Example: First he eats the fruit, then his score goes up 100 points.
• 32% - meaning consequently, or in that case.

Example: If you eat all the dots then you go to a higher level.
• 1% - to mean besides or also.
• 1% - other.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 10

Control Structures

Operations on Multiple Objects
The raters examined those statements that operate on multiple objects, where some or all of the objects
are affected by the operation.

Prevalence: 6.1 occurrences per participant.
• 95% - set and subset specifications.

Example: When PacMan gets all the dots, he goes to the next level.
• 5% - loops or iteration.

Example: #5 moves down to #6, #6 moves to #7, etc. until #10 which is kicked off the high score list.

Iteration or Looping Constructs
The raters examined those statements that were either implicit or explicit looping constructs.

Prevalence: 1.6 occurrences per participant.
• 73% - implicit, where only a terminating condition is specified.

Example: Make PacMan go left until a dead end.
• 20% - explicit, with keywords such as repeat, while, and so on, etc.
• 7% - other.

ELSE or Equivalent Clauses
The raters looked for occurrences of ELSE clauses or equivalent constructs in the participants’ solutions.
They simply counted these, without classifying them further.

Prevalence: 0.4 occurrences per participant.

Complex Conditionals
The raters examined those statements that specify conditions with multiple options.

Prevalence: 2.3 occurrences per participant.
• 37% - a set of mutually exclusive rules.

Example: When the monster is green he can kill PacMan. When the monster is blue PacMan can eat
the monster.

• 27% - a general condition, subsequently modified with exceptions.
Example: When you encounter a ghost, the ghost should kill you. But if you have a power pill you can
eat them.

• 23% - boolean expressions.
Example: After eating a blinking dot and eating a blue and blinking ghost, he should get points.

• 14% - other (95% of these either listed the exception first, or did not list a general case).
Example: If he gets a [power pill] then if you run into them you get points.

Computation

Remembering State
The raters examined the methods used to keep track of state when an action in the past should affect a
subsequent action.

Prevalence: 4.1 occurrences per participant.
• 56% - using present tense when mentioning the past event.

Example: When PacMan eats a special dot he is able to eat the ghosts.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 11

• 19% - using the word after.
Example: After using up the power pill, the ghosts can eat PacMan again.

• 11% - using a state variable to track information about the past event.
Example: When the monster is blue PacMan can eat the monster.

• 6% - mentioning the future event at the time of past event.
Example: When PacMan gets a shiny dot, then if you run into the ghosts, you get points.

• 5% - using the past tense when mentioning the past event.
Example: In about 10 seconds, if PacMan didn't eat it take it off again.

• 4% - other.

Tracking Progress
The raters examined the methods used to keep track of progress through a long task.

Prevalence: 2.0 occurrences per participant.
• 85% - all or nothing, where tracking is implicit or done with sets.

Example: When PacMan gets all the dots, he goes to the next level.
• 14% - using counting, where a variable such as a counter tracks the progress.

Example: When PacMan loses 3 lives, it's game over.
• 1% - other.

Mathematical Operations
The raters examined the kinds of notations used to specify mathematical operations.

Prevalence: 3.4 occurrences per participant.
• 59% - natural language style, missing the amount or the variable.

Example: When he eats the pill, he gets more points...
• 40% - natural language style, with no missing information.

Example: When PacMan eats a big dot, add 100 points to the score.
• 0% - programming language style (count = count + 20)
• 0% - mathematical style (count + 20)

Motions
The raters examined the participants’ expectations about whether motions of objects should require
explicit incremental updating.

Prevalence: 7.8 occurrences per participant.
• 97% - expect continuous motion, specifying only changes in motion.

Example: PacMan stops when he hits a wall.
• 2% - continually update the positions of moving objects.
• 1% - other.

Randomness
The raters examined the methods used by the participants’ in expressing events that were supposed to
happen at uncertain times or with uncertain durations.

Prevalence: 1.4 occurrences per participant.
• 47% - using precision, where no element of uncertainty is expressed.

Example: Put the new fruit in every 30 seconds.
• 20% - using words other than random to express the uncertainty.

Example: The fruit will go away after a while.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 12

• 18% - using precision with hedging to express uncertainty.
Example: After around 3 or 4 more seconds the fruit disappears.

• 15% - other (often the action was tied to another event).
Example: Put a fruit on the screen when PacMan is running out of power.

• 0% - used the word random.

Insertion into a Data Structure
The raters examined the methods used by the participants to insert an element into the middle of an exist-
ing sequence of elements.

Prevalence: 1.0 occurrences per participant.
• 48% - inserting first, repositioning other elements afterwards.
• 26% - no mention of making room for the inserted element.
• 17% - making space by repositioning others, then inserting the element.
• 8% - other.

Sorted Insertion
The raters examined the methods used by the participants to determine the correct place to insert an ele-
ment into a sorted list.

Prevalence: 1.1 occurrences per participant.
• 43% - using an incorrect method, with missing or incorrect details.
• 28% - a method that is correct for the current data, but not a correct general solution.
• 18% - a correct general method that would work for any data.
• 10% - other

Discussion
Combined discussion of the two studies appears in “Discussion of Results,” on page 20.

Study Two
To see whether the observations from the first study would generalize to other domains and other age
groups, a second study was conducted. This study used database access scenarios that are more typical of
business programming tasks, and was administered to a group of adults as well as a group of children
similar to the participants in study one.

Participants
Nineteen adults from the Carnegie Mellon University community, ranging in age from 18 to 34, partici-
pated in the study (10 men, 9 women). In addition, 22 fifth graders, ages 10 or 11, participated (13 boys,
9 girls). These fifth graders were recruited from the same Pittsburgh public elementary school as study
one, but it was a new academic year so none of the participants from study one were involved in study
two. The participants were racially diverse. Although the children spanned a range of academic abilities,
all of the Carnegie Mellon participants had strong academic backgrounds.

Of the adults, only five had never programmed before (2 men, 3 women). Of the children, fourteen said
they had never programmed before (11 boys, 3 girls). There is reason to believe that some of the children
who claimed to be programmers did not accurately answer this question because they did not really know

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 13

what programming is. Nonetheless, only those participants who said they never programmed were
included in the analysis that follows.

The adult participants were recruited by word of mouth, and signed the usual human subject consent
forms. The children were recruited by sending a brief note and consent form to parents. The adult partici-
pants received no reward for their participation; the children had an opportunity to leave their normal
classroom for a half hour, and were given a snack at the end of their participation.

Materials
A set of eleven scenarios were created, representing a progression of problems that a programmer might
encounter in the process of creating and manipulating a database of names and numeric values. These
scenarios were chosen to cover some of the essential concepts of programming that were not addressed in
study one, and to further elucidate some of the results from that study. As in study one, graphical depic-
tions of these scenarios were developed. In this case they contained before and after pictures of database
values in a tabular layout, with graphical annotations highlighting the differences between the before and
after pictures, along with a minimal amount of text that was carefully chosen to avoid biasing the partici-
pants’ responses. The topics of the scenarios were: entering values into the correct rows of a table, adding
certain values in each row to produce a column of sums, discarding the smallest or largest value from
each row when calculating the sum, assigning nominal values to each row depending on textual attributes
or numeric ranges, producing a numerically sorted summary table with entries for only the rows with the
highest sums, adding or subtracting a fixed value to every value in a column, deleting rows from the table
or adding rows to it, and zeroing all of the values in a column. Figure 3 shows one of the scenario depic-
tions. The depictions were displayed to the participants on paper, and they wrote their solutions directly
on the problem pages.

Procedure
The same procedure was used as in study one, except the sessions were not audiotaped.

Content Analysis
Once again a form was developed, similar to the one used in study one, so that independent raters could
analyze the data. This rating form had 18 questions. Because the performance of the five analysts in the
first study was satisfactory, there was general agreement among them, and the task was very tedious, the
authors decided that three analysts were sufficient for the second study. The analysts from the first study
were permitted to return for this study because there was no reason to expect their prior participation to
have a material affect on the results. So three analysts from the prior study analyzed the participants’
responses in this study.

Results
The participants answers typically consisted of one to five sentences in response to each of the eleven
questions. Once again, there was general agreement among the raters. The performance of adults was
generally similar to the performance of children. So, the results reported below are averages across the
raters (n=3) and all of the non-programmer participants (n=19, 5 adults and 14 children).

As in study one, the results for each question are summarized with an overall prevalence score followed
by frequency scores for each category. The prevalence score measures the average count of occurrences
that each rater classified for each participant when answering the current question. In study two, this
score varies from 0.2 to 11.5, indicating the relative amount of data that was available to the raters in

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 14

answering the question. The frequency scores then show how those occurrences were apportioned across
the various categories, expressed as percentages. The frequencies may not sum to exactly 100% due to
rounding errors. The examples are quoted from the participants’ solutions. Table 2 summarizes the results
that follow, which are sorted into three general categories: the ways that certain keywords are used, the
kinds of control structures that are used, and the methods used to effect various aspects of computation.

Keywords

AND
The raters examined the intended meaning when the participants used the word AND.

Prevalence: 6.1 occurrences per participant.
• 47% - boolean conjunction.

Example: Erase Bill Clinton and Jay Leno.
• 43% - sequencing, meaning next or afterward.

Example: Crossed out the highest score, and added the lower scores.
• 5% - other.
• 4% - to specify a range.

Example: Fine is between 3,000 and 20,000.

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Sandra Bullock 3,000

 2 Bill Clinton 60,000

 3 Cindy Crawford 500

 4 Tom Cruise 5,000

 5 Bill Gates 6,000

 6 Whitney Houston 4,000

 7 Michael Jordan 20,000

 8 Jay Leno 50,000

 9 David Letterman 700

 10 Will Smith 9,000

 Question 5A
• Describe in detail what the computer should do to obtain these results.

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Sandra Bullock 3,000 Fine

 2 Bill Clinton 60,000 Extraordinary

 3 Cindy Crawford 500 Poor

 4 Tom Cruise 5,000 Fine

 5 Bill Gates 6,000 Fine

 6 Whitney Houston 4,000 Fine

 7 Michael Jordan 20,000 Extraordinary

 8 Jay Leno 50,000 Extraordinary

 9 David Letterman 700 Poor

 10 Will Smith 9,000 Fine

FIGURE 3. Depiction of a problem scenario in study two.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 15

AND as a Boolean Operator
The raters examined the answers to two questions that were likely to elicit boolean expressions. If the
word AND appeared in a boolean expression, the raters determined whether it was used correctly.

Prevalence: 0.6 occurrences per participant.
• 76% - incorrect, interpreting as boolean conjunction would not give the intended result.

Example: Everybody whose name starts with the letter G and L would be in the black group.
• 24% - correct, boolean conjunction is intended meaning.

Example: If AvgScore ≥1000 and <10000, say Fine.

OR
The raters examined the places where the participants used the word OR as a boolean operator to see if it
was used correctly.

TABLE 2. Summary of results from the second study. Items with frequencies below 5% do not appear.

AND OR BUT
47% Boolean conjunction 100% Boolean Disjunction 92% To mean “except”
43% Sequencing 8% Other

5% Other NOT
100% Low precedence THEN

AND as a boolean operator 91% Sequencing
76% Incorrect 7% “Consequently”
24% Correct

Operations on Multiple Objects Complex Conditionals
97% Sets and subsets, including plurals 45% Set of mutually exclusive conditions

36% Dependent clause cannot stand alone
16% Nested conditions

Set Construction Specifying Open Intervals Sorting
46% Plurals 35% “Above” is exclusive 37% “Alphabetical”, etc.
18% “Each” or “every” 22% “Above” is inclusive 36% “From A to Z”, etc.
16% Naming a column of the table 22% Powers of ten 11% Concrete example
14% “All” 15% Other 9% Provide a key to a sort operator

5% Mathematical notation
Set Manipulation Deleting an Element from a Data Structure

45% Set inverse Specifying Closed Intervals 73% No hole expected after deletion
29% Set difference 35% “From ... to” is inclusive 25% Repaired a hole after deletion
22% Disjoint or mutually exclusive sets 19% Powers of ten

5% Other 10% Mathematical notation Inserting an Element into a Data Structure
9% Other 75% Insert without making space

Complete Specification of Ranges 9% "Between" used inconsistently 16% Make space then insert
50% Correct 7% “From ... to” used inconsistently 6% Insert then make space
50% Incorrect 6% "Between" is inclusive

5% Ends of interval specified separately Sorted Insertion
46% Incorrect method

Mathematical Operations 34% Correct non-general method
52% Natural language style - complete 13% Correct general method
40% Other 6% Insert then sort

Computation

Keywords

Control Structures

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 16

Prevalence: 0.6 occurrences per participant.
• 100% - correct.

Example: [Score] in the hundreds or less is poor.

NOT
The raters examined the places where the participants used the word NOT as a boolean operator to see
what operator precedence was intended.

Prevalence: 0.1 occurrences per participant.
• 100% - low precedence: NOT A or B means NOT (A or B).

Example: The Gold group [contains the people] with the first two letters in their last name that are not
Le or Ga.

BUT
The raters examined the intended meaning when the participants used the word BUT.

Prevalence: 0.2 occurrences per participant.
• 92% - to mean except.

Example: Add every element in the row, but the maximum.
• 8% - other.
• 0% - to mean and.

THEN
The raters examined the intended meaning when the participants used the word THEN.

Prevalence: 1.3 occurrences per participant.
• 91% - sequencing, to mean next or afterward.

Example: Add up all the scores in each row, then subtract the lowest score in each row.
• 7% - to mean consequently, or in that case.

Example: If their name begins with a G or an L then put them in the Black group.
• 1% - besides or also.
• 1% - other.

Control Structures

Operations on Multiple Objects
The raters examined statements that operate on multiple objects, where some or all of the objects are
affected by the operation.

Prevalence: 11.5 occurrences per participant.
• 97% - set or subset specifications, including the use of plurals.

Example: Select the four highest scores of the participants.
• 3% - loop or iteration.

Example: Match the last name and fill the score until there is no more input.
• 1% - other.

Complex Conditionals
The raters examined statements specifying conditions with multiple options.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 17

Prevalence: 1.3 occurrences per participant.
• 45% - a set of mutually exclusive conditions.

Example: If Average Score is less than 1000, performance is poor. If Average Score is between 1000
and 10000, performance is fine. If Average Score is more than 10000, performance is extraordinary.

• 36% - a condition with a dependent clause that cannot stand alone.
Example: If the people’s last name start with G or L they are on the black team. If not they are on the
gold team.

• 16% - nested conditions
Example: If average score is in the hundreds it's poor. Less than ten thousand is fine.

• 3% - other.

Computation

Set Construction
The raters examined the places where sets are used, to determine how those sets were constructed.

Prevalence: 11.0 occurrences per participant.
• 46% - using plurals.

Example: Add the scores of 3 rounds.
• 18% - using the words each or every.

Example: Add the score in every round.
• 16% - naming a column of the table.

Example: Add 10,000 points to Round 1 and Round 3.
• 14% - using the word all.

Example: Subtract [20,000 from] all elements in Round 2...
• 4% - enumerating the members of the set.
• 1% - other.

Set Manipulation
The raters examined the ways that subsequent sets are created after an initial related set has been created.

Prevalence: 2.7 occurrences per participant.
• 45% - using set inverse, where the leftover items are operated on.

Example: If the last name begins with G or L, they are in the Black group. The rest are in the Gold
group.

• 29% - set difference, where some items are removed from the specified set.
Example: Add all the Rounds up except the highest score to get TOTAL.

• 22% - constructing disjoint or mutually exclusive sets.
Example: Black is for G and L. Gold is for B, C, H, J, and S.

• 5% - other.

Complete Specification of Ranges
The raters examined the participants’ statements that specify a range of integers, to see whether all of the
possibilities were covered without holes or overlaps.

Prevalence: 1.3 occurrences per participant.
• 50% - correct.

Example: Scores below 1000 are Poor. Scores from 1000 - 10,000 are Fine. Any scores above 10,000
are Extraordinary.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 18

• 50% - incorrect.

Specifying Open Intervals
The raters examined the participants’ statements specifying open intervals, where all values beyond a sin-
gle boundary are specified.

Prevalence: 2.0 occurrences per participant.
• 36% - words such as above, below, greater than or less than were intended to be exclusive.

Example: The performance of the person with the average scores below 1000 is considered as poor
(the participant then used good for 1000).

• 22% - words such as above, below, greater than or less than were intended to be inclusive.
Example: Poor would be below 999 (the participant then used poor for 999).

• 22% - powers of ten were used to specify the range.
Example: If your score is in the hundred's your performance is poor.

• 15% - other.
• 5% - mathematical notation, with inequality operators such as “>” or “≤”.

Example: if score < 1000, performance = poor.

Specifying Closed Intervals
The raters examined the participants’ statements specifying closed intervals, where both boundaries are
specified for a range of values.

1.2 occurrences per participant.

• 35% - from ... to, the symbol “-”, or similar notations are intended to be inclusive.
Example: The performance of ones whose average scores from 1000 up to 10,000 is considered as a
fine performance (the participant then assigned fine to both 1000 and 10,000).

• 19% - powers of ten were used to specify the range.
Example: If your score is in the thousands, you are fine.

• 10% - mathematical notation, with inequality operators such as “>” or “≤”.
Example: 1000 < x < 9999; performance = fine.

• 9% - other.
• 9% - between is used with an inconsistent meaning at each end of the interval.

Example: If the average score is between 1000 and 10,000, the performance is fine (the participant
then assigned fine to 1000, and extraordinary to 10,000).

• 7% - from ... to, the symbol “-”, or similar notations are used with an inconsistent meaning at each end
of the interval.
Example: Scores from 1000 - 10,000 are fine (the participant then assigned fine to 1000, and extraordi-
nary to 10,000).

• 6% - between is intended to be inclusive.
Example: Score between 1000 and 10,000 is fine (the participant then assigned fine to both 1000 and
10,000).

• 5% - specified each end of the interval separately.
• 0% - between is intended to be exclusive.
• 0% - from ... to, the symbol “-”, or similar notations are intended to be exclusive.

Mathematical Operations
The raters examined the kinds of notations used by the participants’ in specifying mathematical opera-
tions.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 19

Prevalence: 5.4 occurrences per participant.
• 52% - natural language style, with no missing information.

Example: Add 10,000 points to the scores in Round 1 and Round 3.
• 40% - other (which includes natural language style, with missing amount or variable).

Example: Add up the scores of each person but don't add the highest number (missing variable).
• 4% - mathematical notation.

Example: Column for r2 = x - 20000.
• 4% - programming language notation.

Sorting
The raters examined the participants’ solutions to see how sorting operations were expressed.

Prevalence: 1.3 occurrences per participant.
• 37% - using keywords such as alphabetical or numerical.

Example: Sort the table alphabetically.
• 36% - using expressions like from A to Z or from lowest to highest.

Example: Put the 4 highest scores ... in a different table from highest to smallest.
• 11% - using a concrete example from the current situation.

Example: Put him in number 6 because his last name comes before Jordan but after Houston.
• 9% - using a sort key, such as sort according to score.

Example: Insert Elton John in order of the last name.
• 4% - using words like ascending or descending.

Example: Sort “total score” column in descending order.
• 4% - other.

Deleting an Element from a Data Structure
The raters examined the methods used to delete an element from the middle of an existing sequence of
elements, to see whether they expected a hole to be left behind.

Prevalence: 1.0 occurrences per participant.
• 73% - no hole was expected after the deletion.

Example: Take out Bill and Jay then put Elton John in.
• 25% - fixed a hole after the deletion.

Example: Delete Row 2 and 8, moving everyone down to any unoccupied Rows.
• 2% - other.

Insertion into a Data Structure
The raters examined the methods used to insert an element into the middle of an existing sequence of ele-
ments to see whether they expected that items would have to be arranged to make space for the new ele-
ment.

Prevalence: 1.0 occurrences per participant.
• 75% - no mention of making room for the new element.

Example: Put Elton John in the records in alphabetical order.
• 16% - make room for the element before inserting it.

Example: Use the cursor and push it down a little and then type Elton John in the free space.
• 6% - make room for the element after inserting it.
• 4% - other.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 20

Sorted Insertion
The raters examined the methods used to determine the correct place to insert an element into a sorted
sequence of elements.

Prevalence: 1.0 occurrences per participant.
• 46% - using an incorrect method, with missing or incorrect details.

Example: Insert row between number 5 and 7 and name it Elton John.
• 34% - a method that is correct for the current data, but not a correct general solution.

Example: Put him in number 6 because his last name comes before Jordan but after Houston.
• 13% - a correct general method that would work for all data.

Example: Insert Elton John into the table in alphabetical order of the last name.
• 6% - insert then sort.

Example: Add Elton John, and then sort the table alphabetically.
• 2% - other.

Discussion of Results
This section contains discussion of the combined results from the two studies. In addition to interpreta-
tion of the results, this section includes some recommendations on how the programming system might

be made more natural.*

Programming Style
The majority of the statements written by the participants were in a production-rule or event-based style,
beginning with words like if or when. However, the raters observed a significant number of statements
using other styles, such as constraints, other declarative statements (that were not constraints), and imper-
ative statements.

The dominance of rule- or event-based statements suggests that a primarily imperative language may not
be the most natural choice. One characteristic of imperative languages is explicit control over program
flow. Although imperative languages have if statements, they are evaluated only when the program flow
reaches them. The participants’ solutions seem to be more reactive, without attention to the global flow of
control. When imperative statements were used, it was usually for local flow of control. The declarative
style seems to have been primarily used for setting up the scenario (data, characters, objects, etc.) of the
program. Many of the constraints that were observed in this study were graphical in nature, such as
objects that had certain fixed positions relative to one another, or limitations on where those objects could
go. The event-based style is used by several popular end-user programming environments such as Visual
Basic, Lingo for Macromedia’s Director, and HyperTalk for HyperCard, although these systems have
usability problems of their own (see, for example, Thimbleby et al., 1992).

This mix of styles suggests that designers might be able to improve usability by not limiting the language
to a single style. Different styles seem to be more natural for different parts of the programming task.

* These recommendations are not restricted to the programming language in isolation, but encompass the entire program-
ming system, which includes the programming environment (editor, debugger, etc.) as well as the language. In modern pro-
gramming systems these components all work in tandem, so it is useful to consider how the findings of this study might
impact the entire system.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 21

Operations on Multiple Objects
The results from both studies highlight an important area where today’s popular programming languages
differ from the natural expressions used by the participants: the way that operations are performed on
multiple objects. Most popular languages require iterative operation on the objects, one at a time, while
the participants strongly preferred to use set and subset expressions, or plurals, to specify the operations
in aggregate. Miller (1974; 1981) made similar observations in his studies.

It has been well established in the literature that loops are a hotspot of difficulty and errors for novice pro-
grammers (du Boulay, 1989). And in many cases a loop is a more complicated and contorted way to spec-
ify operations that the participants were able to express easily and succinctly with aggregate set
operations. New languages might support these aggregate operations, thus eliminating many of the cases
where loops would otherwise be necessary.

Another requirement imposed by loops is the need to use extra variables to count iterations, flag terminat-
ing conditions, or hold the current object being operated upon. This is even true in “high level” looping
constructs such as mapcar in Lisp. The aggregate operations preferred by the participants reduce the need
for these variables, which are another known area of difficulty for beginners (du Boulay, 1989). Spread-
sheets provide a few aggregate operators, such as sum, but this feature is not generalized across all of the
operators.

However, the participants did use looping constructs in a few cases, and the language should support
these as well. Often, these loops use until to specify a terminating condition, while other times the termi-
nating condition is implicit in phrases such as and so on or etc. In deciding the exact loop control struc-
tures to provide, the language designer should consider prior empirical studies which found that novices
expect the terminating condition to be checked continuously, and the loop to halt the instant the condition
is satisfied, rather than waiting until all of the subsequent statements inside the loop have been executed
one last time (du Boulay, 1989).

Set Construction and Manipulation
Study two illustrates a variety of ways that the participants construct sets: using plurals, the keywords
each, every or all, or by naming columns in a table. Once they had created a set, the participants often
used operations such as inverse or difference to create related sets. However, they sometimes preferred to
create a separate disjoint set from scratch.

Complex Conditionals and NOT
The participants used a number of ways to avoid writing complex boolean conditionals. For example,
they often wrote a series of mutually exclusive simple rules instead of a more complex conditional.

Also, they would sometimes express a general case followed by exceptions, as in:

if A do something unless B

Notice that the equivalent boolean expression that would be required to accomplish this in many pro-
gramming languages involves not only a conjunction, but also the negation of the exception clause:

if A and not B do something

The try...catch exception mechanisms in C++, Java, Lisp and other languages support this tendency by
putting the general case first and listing the exceptions later, but other control structures in these lan-
guages do not. It might be useful to support the use of unless clauses throughout the language.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 22

The raters found very few uses of negation. This is consistent with earlier findings that expressing nega-
tive concepts is more difficult than affirmative ones (Wason, 1959).

When the participants did use the not operator they gave it low precedence, which is contrary to the pre-
cedence that it has in most programming languages. A subsequent study found the use of not to be incon-
sistent: sometimes it was used with high precedence, and other times with low precedence; and using
parenthesis was not effective to clarify precedence (Pane & Myers, 2000). Operator precedence errors
were among the high frequency bugs observed by Spohrer & Soloway (1986) in novice programs in a tra-
ditional programming language. However, in a recent study of a natural language style programming lan-
guage, Bruckman & Edwards (1999) found that operator precedence errors were very infrequent. Further
study is warranted to determine how languages should deal with issues of precedence.

Mathematical Operations
In study one, all of the mathematical operations were expressed in a natural language form; the raters
found no mathematical or programming language notations. In study two, they found a very small
amount of mathematical and programming notations among the adults’ solutions. The vast preference for
natural language mathematical operations should be supported by the programming language. However,
more concise mathematical notation may be still necessary for calculations that more complex than the
ones required by the tasks in these studies.

Many of the mathematical expressions were missing either the variable on which to operate, or the
amount of the operation. This might be solved by providing slots that make the missing information more
obvious, or by entering into a dialog with the user, with questions such as how much? or to what?

Specifications of Ranges and Intervals
In study two, the raters found that the participants were only about 50% successful in specifying ranges
without holes or overlaps. Adults were more successful than children, possibly because they had mathe-
matical notations for inequality in their arsenal. The children never made use of these mathematical nota-
tions. Instead they used powers of ten, or natural language expressions of inequality such as above or
greater than. However, the participants were inconsistent about whether these latter terms were inclusive
or exclusive. Adults achieved 100% accuracy when they used mathematical notations, suggesting that
these are a better choice for audiences that understand them.

Tracking Progress and Remembering State
The participants often avoided the use of variables to track progress in a task. This is not surprising
because, as mentioned above, variables are an area of difficulty for novice programmers (du Boulay,
1989). Instead of variables, the participants preferred to use terms like all or none to detect when the task
is finished. When they needed to use historical information to make decisions about present actions (or
present information to make decisions about future actions), the participants usually did not use state
variables to record the information. Instead they used future and past tenses to refer to the needed infor-
mation. State variables are the only way accomplish this in most programming languages. The challenge
for language designers is to find ways to accommodate the more natural preferences.

AND, OR and BUT
The raters found that often the word and was used as a sequencing word rather than as a boolean operator.
Also, in study two the raters examined the boolean uses of and, and found that 75% were used in situa-
tions where the or operator would be required to achieve the desired effect in today’s programming lan-

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 23

guages, as well as the query languages used for most database search engines. For example, a subject
said, “if you score 90 and above,” but the score cannot simultaneously be 90 and greater than 90. Because
the natural uses of and have such diverse meanings, and most of them are inconsistent with the boolean
operator, designers of future language should consider substituting a different name or symbol for this
operator.

Or and but appeared too rarely in these studies to draw firm conclusions without further research. When
or was used, a boolean interpretation would result in correct results. The infrequent use of or may be
because disjunctive expressions are cognitively more difficult than conjunctive ones (Bourne, 1966).

THEN
The raters found that the most popular use of the word then is for sequencing, or specifying that an action
should happen after finishing a prior action. This is inconsistent with its use in most programming lan-
guages, where it means consequently. This confirms an earlier observation by du Boulay (1989).

Data Structure Operations: Insertion, Deletion, Sorting
When the participants were inserting and deleting data elements, they often did not consider issues about
storage space that come up when working with the array data structures in most popular programming
languages. This suggests that a built-in list-like data structure such as in the Lisp language, may be more
natural.

The participants seemed to expect sorting to be a basic operator that they could utilize in their solutions,
using expressions like alphabetical or from A to Z. When they were asked to provide an algorithm for
sorting, they were rarely able to do this in a correct general way.

Randomness and Uncertainty
The raters did not find any uses of the word random in study one. Instead, the participants either
expressed things with precision, or used other ways of expressing uncertainty. Sometimes they tied the
uncertain event to some other event that would happen at some unknown time. Perhaps the system could
supply the uncertainty that is implicit in phrases like about 3 seconds.

Object Oriented
Some aspects of object-oriented programming were apparent in the participants’ solutions. Entities were
treated as if they have state and an ability to respond to requests for action. However, there was no evi-
dence in these studies of other aspects of object-oriented programming such as inheritance or polymor-
phism. Cypher & Smith (1995) found in user studies that inheritance hierarchies cause difficulty for
children. Even among professional programmers, researchers have found that full-fledged object-oriented
programming is not necessarily natural (Détienne, 1990; Glass, 1995).

Motion and Other Domain Specific Needs
The participants expected objects to move on their own, so their behaviors were similar to real-world
objects. This is in contrast to the incremental way that animation is accomplished in many systems. This
may not come up on all programming tasks, and thus might not be considered a language issue. But sim-
ilar issues can arise in other domains, and the usability of the programming system can benefit from anal-
ysis of the specific needs of the particular domains in which it will be used. One way may be to provide
domain-specific features in the programming language.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 24

Pictures
In study one, the experimenter counted how many participants used pictures or diagrams in their solu-
tions, and found that two-thirds of them did. All of these pictures appeared early in the solutions, when
setup and layout were being defined. Programming systems should accommodate this form of graphical
specification in addition to textual specification.

Conclusion and Future Work
A large part of the programming task is to take a mental plan for solving a problem and transform it into
the particular programming language being used. These studies attempt to capture these plans before they
undergo the transformation into a programming language. Ideally, the distance between the plans and the
programming language would be minimal. However, these studies identify many places where an unnec-
essarily large gap is imposed by the features and requirements of today’s programming languages.

Programming is a task of precision, and one reason that the programming languages may differ from
these natural language solutions is that programming languages are more formal and facilitate the expres-
sion of solutions with more precision. Indeed, there is a large amount of imprecision and underspecifica-
tion in the participants’ work, and it is important to find ways to help beginners to make their
specifications more complete. In many cases however, the structure and algorithms of the natural lan-
guage solutions are satisfactory, but are in a different style than is allowed in today’s programming lan-
guages. Future systems should support these approaches, rather than requiring the solutions to be
transformed into different, less natural forms.

The new programming language the authors are designing for children has been influenced significantly
by these studies. For example, it will support an event-based style of programming as well as aggregate
data access through set creation and manipulation. In order for this latter feature to be effective, it is nec-
essary to improve the accuracy of query specification; these studies show many serious problems with the
boolean operators and, or and not. A subsequent study proposes and tests several alternatives to textual
boolean expressions, with promising results (Pane & Myers, 2000).

These studies, along with the results of other human-centered research about programming, are resources
that can be used to guide and evaluate programming language designs. In addition to the new language
for children, the Natural Programming Project is using this approach to design several new languages in
other domains where it would be useful for non-programmers to have the capabilities of programming.
These include authoring of multimedia presentations, programs for inclusion on worldwide web pages,
and scripts for automating repetitive tasks in direct manipulation interfaces. Hopefully, this approach will
lead to languages that are easier to learn and use than existing languages. The results reported in this arti-
cle should also be useful to the designers of other new programming languages.

Acknowledgments
The authors wish to thank the following people for their contributions to this research: Wayne Gray,
Albert Corbett, John Chang, Carol Beavers, John Meighan, the participants and analysts, and the anony-
mous reviewers of an earlier draft of this article.

References
Biermann, A. W., Ballard, B. W., & Sigmon, A. H. (1983). An Experimental Study of Natural Language

Programming. International Journal of Man-Machine Studies, 18(1), 71-87.

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 25

Bonar, J., & Soloway, E. (1989). Preprogramming Knowledge: A Major Source of Misconceptions in
Novice Programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying the Novice Programmer, pp.
325-353. Hillsdale, NJ: Lawrence Erlbaum Associates.

Bonar, J. G., & Cunningham, R. (1988). Bridge: Tutoring the Programming Process. In J. Psotka, L. D.
Massey, & S. A. Mutter (Eds.), Intelligent Tutoring Systems: Lessons Learned, pp. 409-434. Hills-
dale, NJ: Lawrence Erlbaum Associates.

Bourne, L. E. (1966). Human Conceptual Behavior. Boston: Allyn & Bacon.

Bruckman, A., & Edwards, E. (1999). Should We Leverage Natural-Language Knowledge? An Analysis
of User Errors in a Natural-Language-Style Programming Language, Proceedings of the 1999 Con-
ference on Human Factors in Computing Systems, pp. to appear. Pittsburgh, PA: ACM Press.

Cypher, A., & Smith, D. C. (1995). KidSim: End User Programming of Simulations, Proceedings of
CHI'95 Conference on Human Factors in Computing Systems, pp. 27-34. Denver: ACM.

Détienne, F. (1990). Difficulties in Designing with an Object-Oriented Programming Language: An
Empirical Study, Proceedings of INTERACT '90 Conference on Computer-Human Factors, pp. 971-
976. Cambridge, England.

du Boulay, B. (1989). Some Difficulties of Learning to Program. In E. Soloway & J. C. Spohrer (Eds.),
Studying the Novice Programmer, pp. 283-299. Hillsdale, NJ: Lawrence Erlbaum Associates.

Galotti, K. M., & Ganong, W. F., III. (1985). What Non-Programmers Know About Programming: Natu-
ral Language Procedure Specification. International Journal of Man-Machine Studies, 22, 1-10.

Glass, R. L. (1995). OO Claims – Naturalness, Seamlessness Seem Doubtful. Software Practitioner.

Goodman, D. (1987). The Complete HyperCard Handbook. New York: Bantam Books.

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Programming Environments: A 'Cogni-
tive Dimensions' Framework. Journal of Visual Languages and Computing, 7(2), 131-174.

Grice, H. P. (1975). Logic and Conversation. In P. Cole & J. Morgan (Eds.), Syntax and Semantics III:
Speech Acts. New York: Academic Press.

Hix, D., & Hartson, H. R. (1993). Developing User Interfaces: Ensuring Usability Through Product and
Process. New York, New York: John Wiley & Sons, Inc.

Hoc, J.-M., & Nguyen-Xuan, A. (1990). Language Semantics, Mental Models and Analogy. In J.-M. Hoc,
T. R. G. Green, R. Samurçay, & D. J. Gilmore (Eds.), Psychology of Programming, pp. 139-156. Lon-
don: Academic Press.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct Manipulation Interfaces. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Lewis, C., & Olson, G. M. (1987). Can Principles of Cognition Lower the Barriers to Programming? In
G. M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical Studies of Programmers: Second Work-
shop, pp. 248-263. Norwood, NJ: Ablex.

Miller, L. A. (1974). Programming by Non-Programmers. International Journal of Man-Machine Studies,
6(2), 237-260.

Miller, L. A. (1981). Natural Language Programming: Styles, Strategies, and Contrasts. IBM Systems
Journal, 20(2), 184-215.

Myers, B. A. (1998). Natural Programming: Project Overview and Proposal (Human-Computer Interac-

Language & Structure in Problem Solutions SUBM ITTED FOR PUBLICATION 26

tion Institute Technical Report CMU-HCII-98-100). Pittsburgh, PA: Carnegie Mellon University.

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User Computing. Cambridge,
MA: The MIT Press.

Newell, A., & Card, S. K. (1985). The Prospects for Psychological Science in Human-Computer Interac-
tion. Human-Computer Interaction, 1(3), 209-242.

Nielsen, J. (1993). Usability Engineering. Chestnut Hill, MA: AP Professional.

Pane, J. F., & Myers, B. A. (1996). Usability Issues in the Design of Novice Programming Systems
(School of Computer Science Technical Report CMU-CS-96-132). Pittsburgh, PA: Carnegie Mellon
University.

Pane, J. F., & Myers, B. A. (2000). Improving User Performance on Boolean Queries. submitted for pub-
lication, http://www.cs.cmu.edu/~pane/study3.html.

Pane, J. F., Ratanamahatana, C. A., & Myers, B. A. (2000). Analysis of the Language and Structure in
Non-Programmers’ Solutions to Programming Problems (School of Computer Science Technical
Report). Pittsburgh, PA: Carnegie Mellon University.

Pea, R. (1986). Language-Independent Conceptual “Bugs” in Novice Programming. Journal of Educa-
tional Computing Research, 2(1).

Sammet, J. E. (1981). The Early History of COBOL. In R. Wexelblat (Ed.), History of Programming Lan-
guages. New York: Academic Press.

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. IEEE Computer,
16(8), 57-69.

Soloway, E., Bonar, J., & Ehrlich, K. (1989). Cognitive Strategies and Looping Constructs: An Empirical
Study. In E. Soloway & J. C. Spohrer (Eds.), Studying the Novice Programmer, pp. 191-207. Hills-
dale, NJ: Lawrence Erlbaum Associates.

Spohrer, J. G., & Soloway, E. (1986). Analyzing the High Frequency Bugs in Novice Programs. In E.
Soloway & S. Iyengar (Eds.), Empirical Studies of Programmers, pp. 230-251. Washington, DC:
Ablex Publishing Corporation.

Thimbleby, H., Cockburn, A., & Jones, S. (1992). HyperCard: An Object-Oriented Disappointment. In P.
Gray & R. Took (Eds.), Building Interactive Systems: Architectures and Tools, pp. 35-55. New York:
Springer-Verlag.

Wason, P. C. (1959). The Processing of Positive and Negative Information. Quarterly Journal of Experi-
mental Psychology, 11.

