
Scaling up the Naive Bayesian Classifier:
Using Decision Trees for Feature Selection

Chotirat “Ann” Ratanamahatana Dimitrios Gunopulos
Computer Science Department

University of California
Riverside, CA 92521

1-909-787-5190

{ratana, dg}@cs.ucr.edu

ABSTRACT
It is known that Naïve Bayesian classifier (NB) works very
well on some domains, and poorly on some. The
performance of NB suffers in domains that involve correlated
features. C4.5 decision trees, on the other hand, typically
perform better than the Naïve Bayesian algorithm on such
domains. This paper describes a Selective Bayesian classifier
(SBC) that simply uses only those features that C4.5 would
use in its decision tree when learning a small example of a
training set, a combination of the two different natures of
classifiers. Experiments conducted on ten datasets indicate
that SBC performs reliably better than NB on all domains,
and SBC outperforms C4.5 on many datasets of which C4.5
outperform NB. Augmented Bayesian classifier (ABC) are
also tested on the same data, and SBC appears to perform as
well as ABC. SBC also can eliminate, on most cases, more
than half of the original attributes, which can greatly reduce
the size of the training and test data, as well as the running
time. Further, the SBC algorithm typically learns faster than
both C4.5 and NB, needing fewer training examples to reach
high accuracy of classification.

Keywords
C4.5, Decision Trees, Feature Selection, Naïve Bayesian
Classifier, Selective Bayesian Classifier.

1. INTRODUCTION
Two of the most widely used and successful methods of
classification are C4.5 decision trees [25] and Naïve
Bayesian learning (NB) [10]. While C4.5 constructs
decision trees by using features to try and split the training
set into positive and negative examples until it achieves
high accuracy on the training set, NB represents each class
with a probabilistic summary, and finds the most likely
class for each example it is asked to classify.

Several researchers have emphasized on the issue of
redundant attributes, as well as advantages of feature
selection for the Naïve Bayesian Classifier, not only for
induction learning. Pazzani [22, 23] explores the methods of
joining two (or more) related attributes into a new compound
attribute where the attribute dependencies are present.
Another method, Boosting on Naïve Bayesian classifier [10]
has been experimented by applying series of classifiers to the

problem and paying more attention to the examples
misclassified by its predecessor. However, it was shown
that it fails on average in a set of natural domain [19].
Langley and Sage [18] use a wrapper approach for the
subset selection to only select relevant features for NB.
Cardie [5] uses the attributes from decision trees in
combination with nearest neighbor methods. And in a
domain for discovering patterns in EEG-signals, Kubat,
Flotzinger, and Pfurtscheller [7] tried the use of Decision
tree in feature selection for Naïve Bayesian classifier. And
recently, Augmented Bayesian Classifiers [14] was
introduced as another approach where Naïve Bayes is
augmented by the addition of correlation arcs between
attributes.

It has been shown that Naïve Bayesian classifier is
extremely effective in practice and difficult to improve
upon [8]. In this paper, we show that it is possible to
reliably improve this classifier by using a feature selection
method. Naïve Bayes can suffer from oversensitivity to
redundant and/or irrelevant attributes. If two or more
attributes are highly correlated, they receive too much
weight in the final decision as to which class an example
belongs to. This leads to a decline in accuracy of
prediction in domains with correlated features. C4.5 does
not suffer from this problem because if two attributes are
correlated, it will not be possible to use both of them to
split the training set, since this would lead to exactly the
same split, which makes no difference to the existing tree.
This is one of the main reasons C4.5 performs better than
NB on domains with correlated attributes.

We conjecture that the performance of NB improves if it
uses only those features that C4.5 used in constructing its
decision tree. This method of feature selection would
also perform well and learn quickly, that is, it would need
fewer training examples to reach high classification
accuracy.

We present experimental evidence that this method of
feature selection leads to improved performance of the
Naïve Bayesian Classifier, especially in the domains
where Naïve Bayes performs not as well as C4.5. We
analyze the behavior on ten domains from the UCI
repository, 5 of which C4.5 achieves asymptotically

higher accuracy than NB (which seems to imply the
presence of correlated features.), and 5 on which NB
outperforms C4.5. We then compared our algorithm with
the Augmented Bayesian classifier (ABC), and the
experimental results justify our expectation. We also tested
SBC on another sufficiently large synthetic dataset and our
algorithm appeared to scale nicely. Our Selective Bayesian
Classifier always outperforms NB and performs as well as,
or better than both C4.5 and ABC on almost all the
domains.

2. NAÏVE BAYESIAN CLASSIFIER
2.1 Description
The Naïve Bayesian classifier is a straightforward and
frequently used method for supervised learning. It provides
a flexible way for dealing with any number of attributes or
classes, and is based on probability theory. It is the
asymptotically fastest learning algorithm that examines all
its training input. It has been demonstrated to perform
surprisingly well in a very wide variety of problems in spite
of the simplistic nature of the model. Furthermore, small
amounts of bad data, or “noise,” do not perturb the results
by much.

The Naïve Bayesian classification system is based on
Bayes’ rule and works as follows. There are classes, say Ck
for the data to be classified into. Each class has a
probability P(Ck) that represents the prior probability of
classifying an attribute into Ck; the values of P(Ck) can be
estimated from the training dataset. For n attribute values,
vj, the goal of classification is clearly to find the conditional
probability P(Ck | v1 ∧ v2 ∧ … ∧ vn). By Bayes’ rule, this
probability is equivalent to

)...(
)()|...(

21

21

n

kkn

vvvP
CPCvvvP

∧∧∧
∧∧∧

For classification, the denominator is irrelevant, since, for
given values of the vj, it is the same regardless of the value
of Ck. The central assumption of Naïve Bayesian
classification is that, within each class, the values vj are all
independent of each other. Then by the laws of independent
probability,

P(vi | {all the other values of vj}, Ck) = P(vi | Ck) and
therefore

P(v1 ∧ v2 ∧ … ∧ vn | Ck) = P(v1 | Ck)P(v2 | Ck)…P(vn | Ck).

Each factor on the right-hand side of this equation can be
determined from the training data, because (for an arbitrary
vi),

P(vi | Ck) ≈ [#(vi ∧ Ck)] / [#(Ck)]

where “#” represents the number of such occurrences in the
training set data. Therefore, the classification of the test set
can now be estimated by

P(Ck | v1 ∧ v2 ∧ … ∧ vn) which is proportional to

P(Ck) P(v1 | Ck) P(v2 | Ck) P(v3 | Ck) … P(vn | Ck).

2.2 Problems
As mentioned above, the central assumption in Naïve
Bayesian classification is that given a particular class
membership, the probabilities of particular attributes
having particular values are independent of each other.
However, this assumption is often violated in reality. For
example, in demographic data, many attributes have
obvious dependencies, such as age and income.
A plausible assumption of independence is computa-
tionally problematic. This is best described by redundant
attributes. If we posit two independent features, and a
third (vr1) which is redundant (i.e. perfectly correlated)
with v1, the classification expression is
P(v1 | Ck) P(v2 | Ck) P(vr1 | Ck) P(Ck),
which is effectively
P(v1 | Ck)2 P(v2 | Ck) P(Ck).
This means that the attribute v1 has twice as much
influence on the expression as v2 has, which is a strength
not reflected in reality. The increased strength of v1
increases the possibility of unwanted bias in the
classification. Even with this independence assumption,
Hand and Yu illustrated that Naïve Bayesian
classification still works well in practice [12]. However,
some researchers have shown that although irrelevant
features should theoretically not hurt the accuracy of
Naïve Bayes, they do degrade performance in practice
[13]. This paper illustrates that if those redundant and/or
irrelevant attributes are eliminated, the performance of
Naïve Bayesian classifier can significantly increase.

3. C4.5 DECISION TREES
Decision trees are one of the most popular methods used
for inductive inference. They are robust for noisy data
and capable of learning disjunctive expressions. A
decision tree is a k-ary tree where each of the internal
nodes specifies a test on some attributes from the input
feature set used to represent the data. Each branch
descending from a node corresponds to one of the
possible values of the feature specified at that node. And
each test results in branches, which represent different
outcomes of the test. The basic algorithm for decision
tree induction is a greedy algorithm that constructs
decision trees in a top-down recursive divide-and-conquer
manner.
The algorithm starts with the entire set of tuples in the
training set, selects the best attribute that yields maximum
information for classification, and generates a test node
for this attribute. Then, top down induction of decision
trees divides the current set of tuples according to their
values of the current test attribute. Classifier generation
stops, if all tuples in a subset belong to the same class, or

if it is not worth to proceed with an additional separation
into further subsets, i.e. if further attribute tests yield only
information for classification below a pre-specified thres-
hold.
The decision tree algorithm usually uses an entropy-based
measure known as “information gain” (although other
measures are also possible) as a heuristic for selecting the
attribute that will best split the training data into separate
classes. Its algorithm computes the information gain of
each attribute, and in each round, the one with the highest
information gain will be chosen as the test attribute for the
given set of training data. A well-chosen split point should
help in splitting the data to the best possible extent. After
all, a main criterion in the greedy decision tree approach is
to build shorter trees. The best split point can be easily
evaluated by considering each unique value for that feature
in the given data as a possible split point and calculating the
associated information gain.

3.1 Information Gain
The critical step in decision trees is the selection of the best
test attribute. The information gain measure is used to
select the test attribute at each node in the tree.
First, another related term called entropy needs to be
introduced. In general, entropy is a measure of the purity in
an arbitrary collection of examples. Let S be a set
consisting of s data samples. Suppose the class label
attribute has m distinct values defining m distinct classes,
Ck. Let si be the number of samples of S in class Ck. The
expected information needed to classify a given sample is
given by

∑
=

−=
m

k
kkm ppsssI

1
221),(log),...,,(

where pk is the probability that an arbitrary sample belongs
to class Ck and is estimated by sk / s.
Let attribute A have v distinct values, {a1,a2,…,av}.
Attribute A can be used to partition S into v subsets,
{S1,S2,…,Sv}, where Sj contains those samples in S that have
value aj of A. Let skj be the number of samples of class Ck
in a subset Sj. The entropy, or expected information based
on the partitioning into subsets by A, is given by

),...,(
...

)(1
1

1
mjj

v

j

mjj ssI
s

ss
AE ∑

=

++
=

The term
s

smjj ++L1s acts as the weight of the jth subset and is

the number of samples in the subset divided by the total
number of samples in S. For a given subset Sj,

∑
=

−=
m

k
kjkjmjjj ppsssI

1
221)(log),...,,(

where pkj = skj / |Sj| and is the probability that a sample in Sj
belongs to class Ck. The entropy is zero when the sample is
pure, i.e. when all the examples in the sample S belong to

one class. Entropy has a maximum value of 1 when the
sample is maximally impure, i.e. there are same
proportions of positive and negative examples in the
sample S.
The encoding information would be gained by branching
on A is
InformationGain(A) = I(s1,s2,…,sm) – E(A)
The attribute with the highest information gain is chosen
as the test attribute for the current node. Such approach
minimizes the expected number of tests needed to classify
an object and guarantees that a simple (but may not be the
simplest) tree is found.

3.2 Information Gain Ratio
A simple decision tree algorithm only selects one decision
tree given an example set, though there may be many
different trees consistent with the data. The information
gain measure mentioned in section 3.1 (implemented in
ID3 decision trees) is biased in that it tends to prefer
attributes with many values rather than those with few
values. C4.5 suppresses this bias by using an alternative
measure called Information Gain Ratio, which considers
the probability of each attribute value. The Split
Information takes into account the factor of an attribute
having many values. It is defined as

∑
=

−=
v

j

jj

S

S

S

S
AmationSplitInfor

1
2log)(

And the gain ratio is

)(
)()(

AmationSplitInfor
AnGainInformatioAGainRatio =

By using SplitInformation(A), which is proportional to the
number of values an attribute A can take, GainRatio(A)
effectively removes the bias of information gain towards
features with many values. To resolve the issue when
SplitInformation(A) becomes very small, C4.5 lists the set
of attributes with the InformationGain(A) above the
average information gain for that node and then it uses
the Gain Ratio to select the best attribute from the list
[24].

3.3 Tree Pruning
C4.5 builds a tree so that most of the training examples
are classified correctly. Though this approach is correct
when there is no noise, accuracy for unseen data might
degrade in cases where there is a lot of noise associated
with the training examples and/or the number of training
examples is very small. To alleviate this so-called
overfitting problem, C4.5 uses the post-pruning method.
This approach allows C4.5 to grow a complete decision
tree first, and then post-prune the tree. It tries to shorten
the tree in order to overcome overfitting. This generally
involves removal of some of the nodes or subtrees from

the original decision tree. Its goal is to improve (by
pruning) the accuracy on the unseen set of examples.
As a result, C4.5 achieves further elimination of features
through pruning. It uses rule-post pruning to remove some
of the insignificant nodes (and hence, some not so relevant
features) from the tree.

4. SELECTIVE BAYESIAN CLASSIFIER
Our purpose is to improve the performance of the Naïve
Bayesian classifier by removing redundant and/or irrelevant
attributes from the dataset, and only choosing those that are
most informative in classification task. To achieve this, we
use the trees that are constructed by C4.5.

4.1 Description
As described in section 3, the features that C4.5 selected in
constructing its decision tree are likely to be the ones that
are most descriptive in terms of the classifier, in spite of the
fact that a tree structure inherently incorporates
dependencies among attributes, while Naïve Bayes works
on a conditional independence assumption. C4.5 will
naturally construct a tree that does not have an overly
complicated branching structure if it does not have too
many examples that need to be learned. As the number of
training examples increases, the attributes that are
considered will usually be the ones that are not correlated.
This is mainly because C4.5 will use only one of a set of
correlated features for making good splits in training set.
However, sometimes many of the branches may reflect
noise or outliers (overfitting) in the training data. “Tree
pruning” procedure in C4.5 attempts to identify and remove
those least reliable branches, with the goal of improving
classification accuracy on unseen data. Even after pruning,
if the resulted decision tree is still too deep or grown into
too many levels, our algorithm only picks attributes
contained in the first few levels of the tree as the most
representative attributes. This is supported by the fact that
by the selection of attributes that split the data in the best
possible way at every node, C4.5 will try to ensure that it
encounters a leaf at the very earliest possible point, i.e. it
prefers to construct shorter trees. And by its algorithm,
C4.5 will find trees that have attributes with higher
information gain nearer to the root. We conjecture that this
simple method of feature selection would help improve
Naïve Bayesian classifier’s performance and learn quickly,
that is, it would need fewer training examples to reach high
classification accuracy.

4.2 Algorithm
Figure 1 shows the algorithm for the Selective Bayesian
classifier. We first shuffle the training data and use 10% of
that to run C4.5 on. This is to make sure that all the
subsamples are not biased toward any particular classes.
We find 10% of the training to be a good size for our
feature selection process. If too small a portion is used, the
decision tree may not be representative enough for the

unseen data. And if too large a portion is used, it
unnecessarily takes longer to construct a decision tree and
the tree also are likely to be too complex. Once we run
C4.5 and obtain the decision tree, we only pick attributes
that only appear in the first 3 levels of the decision trees
as the most relevant features. We hypothesize that if a
feature in the deeper levels on any one execution of C4.5
is relevant enough, it will finally rises up and appear in
one of the top levels of the tree in some other executions
of C4.5. We form a union of all the attributes from each
run, and finally, run the Naïve Bayesian classifier on the
training and test data using only those features selected in
the previous step.

1. Shuffle the training data and take a 10% sample.
2. Run C4.5 on data from step 1.
3. Select a set of attributes that appear only in the first 3

levels of the simplified decision tree as relevant
features.

4. Repeat 5 times (step 1-3)
5. Form a union of all the attributes from the 5 rounds.
6. Run Naïve Bayesian classifier on the training and test

data using only the final features selected in step 5.

u
1
a
m
f

Figure 1. Selective Bayesian Classifier Algorithm: Feature
Selection Using C4.5
One of the problems with using C4.5 to generate decision
trees when there are too few training examples available
is that it might give a constant decision (for example,
classify all examples as Democrat in the voting domain)
without generating the decision tree. In this case, the
training set is re-sampled until a non-constant decision
tree is produced.
The main difference between our algorithm and the one
proposed by Kubat, Flotzinger, and Pfurtscheller[17] is
that they build just one tree on the entire training set, and

se all the attributes that occur in it. Instead, we only take
0% as a training set to build a tree and then keep the
ttributes only from the first 3 levels of the tree. This will
ake the tree-building process for feature selection much

aster, especially on larger datasets.

5. EXPERIMENTAL EVALUATION
5.1 The Datasets
We used 10 datasets from the UCI repository [21] and
one synthetic dataset, shown in Table 1. The Synthetic
dataset, created with Gaussian distribution, contains
1,200,000 instances with 20 attributes and 2 classes. We
chose 10 datasets from the UCI databases, 5 of which
Naïve Bayesian classifier outperforms C4.5 and the other
5 of which C4.5 outperforms Naïve Bayesian classifier.

Table 1. Descriptions of domains used

Dataset #Attributes #Classes #Instances

Ecoli 8 8 336

GermanCredit 20 2 1,000

KrVsKp 37 2 3,198

Monk 6 2 554

Mushroom 22 2 8,124

Pima 8 2 768

Promoter 57 2 106

Soybean 35 19 307

Wisconsin 9 2 699

Vote 16 2 435

SyntheticData 20 2 1,200,000

5.2 Experimental Design
• Each dataset is shuffled randomly.

• Produce disjoint training and test sets as follows.

10% training and 90% test data

20% training and 80% test data

30% training and 70% test data

… … … …

80% training and 20% test data

90% training and 10% test data

99% training and 1% test data

• For each set of training and test data, run

• Naïve Bayesian Classifier (NBC)

• C4.5, and

• Selective Bayesian Classifier (SBC)

• Repeat 15 times

The classifier accuracy is determined by Random
Subsampling method, i.e. the holdout method that is
repeated k times. The overall accuracy estimate is the mean
of the accuracies obtained from all iterations. This will give
us information about both the learning rates, as well as the
accuracy of the learning algorithms used.

To see how well our algorithm matches up with others, we
did run the Augmented Bayesian classifier (ABC) on all 10
datasets as well, using SuperParent proposed by Keogh and
Pazzani [14] as a method of finding the set of augmented
arcs.

And lastly, to help us clearly see the speedup and scalability
of the Selective Bayesian classifier, we also ran an

experiment on the synthetic data, which is much larger
than what we have in the UCI repository.

5.3 Experimental Results
The results confirm the initial hypotheses. The
performance of the Selective Bayesian classifier is quite
impressive. Its asymptotic accuracy is as good as (or
slightly better than) the better of C4.5 and NB on each of
the domains.

Figure 2 – 11 depict the learning curves for the 10 UCI
datasets. It is clear that SBC learns faster than both C4.5
and NBC on all the dataset, i.e. with small number of
training data (e.g. 10%), the prediction accuracy for SBC
is higher.

Note that all the C4.5 accuracies considered in this
experiment are based on the simplified decision tree (with
pruning). This accuracy is usually higher on the test
(unseen) data, in comparison to the accuracy based on
unpruned decision trees.

Ecoli

60

65

70

75

80

85

90

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 2. Ecoli dataset. 336 instances, 8 attributes, 8
classes. Attributes selected by SBC = 4.

German Credit

64

66

68

70

72

74

76

78

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 3. German Credit dataset. 1,000 instances, 20
attributes, 2 classes. Attributes selected by SBC = 6.

Chess Endgames (kr-vs-kp)

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 4. Kr-vs-Kp dataset. 3,198 instances, 37 attributes,
2classes. Attributes selected by SBC = 4.

Monk

85

88

91

94

97

100

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 5. Monk dataset (prob.3). 554 instances, 6 attributes, 2
classes. Attributes selected by SBC = 4.

Mushroom

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 6. Mushroom dataset. 8,124 instances, 22 attributes, 2
classes. Attributes selected by SBC = 6.

Pima Indians Diabetes

60

65

70

75

80

85

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 7. Pima-Indians dataset. 768 instances, 8 attributes,
2 classes. Attributes selected by SBC = 5.

Promoter Gene Sequences

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)
NBC SBC
C4.5

Figure 8. Gene Promoter dataset. 106 instances, 57
attributes, 2 classes. Attributes selected by SBC = 5.

Soybean

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 9. Soybean-large dataset. 307 instances, 35
attributes, 19 classes. Attributes selected by SBC = 12.

Wisconsin Breast Cancer

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 10. Wisconsin Breast Cancer dataset. 699 instances, 9
attributes, 2 classes. Attributes selected by SBC = 4.

Congressional Voting Records

80

85

90

95

100

10 20 30 40 50 60 70 80 90 99

Training Data (%)

A
cc

ur
ac

y
(%

)

NBC SBC
C4.5

Figure 11. Congressional Voting dataset. 435 instances, 16
attributes, 2 classes. Attributes selected by SBC = 3.

To see a clearer picture on the SBC performance, we did an
experiment on the same set of data using the Augmented
Bayesian classifier (ABC) to see how the results would
compare with our SBC. Table 2 shows the results for NBC,
C4.5, ABC, and SBC learning algorithms using 80% of the
data for training and 20% for testing (5-fold cross-
validation). The figures reported in bold reflect the winning
method on each dataset. The last three columns show the
improvement of SBC over NBC, C4.5, and ABC,
respectively. The last row of the table gives the mean
accuracies and improvements for each learning algorithm.

From table 2, it is apparent that SBC outperforms the
original NBC in every domain, giving the accuracy
improvement up to 7.9%. SBC also outperforms both C4.5
and ABC in almost all the domains, giving the accuracy
improvement up to 33.1% over C4.5. Even though, SBC
cannot beat C4.5 in some datasets, it still gives quite big
improvement over the Naïve Bayes (7.8%, 1.4%, and 6.0%)
on such cases. It is also shown that SBC does perform as
well as, or sometimes better than the Augmented Bayesian
classifier learning algorithm.

Table 2. Accuracy of each learning method using 5-fold
cross-validation

Dataset NBC C4.5 ABC SBC
SBC

vs
NBC

SBC
vs

C4.5

SBC
 vs

ABC

Ecoli 81.99 78.65 84.35 83.27 +1.6% +5.9% -1.3%

GerCredit 75.35 74.00 76.13 76.21 +1.1% +3.0% +0.1%

KrVsKp 87.81 99.12 94.87 94.69 +7.8% -4.5% -0.2%

Monk 96.16 98.46 98.02 97.47 +1.4% -1.0% -0.6%

Mushroom 93.23 99.8 97.98 98.85 +6.0% -1.0% +0.9%

Pima 75.03 75.35 78.13 79.94 +6.5% +6.1% +2.3%

Promoter 87.66 66.67 88.66 88.72 +1.2% +33.1% +0.1%

Soybean 84.02 83.20 88.32 88.27 +5.1% +6.1% -0.1%

Wisconsin 95.78 92.63 96.18 97.38 +1.7% +5.1% +1.2%

Vote 89.54 95.29 95.54 96.61 +7.9% +1.4% +1.1%

Mean 86.65 86.32 89.82 90.14 +4.0% +5.4% +0.4%

Table 3 shows the number of features selected for
Selective Bayesian classifier. On almost all the datasets,
surprisingly more than half of the original attributes were
eliminated. 30% or less of all attributes selected were
shown in bold. In other words, we can actually pay no
attention to more than 70% of the original data and still
achieve very high accuracy in classification.

Table 3. Number of features selected

Dataset #Attributes # of Attributes selected

Ecoli 8 4

GermanCredit 20 6

KrVsKp 37 4

Monk 6 4

Mushroom 22 6

Pima 8 5

Promoter 57 5

Soybean 35 12

Wisconsin 9 4

Vote 16 3

SyntheticData 20 12

For speedup and scalability issues, we ran SBC on a large
synthetic data just to see how fast it can learn. The
running time for SBC on our synthetic data gave 1.14 and
4.24 speedup over the original NBC and C4.5,
respectively. Note that we only used 2,000 instances out
of the total of 1,200,000 instances for C4.5 feature
selection process, which made it a very quick operation.

Hence, in practice, if the dataset is large enough, we can
even sample much less than 10% of data for the feature
selection process. The number of attributes selected by
SBC was 12 out of the total of 20 attributes. Table 4
illustrates the mean elapsed time (user and system time) for
each classifier on this synthetic data, using 1,000,000
instances for training and 200,000 instances for test data.

Table 4. Mean Elapsed time for Synthetic Dataset (sec)

NBC C4.5 SBC

37.546 139.5 32.912

The running times of both SBC and NBC are much less
than that of C4.5 because Bayesian classifier only needs to
go through the whole training data once. They are also
space efficient because they build up a frequency table in
size of the product of the number of attributes, number of
class values, and the number of values per attribute [26].

5.4 Discussion
From our experimental results, we have achieved the
following:
1. C4.5 does pick good features for its decision tree

(especially ones that are nearer to the root), which in
turn asymptotically improves the accuracy of the Naïve
Bayesian algorithm, when only those features are used
in the learning process.

2. The running time of SBC is fastest among NBC, C4.5,
and ABC. On average, SBC only selects less than 50%
of the features from the original data to be used in the
classification process (see Table 3). SBC, in
comparison to NBC, learns faster because fewer
attributes are involved in learning. However, it is
obvious that most of the time spent in both algorithms
was on I/O, reading the training data (both NBC and
SBC read in the same training data, but SBC only uses
the features selected by C4.5 in learning). That
explains why SBC time did not reduce much from NBC
time. If there exists a very fast preprocessing way of
removing unwanted features from a very large dataset
to reduce the size of the training data beforehand, SBC
would only need 25.746 seconds (for synthetic dataset)
and give 31.4% improvement in running time over
NBC, and give 81.5% improvement in running time
over C4.5. and

3. You can pick good features even if only a small sample of the
original data is used. From our experiment, only 10% of the
training data for the 10 UCI datasets and 0.2% of the training
data for the Synthetic dataset seem to be very sufficient.

6. RELATED WORK
Much work has been done on feature subset selection.
John, Kohavi, and Pfleger [13] define the problem of
feature subset selection to be that of finding a subset of the
original set of features of a dataset, such that the induction

algorithm that is run on the data containing only the
features from the subset generates a classifier with the
highest possible accuracy. Other features may be
discarded as their information increases the complexity of
learning algorithm without increasing accuracy.
Blum and Langley [2] classify the feature subset selection
techniques into three categories:
• Embedded Selection Techniques. These techniques

include induction algorithms that implicitly carry out
feature subset selection by inducing logical
descriptions. Version Spaces [20] searches for a
subset of features in the feature space by adding or
removing a feature from the generated set, so that the
prediction errors are lower for newer instances.
Decision tree algorithms such as ID3 or its successor
C4.5 and CART [4] are another form of embedded
techniques.

• Filter Techniques. These approaches use a feature
selection algorithm to select the subset, which is then
passed onto the induction algorithm. A very simple
filter approach would be to select k attributes that
have the highest correlation with the output class.
One metric that would measure such correlation
would be the mutual information between the
corresponding input feature and the output feature.
The RELIEF algorithm [15] uses such a mechanism
with added complexity to the feature evaluation
function. FOCUS [1] is another approach that
searches for the smallest possible subset of features
that will completely split up the training set without
any error. Cardie [5} uses a decision trees for nearest
neighbor retrieval, whereas Kubat, Flotzinger, and
Pfurtscheller [17] uses a decision trees to filter
features for use with Naïve Bayesian classifier.

• Wrapper Techniques. The feature subset selection
algorithm forms a wrapper on top of the induction
algorithm. This is a search strategy to find an
optimal subset of features by adding or deleting
features from the input feature set, depending on the
accuracy of the induction algorithm itself. This
approach by Kohavi and John [16] also searches the
feature space for the optimal subset by starting with
an empty set of selected features. However, a major
disadvantage associated with the wrapper mechanism
is the computational cost involved. Faster evaluation
techniques have been evolved to reduce the
computation. Caruana and Freitag [5] evolved a
technique where the decision trees are cached for
later use in the process of search. Augmented
Bayesian classifier (ABC) uses a different approach
in constructing tree-augmented Bayesian networks by
adding the correlation arcs between attributes and
using a more efficient heuristic search to find the best
arcs to add (SuperParent) [14].

7. CONCLUSION
A simple method that uses C4.5 decision trees to select
features has been described. This is to be used to improve
Naïve Bayesian learning. The empirical evidence shows
that this method is very fast and surprisingly successful,
given the very different natures of the two classification
methods. This Selective Bayesian classifier is
asymptotically at least as accurate as the best of C4.5, Naïve
Bayes, and Augmented Bayes on each of the domains on
which the experiments were performed. Further, it learns
faster than both C4.5 and NB on each of these domains.
This work suggests that C4.5 decision trees systematically
select good features for Naïve Bayesian classifier to use.
We believe the reasons are that C4.5 does not use redundant
attributes in constructing decision trees, since they cannot
generate different splits of training data. When few training
examples are available, C4.5 uses the most relevant features
it can find. The high accuracy SBC achieves with few
training examples is indicative of the fact that using these
features for probabilistic induction leads to higher accuracy
both in Bayesian classifier and C4.5 itself in each of the
domains we have examined.

8. REFERENCES
[1] Almuallim, H. and Dietterich, T.G. (1991). Learning

with many irrelevant features. In Proceedings AAAI-
91, volume 2, pp. 547-552, Anaheim, CA.

[2] Blum, A.L., and Langley, P. (1997). Selection of
Relevant Features and Examples in Machine learning.
Artificial Intelligence, 97, pp. 245-271.

[3] Boz, O. Feature Subset Selection by Feature Relevance.
Submitted for the ICML 2002.

[4] Breiman, L., Friedman, J.H., Olshen, R.A., and Stone,
P.J. (1984). Classification and Regreession Trees.
Wadsworth International Group. Belmont, CA.

[5] Cardie, C. Using Decision Trees to Improve Case-
based Learning. ICML 1993, pp. 25-32.

[6] Caruana, R., and Freitag, D. (1994). Greedy Attribute
Selection. In: Cohen, W.W., and Hirsh, H. (eds).
Prodeedings of the 11th International Conference on
Machine Learning. San Mateo, CA: Morgan
Kaufmann, pp.28-36.

[7] Domingos, P. and Pazzani, M. (1997). Beyond
Independence: Conditions for the Optimality of the
Simple Bayesian Classifier. In Proceedings of the
ICML 1996, pp.105-112.

[8] Domingos, P. and Pazzani, M. On the Optimality of the
Simplie Bayesian Classifier under Zero-One Loss.
Machine Larning, 29(2/3): 103-130,
November/December 1997.

[9] Duda, R.O. and Hart, P.E. (1973). Pattern
Classification and Scene Analysis. New York, NY:
Wiley and Sons.

[10] Elkan, C. Boosting and Naïve Bayesian Learning.
Technical Report No. CS97-557, Department of
Computer Science and Engineering, University of
California, San Diego, Spetember 1997.

[11] Han, J. and Kamber, M. (2001) Data Mining
Concepts and Techniques. Morgan Kaufmann
Publishers, CA.

[12] Hand, D. and Yu, K. (2001) Idiot’s Bayes—Not So
Stupid After All? International Statistical Review
(2001), 69, pp.385-398.

[13] John, G.H., Kohavi, R., and Pfleger, K. (1994).
Irrelevant Features and the Subset Selection Problem.
In: Cohen, W.W., & Hirsh, H. (eds). ICML 1994, pp.
121-129.

[14] Keogh, E. and Pazzani, M. Learning Augmented
Bayesian Classifiers: A comparison of distribution-
based and classification-based approaches.
Uncertainty 99, 7th Int’l Workshop on AI and
Statistics, pp. 225-230.

[15] Kira, K. and Rendell, L.A. (1992). A practical
approach to feature selection. In Proceedings of the
9th International Conference on Machine Learning.
pp. 249-256, Aberdeen, Scottland.

[16] Kohavi, R. and John, G.H. (1997). Wrappers for
feature subset selection. Artificial Intelligence, 97(1-
2): 273-323.

[17] Kubat, M., Flotzinger, D., and Pfurtscheller, G.
(1993). Discovering patterns in EEG-signals:
Comparative study of a few methods. European
Conference on Machine Learning, Vienna, 1993.
LNCS vol. 667, pp. 366-371.

[18] Langley, P. and Sage, S. Induction of Selective
Bayesian Classifiers. Proceedings of the Tenth
Conference on Uncertainty in Artificial Intelligence
(1994). Seattle, WA: Morgan Kaufmann

[19] Ming, K. and Zheng, Z. Improving the Performance
of Boosting for Naïve Bayesian Classification. In
Proceedings of the PAKDD-99, pp.296-305, Beijing,
China.

[20] Mitchell, T.M. (1977). Version Spaces: A candidate
elimination approach to rule learning. In Proceedings
of the 5th International Joint Conference on Artificial
Intelligence. pp.305-310, Cambridge, MA.

[21] Murphy, P.M. and Aha, D.W. (1994). UCI
Repository of Machine Learning Databases
[http://www.ics.uci.edu/
~mlearn/MLRepository.html]. Irvine, CA: University
of California, Dept. of Information and Computer
Science.

[22] Pazzani, M. (1995). Searching for dependencies in
Bayesian classifiers. Preliminary Papers of the 5th

International Workshop on Artificial Intelligence and
Statistics. Ft. Lauderdale, FL.

[23] Pazzani, M. (1996). Constructive Induction of
Cartesian Product Attributes. Information, Statistics
and Induction in Science. Melbourne, Australia.

[24] Quinlan, J.R.(1990). Induction of Decision Trees. In
Reading in Machine Learning. Morgan Kaufmann,

Dordrecht, The Netherlands. Originally published in
Machine Learning 1:81-106, 1986.

[25] Quinlan, J.R. (1993). C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

[26] Zhang, H., Ling, C.X., and Zhao, Z. The
Learnability of Naïve Bayes. Canadian Conference
on AI 2000: 432-411.

	INTRODUCTION
	NA?VE BAYESIAN CLASSIFIER
	Description
	Problems

	C4.5 DECISION TREES
	Information Gain
	Information Gain Ratio
	Tree Pruning

	SELECTIVE BAYESIAN CLASSIFIER
	Description
	Algorithm

	EXPERIMENTAL EVALUATION
	The Datasets
	Experimental Design
	Experimental Results
	Discussion

	RELATED WORK
	CONCLUSION
	REFERENCES

