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ABSTRACT 
It is known that Naïve Bayesian classifier (NB) works very 
well on some domains, and poorly on some.  The 
performance of NB suffers in domains that involve correlated 
features.  C4.5 decision trees, on the other hand, typically 
perform better than the Naïve Bayesian algorithm on such 
domains. This paper describes a Selective Bayesian classifier 
(SBC) that simply uses only those features that C4.5 would 
use in its decision tree when learning a small example of a 
training set, a combination of the two different natures of 
classifiers.  Experiments conducted on ten datasets indicate 
that SBC performs reliably better than NB on all domains, 
and SBC outperforms C4.5 on many datasets of which C4.5 
outperform NB.  Augmented Bayesian classifier (ABC) are 
also tested on the same data, and SBC appears to perform as 
well as ABC.  SBC also can eliminate, on most cases, more 
than half of the original attributes, which can greatly reduce 
the size of the training and test data, as well as the running 
time.  Further, the SBC algorithm typically learns faster than 
both C4.5 and NB, needing fewer training examples to reach 
high accuracy of classification.  
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1. INTRODUCTION 
Two of the most widely used and successful methods of 
classification are C4.5 decision trees [25] and Naïve 
Bayesian learning (NB) [10].  While C4.5 constructs 
decision trees by using features to try and split the training 
set into positive and negative examples until it achieves 
high accuracy on the training set, NB represents each class 
with a probabilistic summary, and finds the most likely 
class for each example it is asked to classify. 

Several researchers have emphasized on the issue of 
redundant attributes, as well as advantages of feature 
selection for the Naïve Bayesian Classifier, not only for 
induction learning.  Pazzani [22, 23] explores the methods of 
joining two (or more) related attributes into a new compound 
attribute where the attribute dependencies are present.  
Another method, Boosting on Naïve Bayesian classifier [10] 
has been experimented by applying series of classifiers to the 

problem and paying more attention to the examples 
misclassified by its predecessor.  However, it was shown 
that it fails on average in a set of natural domain [19].  
Langley and Sage [18] use a wrapper approach for the 
subset selection to only select relevant features for NB. 
Cardie [5] uses the attributes from decision trees in 
combination with nearest neighbor methods.  And in a 
domain for discovering patterns in EEG-signals, Kubat, 
Flotzinger, and Pfurtscheller [7] tried the use of Decision 
tree in feature selection for Naïve Bayesian classifier.  And 
recently, Augmented Bayesian Classifiers [14] was 
introduced as another approach where Naïve Bayes is 
augmented by the addition of correlation arcs between 
attributes.   

It has been shown that Naïve Bayesian classifier is 
extremely effective in practice and difficult to improve 
upon [8].   In this paper, we show that it is possible to 
reliably improve this classifier by using a feature selection 
method.  Naïve Bayes can suffer from oversensitivity to 
redundant and/or irrelevant attributes.  If two or more 
attributes are highly correlated, they receive too much 
weight in the final decision as to which class an example 
belongs to.  This leads to a decline in accuracy of 
prediction in domains with correlated features.  C4.5 does 
not suffer from this problem because if two attributes are 
correlated, it will not be possible to use both of them to 
split the training set, since this would lead to exactly the 
same split, which makes no difference to the existing tree.  
This is one of the main reasons C4.5 performs better than 
NB on domains with correlated attributes.  

We conjecture that the performance of NB improves if it 
uses only those features that C4.5 used in constructing its 
decision tree.  This method of feature selection would 
also perform well and learn quickly, that is, it would need 
fewer training examples to reach high classification 
accuracy.   

We present experimental evidence that this method of 
feature selection leads to improved performance of the 
Naïve Bayesian Classifier, especially in the domains 
where Naïve Bayes performs not as well as C4.5.  We 
analyze the behavior on ten domains from the UCI 
repository, 5 of which C4.5 achieves asymptotically 



higher accuracy than NB (which seems to imply the 
presence of correlated features.), and 5 on which NB 
outperforms C4.5.  We then compared our algorithm with 
the Augmented Bayesian classifier (ABC), and the 
experimental results justify our expectation.  We also tested 
SBC on another sufficiently large synthetic dataset and our 
algorithm appeared to scale nicely.  Our Selective Bayesian 
Classifier always outperforms NB and performs as well as, 
or better than both C4.5 and ABC on almost all the 
domains. 

2. NAÏVE BAYESIAN CLASSIFIER 
2.1 Description 
The Naïve Bayesian classifier is a straightforward and 
frequently used method for supervised learning.  It provides 
a flexible way for dealing with any number of attributes or 
classes, and is based on probability theory.  It is the 
asymptotically fastest learning algorithm that examines all 
its training input.  It has been demonstrated to perform 
surprisingly well in a very wide variety of problems in spite 
of the simplistic nature of the model.  Furthermore, small 
amounts of bad data, or “noise,” do not perturb the results 
by much. 

The Naïve Bayesian classification system is based on 
Bayes’ rule and works as follows.  There are classes, say Ck 
for the data to be classified into.  Each class has a 
probability P(Ck) that represents the prior probability of 
classifying an attribute into Ck; the values of P(Ck) can be 
estimated from the training dataset.  For n attribute values, 
vj, the goal of classification is clearly to find the conditional 
probability P(Ck | v1 ∧ v2 ∧ … ∧ vn).  By Bayes’ rule, this 
probability is equivalent to 
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For classification, the denominator is irrelevant, since, for 
given values of the vj, it is the same regardless of the value 
of Ck.  The central assumption of Naïve Bayesian 
classification is that, within each class, the values vj are all 
independent of each other.  Then by the laws of independent 
probability, 

P(vi | {all the other values of vj}, Ck) = P(vi | Ck) and 
therefore 

P(v1 ∧ v2 ∧ … ∧ vn | Ck) =  P(v1 | Ck)P(v2 | Ck)…P(vn | Ck). 

Each factor on the right-hand side of this equation can be 
determined from the training data, because (for an arbitrary 
vi), 

P(vi | Ck) ≈ [#(vi ∧ Ck)] / [#(Ck)] 

where “#” represents the number of such occurrences in the 
training set data.  Therefore, the classification of the test set 
can now be estimated by 

P(Ck | v1 ∧ v2 ∧ … ∧ vn) which is proportional to 

P(Ck) P(v1 | Ck) P(v2 | Ck) P(v3 | Ck) … P(vn | Ck). 

2.2 Problems 
As mentioned above, the central assumption in Naïve 
Bayesian classification is that given a particular class 
membership, the probabilities of particular attributes 
having particular values are independent of each other.  
However, this assumption is often violated in reality.  For 
example, in demographic data, many attributes have 
obvious dependencies, such as age and income. 
A plausible assumption of independence is computa-
tionally problematic.  This is best described by redundant 
attributes.  If we posit two independent features, and a 
third (vr1) which is redundant (i.e. perfectly correlated) 
with v1, the classification expression is 
P(v1 | Ck) P(v2 | Ck) P(vr1 | Ck) P(Ck), 
which is effectively 
P(v1 | Ck)2 P(v2 | Ck) P(Ck). 
This means that the attribute v1 has twice as much 
influence on the expression as v2 has, which is a strength 
not reflected in reality.  The increased strength of v1 
increases the possibility of unwanted bias in the 
classification.  Even with this independence assumption, 
Hand and Yu illustrated that Naïve Bayesian 
classification still works well in practice [12].  However, 
some researchers have shown that although irrelevant 
features should theoretically not hurt the accuracy of 
Naïve Bayes, they do degrade performance in practice 
[13].  This paper illustrates that if those redundant and/or 
irrelevant attributes are eliminated, the performance of 
Naïve Bayesian classifier can significantly increase. 

3. C4.5 DECISION TREES 
Decision trees are one of the most popular methods used 
for inductive inference.  They are robust for noisy data 
and capable of learning disjunctive expressions.  A 
decision tree is a k-ary tree where each of the internal 
nodes specifies a test on some attributes from the input 
feature set used to represent the data.  Each branch 
descending from a node corresponds to one of the 
possible values of the feature specified at that node.  And 
each test results in branches, which represent different 
outcomes of the test.  The basic algorithm for decision 
tree induction is a greedy algorithm that constructs 
decision trees in a top-down recursive divide-and-conquer 
manner.  
The algorithm starts with the entire set of tuples in the 
training set, selects the best attribute that yields maximum 
information for classification, and generates a test node 
for this attribute.  Then, top down induction of decision 
trees divides the current set of tuples according to their 
values of the current test attribute.  Classifier generation 
stops, if all tuples in a subset belong to the same class, or 



if it is not worth to proceed with an additional separation 
into further subsets, i.e. if further attribute tests yield only 
information for classification below a pre-specified thres-
hold.   
The decision tree algorithm usually uses an entropy-based 
measure known as “information gain” (although other 
measures are also possible) as a heuristic for selecting the 
attribute that will best split the training data into separate 
classes.  Its algorithm computes the information gain of 
each attribute, and in each round, the one with the highest 
information gain will be chosen as the test attribute for the 
given set of training data.  A well-chosen split point should 
help in splitting the data to the best possible extent.  After 
all, a main criterion in the greedy decision tree approach is 
to build shorter trees.  The best split point can be easily 
evaluated by considering each unique value for that feature 
in the given data as a possible split point and calculating the 
associated information gain.   

3.1 Information Gain 
The critical step in decision trees is the selection of the best 
test attribute.  The information gain measure is used to 
select the test attribute at each node in the tree.   
First, another related term called entropy needs to be 
introduced.  In general, entropy is a measure of the purity in 
an arbitrary collection of examples.  Let S be a set 
consisting of s data samples.  Suppose the class label 
attribute has m distinct values defining m distinct classes, 
Ck.  Let si be the number of samples of S in class Ck.  The 
expected information needed to classify a given sample is 
given by 
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where pk is the probability that an arbitrary sample belongs 
to class Ck and is estimated by sk / s. 
Let attribute A have v distinct values, {a1,a2,…,av}.  
Attribute A can be used to partition S into v subsets, 
{S1,S2,…,Sv}, where Sj contains those samples in S that have 
value aj of A.  Let skj be the number of samples of class Ck 
in a subset Sj.  The entropy, or expected information based 
on the partitioning into subsets by A, is given by 
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The term 
s

smjj ++L1s  acts as the weight of the jth subset and is 

the number of samples in the subset divided by the total 
number of samples in S.  For a given subset Sj, 
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where pkj = skj / |Sj| and is the probability that a sample in Sj 
belongs to class Ck.  The entropy is zero when the sample is 
pure, i.e. when all the examples in the sample S belong to 

one class.  Entropy has a maximum value of 1 when the 
sample is maximally impure, i.e. there are same 
proportions of positive and negative examples in the 
sample S. 
The encoding information would be gained by branching 
on A is 
InformationGain(A) = I(s1,s2,…,sm) – E(A) 
The attribute with the highest information gain is chosen 
as the test attribute for the current node.  Such approach 
minimizes the expected number of tests needed to classify 
an object and guarantees that a simple (but may not be the 
simplest) tree is found. 

3.2 Information Gain Ratio 
A simple decision tree algorithm only selects one decision 
tree given an example set, though there may be many 
different trees consistent with the data.  The information 
gain measure mentioned in section 3.1 (implemented in 
ID3 decision trees) is biased in that it tends to prefer 
attributes with many values rather than those with few 
values.  C4.5 suppresses this bias by using an alternative 
measure called Information Gain Ratio, which considers 
the probability of each attribute value.  The Split 
Information takes into account the factor of an attribute 
having many values.  It is defined as 
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By using SplitInformation(A), which is proportional to the 
number of values an attribute A can take, GainRatio(A) 
effectively removes the bias of information gain towards 
features with many values. To resolve the issue when 
SplitInformation(A) becomes very small, C4.5 lists the set 
of attributes with the InformationGain(A) above the 
average information gain for that node and then it uses 
the Gain Ratio to select the best attribute from the list 
[24]. 

3.3 Tree Pruning 
C4.5 builds a tree so that most of the training examples 
are classified correctly.  Though this approach is correct 
when there is no noise, accuracy for unseen data might 
degrade in cases where there is a lot of noise associated 
with the training examples and/or the number of training 
examples is very small.  To alleviate this so-called 
overfitting problem, C4.5 uses the post-pruning method.  
This approach allows C4.5 to grow a complete decision 
tree first, and then post-prune the tree.  It tries to shorten 
the tree in order to overcome overfitting.  This generally 
involves removal of some of the nodes or subtrees from 



the original decision tree.  Its goal is to improve (by 
pruning) the accuracy on the unseen set of examples. 
As a result, C4.5 achieves further elimination of features 
through pruning.  It uses rule-post pruning to remove some 
of the insignificant nodes (and hence, some not so relevant 
features) from the tree. 

4. SELECTIVE BAYESIAN CLASSIFIER 
Our purpose is to improve the performance of the Naïve 
Bayesian classifier by removing redundant and/or irrelevant 
attributes from the dataset, and only choosing those that are 
most informative in classification task.  To achieve this, we 
use the trees that are constructed by C4.5. 

4.1 Description 
As described in section 3, the features that C4.5 selected in 
constructing its decision tree are likely to be the ones that 
are most descriptive in terms of the classifier, in spite of the 
fact that a tree structure inherently incorporates 
dependencies among attributes, while Naïve Bayes works 
on a conditional independence assumption.  C4.5 will 
naturally construct a tree that does not have an overly 
complicated branching structure if it does not have too 
many examples that need to be learned.  As the number of 
training examples increases, the attributes that are 
considered will usually be the ones that are not correlated.  
This is mainly because C4.5 will use only one of a set of 
correlated features for making good splits in training set.  
However, sometimes many of the branches may reflect 
noise or outliers (overfitting) in the training data.  “Tree 
pruning” procedure in C4.5 attempts to identify and remove 
those least reliable branches, with the goal of improving 
classification accuracy on unseen data.  Even after pruning, 
if the resulted decision tree is still too deep or grown into 
too many levels, our algorithm only picks attributes 
contained in the first few levels of the tree as the most 
representative attributes.  This is supported by the fact that 
by the selection of attributes that split the data in the best 
possible way at every node, C4.5 will try to ensure that it 
encounters a leaf at the very earliest possible point, i.e. it 
prefers to construct shorter trees.  And by its algorithm, 
C4.5 will find trees that have attributes with higher 
information gain nearer to the root.  We conjecture that this 
simple method of feature selection would help improve 
Naïve Bayesian classifier’s performance and learn quickly, 
that is, it would need fewer training examples to reach high 
classification accuracy. 

4.2 Algorithm 
Figure 1 shows the algorithm for the Selective Bayesian 
classifier. We first shuffle the training data and use 10% of 
that to run C4.5 on.  This is to make sure that all the 
subsamples are not biased toward any particular classes.  
We find 10% of the training to be a good size for our 
feature selection process.   If too small a portion is used, the 
decision tree may not be representative enough for the 

unseen data.  And if too large a portion is used, it 
unnecessarily takes longer to construct a decision tree and 
the tree also are likely to be too complex.  Once we run 
C4.5 and obtain the decision tree, we only pick attributes 
that only appear in the first 3 levels of the decision trees 
as the most relevant features.  We hypothesize that if a 
feature in the deeper levels on any one execution of C4.5 
is relevant enough, it will finally rises up and appear in 
one of the top levels of the tree in some other executions 
of C4.5.  We form a union of all the attributes from each 
run, and finally, run the Naïve Bayesian classifier on the 
training and test data using only those features selected in 
the previous step. 
 

1. Shuffle the training data and take a 10% sample. 
2. Run C4.5 on data from step 1. 
3. Select a set of attributes that appear only in the first 3 

levels of the simplified decision tree as relevant 
features. 

4. Repeat 5 times (step 1-3) 
5. Form a union of all the attributes from the 5 rounds. 
6. Run Naïve Bayesian classifier on the training and test 

data using only the final features selected in step 5. 
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Figure 1.  Selective Bayesian Classifier Algorithm: Feature 
Selection Using C4.5 
One of the problems with using C4.5 to generate decision 
trees when there are too few training examples available 
is that it might give a constant decision (for example, 
classify all examples as Democrat in the voting domain) 
without generating the decision tree.  In this case, the 
training set is re-sampled until a non-constant decision 
tree is produced. 
The main difference between our algorithm and the one 
proposed by Kubat, Flotzinger, and Pfurtscheller[17] is 
that they build just one tree on the entire training set, and 

se all the attributes that occur in it.  Instead, we only take 
0% as a training set to build a tree and then keep the 
ttributes only from the first 3 levels of the tree.  This will 
ake the tree-building process for feature selection much 

aster, especially on larger datasets. 

5. EXPERIMENTAL EVALUATION 
5.1 The Datasets 
We used 10 datasets from the UCI repository [21] and 
one synthetic dataset, shown in Table 1.  The Synthetic 
dataset, created with Gaussian distribution, contains 
1,200,000 instances with 20 attributes and 2 classes.  We 
chose 10 datasets from the UCI databases, 5 of which 
Naïve Bayesian classifier outperforms C4.5 and the other 
5 of which C4.5 outperforms Naïve Bayesian classifier. 



Table 1. Descriptions of domains used 

Dataset #Attributes #Classes #Instances 

Ecoli 8 8 336 

GermanCredit 20 2 1,000 

KrVsKp 37 2 3,198 

Monk 6 2 554 

Mushroom 22 2 8,124 

Pima 8 2 768 

Promoter 57 2 106 

Soybean 35 19 307 

Wisconsin 9 2 699 

Vote 16 2 435 

SyntheticData 20 2 1,200,000 

5.2 Experimental Design 
• Each dataset is shuffled randomly. 

• Produce disjoint training and test sets as follows. 

10% training and 90% test data 

20% training and 80% test data 

30% training and 70% test data 

… … … … 

80% training and 20% test data 

90% training and 10% test data 

99% training and 1% test data 

• For each set of training and test data, run 

• Naïve Bayesian Classifier (NBC) 

• C4.5, and 

• Selective Bayesian Classifier (SBC) 

• Repeat 15 times 

The classifier accuracy is determined by Random 
Subsampling method, i.e. the holdout method that is 
repeated k times.  The overall accuracy estimate is the mean 
of the accuracies obtained from all iterations.  This will give 
us information about both the learning rates, as well as the 
accuracy of the learning algorithms used. 

To see how well our algorithm matches up with others, we 
did run the Augmented Bayesian classifier (ABC) on all 10 
datasets as well, using SuperParent proposed by Keogh and 
Pazzani [14] as a method of finding the set of augmented 
arcs. 

And lastly, to help us clearly see the speedup and scalability 
of the Selective Bayesian classifier, we also ran an 

experiment on the synthetic data, which is much larger 
than what we have in the UCI repository.  

5.3 Experimental Results 
The results confirm the initial hypotheses.  The 
performance of the Selective Bayesian classifier is quite 
impressive.  Its asymptotic accuracy is as good as (or 
slightly better than) the better of C4.5 and NB on each of 
the domains.  

Figure 2 – 11 depict the learning curves for the 10 UCI 
datasets.  It is clear that SBC learns faster than both C4.5 
and NBC on all the dataset, i.e. with small number of 
training data (e.g. 10%), the prediction accuracy for SBC 
is higher.  

Note that all the C4.5 accuracies considered in this 
experiment are based on the simplified decision tree (with 
pruning).  This accuracy is usually higher on the test 
(unseen) data, in comparison to the accuracy based on 
unpruned decision trees. 
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Figure 2.  Ecoli dataset.  336 instances, 8 attributes, 8 
classes.  Attributes selected by SBC = 4. 
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Figure 3. German Credit dataset. 1,000 instances, 20 
attributes, 2 classes.   Attributes selected by SBC = 6. 
 



Chess Endgames (kr-vs-kp)
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Figure 4.  Kr-vs-Kp dataset.  3,198 instances, 37 attributes, 
2classes.  Attributes selected by SBC = 4. 
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Figure 5.  Monk dataset (prob.3).  554 instances, 6 attributes, 2 
classes.  Attributes selected by SBC = 4. 
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Figure 6.  Mushroom dataset.  8,124 instances, 22 attributes, 2 
classes.  Attributes selected by SBC = 6. 
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Figure 7.  Pima-Indians dataset.  768 instances, 8 attributes, 
2 classes.  Attributes selected by SBC = 5. 
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Figure 8.  Gene Promoter dataset.  106 instances, 57 
attributes, 2 classes.  Attributes selected by SBC = 5. 
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Figure 9.  Soybean-large dataset.  307 instances, 35 
attributes, 19 classes.  Attributes selected by SBC = 12. 
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Figure 10.  Wisconsin Breast Cancer dataset.  699 instances, 9 
attributes, 2 classes.  Attributes selected by SBC = 4. 
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Figure 11.  Congressional Voting dataset.  435 instances, 16 
attributes, 2 classes.  Attributes selected by SBC = 3. 
 

To see a clearer picture on the SBC performance, we did an 
experiment on the same set of data using the Augmented 
Bayesian classifier (ABC) to see how the results would 
compare with our SBC.  Table 2 shows the results for NBC, 
C4.5, ABC, and SBC learning algorithms using 80% of the 
data for training and 20% for testing (5-fold cross-
validation).  The figures reported in bold reflect the winning 
method on each dataset.  The last three columns show the 
improvement of SBC over NBC, C4.5, and ABC, 
respectively.  The last row of the table gives the mean 
accuracies and improvements for each learning algorithm.  

From table 2, it is apparent that SBC outperforms the 
original NBC in every domain, giving the accuracy 
improvement up to 7.9%.  SBC also outperforms both C4.5 
and ABC in almost all the domains, giving the accuracy 
improvement up to 33.1% over C4.5.  Even though, SBC 
cannot beat C4.5 in some datasets, it still gives quite big 
improvement over the Naïve Bayes (7.8%, 1.4%, and 6.0%) 
on such cases.  It is also shown that SBC does perform as 
well as, or sometimes better than the Augmented Bayesian 
classifier learning algorithm. 

Table 2. Accuracy of each learning method using 5-fold 
cross-validation 

Dataset NBC C4.5 ABC SBC 
SBC 

vs 
NBC 

SBC  
vs  

C4.5 

SBC 
 vs  

ABC 

Ecoli 81.99  78.65  84.35  83.27  +1.6% +5.9% -1.3% 

GerCredit 75.35  74.00   76.13 76.21  +1.1% +3.0% +0.1% 

KrVsKp 87.81  99.12   94.87 94.69  +7.8% -4.5% -0.2% 

Monk 96.16  98.46   98.02 97.47  +1.4% -1.0% -0.6% 

Mushroom 93.23  99.8  97.98  98.85  +6.0% -1.0% +0.9% 

Pima 75.03  75.35  78.13  79.94  +6.5% +6.1% +2.3% 

Promoter 87.66  66.67  88.66  88.72  +1.2% +33.1% +0.1% 

Soybean 84.02  83.20  88.32  88.27  +5.1% +6.1% -0.1% 

Wisconsin 95.78  92.63  96.18  97.38  +1.7% +5.1% +1.2% 

Vote 89.54  95.29  95.54  96.61  +7.9% +1.4% +1.1% 

Mean 86.65 86.32 89.82 90.14 +4.0% +5.4% +0.4% 
 

Table 3 shows the number of features selected for 
Selective Bayesian classifier.  On almost all the datasets, 
surprisingly more than half of the original attributes were 
eliminated.  30% or less of all attributes selected were 
shown in bold.  In other words, we can actually pay no 
attention to more than 70% of the original data and still 
achieve very high accuracy in classification.   

Table 3. Number of features selected 

Dataset #Attributes # of Attributes selected 

Ecoli 8 4 

GermanCredit 20 6 

KrVsKp 37 4 

Monk 6 4 

Mushroom 22 6 

Pima 8 5 

Promoter 57 5 

Soybean 35 12 

Wisconsin 9 4 

Vote 16 3 

SyntheticData 20 12 
 

For speedup and scalability issues, we ran SBC on a large 
synthetic data just to see how fast it can learn.  The 
running time for SBC on our synthetic data gave 1.14 and 
4.24 speedup over the original NBC and C4.5, 
respectively.  Note that we only used 2,000 instances out 
of the total of 1,200,000 instances for C4.5 feature 
selection process, which made it a very quick operation.  



Hence, in practice, if the dataset is large enough, we can 
even sample much less than 10% of data for the feature 
selection process.  The number of attributes selected by 
SBC was 12 out of the total of 20 attributes.  Table 4 
illustrates the mean elapsed time (user and system time) for 
each classifier on this synthetic data, using 1,000,000 
instances for training and 200,000 instances for test data. 

Table 4. Mean Elapsed time for Synthetic Dataset (sec) 

NBC C4.5 SBC 

37.546 139.5 32.912 
 

The running times of both SBC and NBC are much less 
than that of C4.5 because Bayesian classifier only needs to 
go through the whole training data once.  They are also 
space efficient because they build up a frequency table in 
size of the product of the number of attributes, number of 
class values, and the number of values per attribute [26].   

5.4 Discussion 
From our experimental results, we have achieved the 
following: 
1. C4.5 does pick good features for its decision tree 

(especially ones that are nearer to the root), which in 
turn asymptotically improves the accuracy of the Naïve 
Bayesian algorithm, when only those features are used 
in the learning process. 

2. The running time of SBC is fastest among NBC, C4.5, 
and ABC.  On average, SBC only selects less than 50% 
of the features from the original data to be used in the 
classification process (see Table 3).  SBC, in 
comparison to NBC, learns faster because fewer 
attributes are involved in learning.  However, it is 
obvious that most of the time spent in both algorithms 
was on I/O, reading the training data (both NBC and 
SBC read in the same training data, but SBC only uses 
the features selected by C4.5 in learning).  That 
explains why SBC time did not reduce much from NBC 
time.  If there exists a very fast preprocessing way of 
removing unwanted features from a very large dataset 
to reduce the size of the training data beforehand, SBC 
would only need 25.746 seconds (for synthetic dataset) 
and give 31.4% improvement in running time over 
NBC, and give 81.5% improvement in running time 
over C4.5. and 

3. You can pick good features even if only a small sample of the 
original data is used.  From our experiment, only 10% of the 
training data for the 10 UCI datasets and 0.2% of the training 
data for the Synthetic dataset seem to be very sufficient. 

6. RELATED WORK 
Much work has been done on feature subset selection.  
John, Kohavi, and Pfleger [13] define the problem of 
feature subset selection to be that of finding a subset of the 
original set of features of a dataset, such that the induction 

algorithm that is run on the data containing only the 
features from the subset generates a classifier with the 
highest possible accuracy.  Other features may be 
discarded as their information increases the complexity of 
learning algorithm without increasing accuracy. 
Blum and Langley [2] classify the feature subset selection 
techniques into three categories: 
• Embedded Selection Techniques. These techniques 

include induction algorithms that implicitly carry out 
feature subset selection by inducing logical 
descriptions.  Version Spaces [20] searches for a 
subset of features in the feature space by adding or 
removing a feature from the generated set, so that the 
prediction errors are lower for newer instances.  
Decision tree algorithms such as ID3 or its successor 
C4.5 and CART [4] are another form of embedded 
techniques. 

• Filter Techniques.  These approaches use a feature 
selection algorithm to select the subset, which is then 
passed onto the induction algorithm.  A very simple 
filter approach would be to select k attributes that 
have the highest correlation with the output class.  
One metric that would measure such correlation 
would be the mutual information between the 
corresponding input feature and the output feature.  
The RELIEF algorithm [15] uses such a mechanism 
with added complexity to the feature evaluation 
function.  FOCUS [1] is another approach that 
searches for the smallest possible subset of features 
that will completely split up the training set without 
any error.  Cardie [5} uses a decision trees for nearest 
neighbor retrieval, whereas Kubat, Flotzinger, and 
Pfurtscheller [17] uses a decision trees to filter 
features for use with Naïve Bayesian classifier.   

• Wrapper Techniques.  The feature subset selection 
algorithm forms a wrapper on top of the induction 
algorithm.  This is a search strategy to find an 
optimal subset of features by adding or deleting 
features from the input feature set, depending on the 
accuracy of the induction algorithm itself.  This 
approach by Kohavi and John [16] also searches the 
feature space for the optimal subset by starting with 
an empty set of selected features.  However, a major 
disadvantage associated with the wrapper mechanism 
is the computational cost involved.  Faster evaluation 
techniques have been evolved to reduce the 
computation.  Caruana and Freitag [5] evolved a 
technique where the decision trees are cached for 
later use in the process of search. Augmented 
Bayesian classifier (ABC) uses a different approach 
in constructing tree-augmented Bayesian networks by 
adding the correlation arcs between attributes and 
using a more efficient heuristic search to find the best 
arcs to add (SuperParent) [14]. 



7. CONCLUSION 
A simple method that uses C4.5 decision trees to select 
features has been described.  This is to be used to improve 
Naïve Bayesian learning.  The empirical evidence shows 
that this method is very fast and surprisingly successful, 
given the very different natures of the two classification 
methods.  This Selective Bayesian classifier is 
asymptotically at least as accurate as the best of C4.5, Naïve 
Bayes, and Augmented Bayes on each of the domains on 
which the experiments were performed.  Further, it learns 
faster than both C4.5 and NB on each of these domains. 
This work suggests that C4.5 decision trees systematically 
select good features for Naïve Bayesian classifier to use.  
We believe the reasons are that C4.5 does not use redundant 
attributes in constructing decision trees, since they cannot 
generate different splits of training data.  When few training 
examples are available, C4.5 uses the most relevant features 
it can find.  The high accuracy SBC achieves with few 
training examples is indicative of the fact that using these 
features for probabilistic induction leads to higher accuracy 
both in Bayesian classifier and C4.5 itself in each of the 
domains we have examined. 
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