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ABSTRACT Time series data is pervasive across all human endeavors, and clustering is 

arguably the most fundamental data mining application. Given this, it is somewhat surprising that 

the problem of time series clustering from a single stream remains largely unsolved. Most work 

on time series clustering considers the clustering of individual time series that have been carefully 

extracted from their original context, e.g., gene expression profiles, individual heartbeats or 

individual gait cycles. The few attempts at clustering time series streams have been shown to be 

objectively incorrect in some cases, and in other cases shown to work only on the most contrived 

synthetic datasets by carefully adjusting a large set of parameters. In this work, we make two 

fundamental contributions that allow for the first time, the meaningful clustering of subsequences 

from a time series stream. First, we show that the problem definition for time series clustering 

from streams currently used is inherently flawed, and a new definition is necessary. Second, we 

show that the Minimum Description Length (MDL) framework offers an efficient, effective and 

essentially parameter-free method for time series clustering. We show that our method produces 

objectively correct results on a wide variety of datasets from medicine, speech recognition, 

zoology, gesture recognition, and industrial process analyses.  
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1. INTRODUCTION 

Time series data is pervasive across almost all human endeavors, including 

medicine, finance, science, and entertainment. As such it is hardly surprising that 

it has attracted significant attention in the research community [1][4][25][32]. 

Given the ubiquity of clustering both as a data mining application in its own right 

and as a subroutine in other higher-level data mining applications (i.e., 

summarization, outlier discovery, rule-finding, preprocessing for some 

classification algorithms  etc.), it is surprising that the problem of time series 

clustering from a single time series stream remains largely unsolved, in spite of 

significant efforts by the community [1][4][32]. Most work on time series 

clustering considers the clustering of individual time series that have been 

carefully extracted from their original context, say, gene expressions or extracted 

signals such as individual heartbeats. The few attempts at clustering the contents 

of a single time series stream have been shown to be objectively incorrect in some 

cases [18], and in other cases shown to work only on the most contrived datasets 

by carefully adjusting a large set of parameters. In this work, we make two 

fundamental contributions. First, we show that the problem definition for time 

series clustering from streams currently used is inherently flawed. Any 

meaningful algorithm must avoid trying to cluster all the data. In other words, the 

subsequences of a time series should only be clustered if they are clusterable. 

This seems to open up a “chicken and egg” paradox. However, our second 

contribution is to show that the Minimum Description Length (MDL) framework 

offers an efficient, effective and essentially parameter-free solution to this 

problem. MDL has had a significant impact in bioinformatics and data mining of 

discrete objects such as natural language [15], but has yet failed to have a 

significant impact on real-valued data mining [14][22][28]. 

We begin by giving the intuition behind the fundamental observation that 

motivates and informs our work, that clustering of time series from a single stream 

of data requires ignoring some of the data. 
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1.1 Why Clustering Time Series Streams requires Ignoring some 

Data 

The observation motivating our efforts to cluster time series is that any attempt 

that insists on trying to explain all the data is doomed to failure. To see this 

consider one of the most obviously “clusterable” time series data sources: motion-

captured sign language, such as American Sign Language (ASL). There has been 

much recent work on nearest-neighbor classification of such data, with accuracies 

greater than 90% frequently reported [1]. This suggests that a long data stream of 

ASL might be amenable to clustering, where each cluster maps to a distinct 

“word” or “phrase.” 

However, all such data contains Movement Epenthesis (ME) [8][32]. During the 

production of a sign language sentence, it is often the case that a movement 

segment needs to be inserted between two consecutive signs to move the hands 

from the end of one sign to the beginning of the next. These ME segments can be 

as long as—or even longer than—the true signs, and are typically not performed 

with the precision or repeatability of the actual words, since they have no 

meaning. Recent sophisticated sign language recognition systems for continuous 

streams have begun to recognize that “automated sign recognition systems need a 

way to ignore or identify and remove the movement epenthesis frames prior to 

translation of the true signs” [32]. 

What we observed about ASL as a concrete and intuitive example matches our 

experience with dozens of other datasets, and indicates that this is a pervasive 

phenomenon.  We believe that almost all datasets have sections of data that do not 

represent a discrete underlying behavior, but simply a transition between 

behaviors or random drifts where no behavior is taking place. In most datasets that 

we have examined, such sections constitute the majority of the data. If we are 

forced to try to model these in our clusters, they will swamp the true significant 

clusters. We can best demonstrate this effect, and hint at our proposed solution by 

an experiment on a discrete analogue of ASL time series, in this case English text.  

We emphasis that this is just a expository example, and if we were really assigned 

to cluster such text data we could do better than the attempt shown below. 

Consider the following string D, which from left to right mentions three versions 

of the name David (English, Persian, Yiddish) and three versions of the name 
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Peter (English, Croatian, Danish). Note that all names have five letters each, 

making this problem apparently simple.  

David enjoined Peter who identified Davud son of Petar friend to Dovid and Peder, to do what... 

Here the words between the names are exactly the epenthesis previously referred 

to. To make it more like our time series problem, we can strip out the punctuation 

and spacing, leaving us: 

davidenjoinedpeterwhoidentifieddavudsonofpetarfriendtodovidandpedertodowhat 

The discrete analogue of the time series clustering algorithm in [10] would begin 

by extracting all the subsequences of a given fixed length. Let us assume for 

simplicity the length five is used, and thus the data is transformed into: 

david 
avide 
viden 
idenj 
... 
owhat 

In Figure 1 we show representative clusters for two values of K, if we perform 

partitional clustering as in [10] on this extracted data. 

       

Figure 1. Representative partitional clusters from dataset D for two settings of K. 

Note that while the cluster of the name variants of David is discovered, we find 

that under any setting of K there are equally significant meaningless clusters, for 

example {nofpe, nedpe, andpe}. This is in spite of the fact that this can be 

considered a particularly easy task. Exactly 40% of the signal consists of data we 

hope to recover, and we deliberately avoided name variants of different lengths 

(i.e., pieter, pere).  In more realistic settings we expect much less of the data to 

contain meaningful signals. Note also that the problem is not mitigated by using 

other clustering variants. The problem is inherent in the false assumption that a 

Three clusters of equal diameter when K = 20

{whoid, davud, njoin, dovid, david}
{ified, frien, oined, oiden, viden, vidan}
{todow, todov, sonof}

Three clusters of equal diameter when K = 40
{avuds, ovida, avide}
{davud, dovid, david}
{nofpe, nedpe, andpe}
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clustering of a single stream that must explain all such data could ever produce 

meaningful results [18]. 

1.2 How MDL Can Help 

In contrast to the previous section, it is instructive to see what our proposed 

algorithm will do in this case. While the details of our algorithm are not 

introduced until Section 4, we can still outline the basic intuition here. 

The original string D has a bit-level representation whose length we denote as 

DL(D). Our algorithm can be imagined as attempting to losslessly compress the 

data by finding repeated structure in it. As there is little exactly repeated structure, 

we must find approximately repeated structure and encode the differences. For 

example, if we find the approximately repeated versions of the name “david”, we 

can think of one version as being a model or hypotheses for the data, and encode 

only the difference between the other occurrences: 

 H1 =  {1:david} 

 1____enjoinedpeterwhoidentified1___u_sonofpetarfriendto1_o___andpedertodowhat 

In terms of MDL we can see david as a partial hypothesis H1 or description of the 

data. This model has some size, which is simply the length in bits of the word 

DL(H1) = DL(david). In addition, the size of the remaining data was both reduced 

by factoring out the common structure and (slightly) increased by the overhead of 

the pointers to the dictionary, etc1. When encoded with the hypothesis, the length 

(in bits) of the description of the data is given as DL(D│H1). The total cost of both 

the hypothesis and the data encoded using the hypothesis is just DL(H1) + 

DL(D│H1). 

Because this sum is less than the length of the original data DL(D), we feel that we 

are making progress. Perhaps, however, there is more structure we can exploit. A 

brief inspection of the data suggests another model, H2, that exploits both repeated 

names: 

 H2 =  {1:david 2:peter} 

 1___enjoined2___whoidentified1___u_sonof2___a_friendto1_o___and2__d__todowhat 
                                                            

1 In this toy example, we are deliberately glossing over the concrete details of how the pointers are 
represented and how the amount compression achieved is measured, etc. [21]. We will formalize 
these details in Section 3. 
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Because DL(H2) + DL(D│H2) < DL(H1) + DL(D│H1), we prefer this new 

hypothesis as a model of the data. 

Are we now done? We can try other hypotheses. For example, we could consider 

the hypothesis H3 = {1:david 2:peter 3:ono}, attempting to exploit the two 

occurrences of a pattern “o*o” (i.e.,..sonof.. and ..to do.. ). However, because this 

pattern is short, and only has two occurrences, we cannot break even with the cost 

of the overhead: 

DL(H2) + DL(D│H2) < DL(H3) + DL(D│H3) 

Because we cannot find any other hypotheses that produce a smaller model, we 

invoke the MDL principle to claim that H2 = {1:david 2:peter} is the best model of 

the data D.  Here best means something beyond simply achieving the greatest 

compression. We can claim that MDL approach has achieved the most 

parsimonious explanation of the data, recovering the true underlying structure 

[9][13][16][15][21]. In at least this case, where the sentence was contrived as an 

excuse to use two names trice, MDL did recover the true underlying structure. 

Note that while our informally stated algorithm does manage to recover the two 

embedded clusters, it does not attempt to explain all of the data. This is a critical 

observation, in order to cluster a single stream of data, be it discrete or real-valued, 

we must be able to represent and rank solutions that ignore some of the data. 

2. RELATED WORK 

The tasks of clustering multiple time series streams, or many individual time series 

(i.e., gene expressions) have received significant attention, but the solutions do not 

inform the problem we consider here, the task of clustering a single time series 

stream. The most commonly referenced technique for clustering a single time 

series stream is presented in [10] as a subroutine for rule discovery in time series. 

In essence the method slides a fixed length window across the stream, extracting 

all subsequences which are then clustered with K-Means. The reader may have 

already spotted a flaw here; the algorithm tries to explain all the data. In [18] (and 

follow-up works by more than twenty other authors [5][6][11]), it was shown that 

this method can only produce cluster centers that are sine waves, and the output of 

the algorithm is essentially independent of the input. Note that even if the 
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algorithm did not have these fatal flaws, it assumes the cluster all have equal 

length, and that we know the correct value of K. As we shall show, our method 

requires neither assumption.  

Since the problem with [10] was pointed out in 2005 [18], at least a dozen 

solutions have been proposed. In Section 5.3 we show that the most referenced of 

these works [6] does not produce objectively correct results, even after extensive 

parameter tuning by the original authors on a relatively simple problem.   

While there have been some efforts to use MDL with time series [26][29], they all 

operate on a quantized representation of the data. This has the disadvantage of 

requiring three parameters (cardinality, dimensionality and window size), 

eliminating the greatest advantage of MDL, its intrinsically parameter-free nature.   

While MDL has had surprisingly little impact in data mining, it is a tool of choice 

for many bioinformatics problems. For example, working with RNA data, Evans 

et. al. have proposed a method using data compression and the MDL principle that 

is capable of identifying motif sequences, some of which were discovered to be 

miRNA target sites implicated in breast cancer [13]. Moreover, the authors 

showed the generality of their ideas by applying them, unmodified, to the problem 

of network traffic anomalies [14]. There is also a significant work on using MDL 

to mine graphs [16][25], dating back to classic work by Cook et al. [9]. 

Finally, we note that the task was informed by, and may have implications for 

many other time series problems, including time series segmentation2 [4]. To see 

why, let us revisit the technique of text analogy. It is not obvious how one should 

segment the three concatenated words “hisabasiais”. Perhaps the best we could do 

is to exploit the known frequencies of bigrams and trigrams, etc. In fact, most time 

series segmentation algorithms essentially do the real-valued equivalent of this [4]. 

However, if we see another such triplet of three concatenated words from later in 

the same stream, for example “withoutabasiais”, we can immediately see that 

“abasia” must be a word3. 

                                                            
2 The phrase “time series segmentation” is unfortunately overloaded. It can mean approximating the 
data with the smallest number of piecewise polynomial segments for a given error threshold, or as 
here; extracting small, discrete, semantically meaningful segments of data [4]. 
3 Abasia is the inability to walk due to impaired muscle coordination. 
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3. BACKGROUND AND NOTATION 

3.1 Definitions and Notation  

We begin by defining the data type of interest, time series: 

Definition 1: A time series T is an ordered list of numbers. T = t1, t2 ,...,tm. 

Each value ti can be any finite number (e.g., for two-byte values they could be 

integers in range [-32,768, 32,767]) and m is the length of time series T. 

Before continuing, we must make and justify a choice. The MDL technique that is 

at the heart of our algorithm requires discrete data, but most time series datasets 

use four or eight bytes per value, and are thus real-valued [23]. Our solution is 

simply to cast the real-valued numbers into a reduced cardinality version. Does 

such a reduction lose meaningful information? To test this, we did one nearest-

neighbor classification on eighteen public time series datasets, for cardinalities 

from the original four bytes down to a single bit.  Figure 2 shows the results. As 

we can see, we can drastically reduce cardinality without reducing accuracy. The 

original four-byte cardinality is typically a by-product of file format convention or 

hardware specification, and not a claim as to the intrinsic cardinality of the data. 

 

Figure 2. Classification accuracy on 18 time series datasets as a function of the data 

cardinality. Even if we reduce the cardinality of the data from the original 4,294,967,296 to a 

mere 64 (vertical bar), the accuracy does not decrease. 

We note that there may be other things we could have done. For example, the 

MML framework [31] which is closely related to MDL would allows us to work 

in original continuous space. However, we choose MDL because it is more 

familiar and it allows for a more intuitive explanation of our algorithms. Likewise, 

we have at least a dozen choices of how to discretize the time series (adaptive 

binning, uniform binning, SAX etc.); however, after testing all published 
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algorithms and finding it made little or no difference, we settled on the simple idea 

shown below in Definition 3. 

Based on the observations in Figure 2, we will simply use 64-value (6-bit) 

cardinality in the rest of this work.  

While the source data is one long time series, we ultimately wish to cluster it into 

sets of shorter subsequences: 

Definition 2: A subsequence Ti,k of a time series T is a short time series of 

length k which starts from position i. Formally, Ti,k = ti,ti+1,..,ti+k-1, 1 ≤ i ≤ m-

k+1. 

As we previously noted, we are working in a space of reduced cardinality. 

Because comparing time series with different offsets and amplitudes is 

meaningless [18], we must (slightly) adapt the normalization process for our 

discrete representation: 

Definition 3: A discrete normalization function DNorm is a function to 

normalize a real-valued subsequence T into b-bit discrete value of range 

[1,2b]. It is defined as followings: ݉ݎ݋ܰܦ(ܶ) = ݀݊ݑ݋ݎ	 ቆ൬ ܶ ݔܽ݉݊݅݉− −݉݅݊൰ ∗ (2௕ − 1)ቇ + 1 

where min and max are the minimum and maximum value in T, respectively.  

Based on the results in Figure 2, b is fixed at 6 for all experiments. We need to 

define a distance measure; we use the ubiquitous Euclidean distance measure:  

Definition 4: The distance between two subsequences Ti,k and Tj,k is the 

Euclidean distance (ED) between Ti,k and Tj,k. Both subsequences must be in 

the same length. Hence, it is: 

)ݐݏ݅ܦ ௜ܶ,௞, ௝ܶ,௞) = ඨ෍ ൫ݐ௜ା௟ − ௝ା௟൯ଶ௞ିଵ௟ୀ଴ݐ  

As we shall see later, the Euclidean distance is not general enough to support 

clustering from time series streams; nevertheless, it is still a useful subroutine to 

speed up our more general measures. As generally noted [3][19][30][33], the 

Euclidean distance is a fast and robust distance measure. 
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For both the full time series T and any subsequences derived from it, we are 

interested in knowing how many bits are necessary to represent it. Normally the 

number of bits depends solely on the data format, which is typically a reflection 

of some arbitrary choices of hardware and software.  In contrast, we are interested 

in knowing the minimum number of bits to exactly represent the data. In the 

general case, this number is not calculable, as it is the Kolmogorov complexity of 

the time series [22]. However, there are numerous ways to approximate this, 

using Huffman coding, Shanon-Fano coding, etc. Because entropy is a lower 

bound on the average code length from any such encoding, we can use the 

entropy of the time series as its description length: 

Definition 5: The entropy of a time series T is defined as following. For 

special case when P = 0, ܲ logଶ ܲ is defined as 0. ܪ(ܶ) = 	−෍ ܲ(ܶ = (ݐ logଶ ܲ(ܶ = ௧(ݐ  

We can now define the description length of a time series. 

Definition 6: A description length DL of a time series T of length m is the 

total number of bits required to represent it, that is DL(T)= m*H(T). 

The DL of a time series using entropy clearly depends on the data itself, not just 

arbitrary representational choices. Figure 3 shows four time series, which all 

require 250 bytes to characterize in the original representation, but which have 

differing entropies and thus different description lengths. 

 

Figure 3. Four time series of length 250 and with a cardinality of 256. Naively all require 250 

bytes to represent, but they have different description lengths. 

The reader may have anticipated the following observation. While the (slightly 

noisy) straight line B has high entropy, we would subjectively consider it a simple 

shape. It is simple given our belief (hypothesis) that it is a slightly corrupt version 

of a straight line. If H is this hypothesis, then we can consider instead the entropy 

of a time series B', which as shown in Figure 4, is simply B encoded using H, and 

0 50 100 150 200 250

A

0

250
B

C

D
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written as B' = (B│H). As a practical matter, to use H to encode B, we simply 

subtract H from B to get a difference vector B', and encode this simpler vector B'. 

Figure 4. Time series B can be represented exactly as the sum of the straight line H and the 

difference vector B'. 

While the vector B' is also of length 250, it has only 10 unique values, all of which 

are small in magnitude, thus its entropy rate is only 2.51 bits. In contrast, B has 

172 unique values and an entropy rate of 7.29. Note that if we are given only B', 

we cannot reconstruct B; we also need to know the slope and mean of the line. 

Thus, when reporting the overall number of bits for B', we must also consider the 

number of bits it takes to encode the hypothesis (the line H). We can encode the 

line simply by recording the heights’ two locations, the first and last points4, each 

of which requires a single byte. Thus, the number of bits required to represent B 

using our hypothesis is: 

DL(B) = DL(H) + DL(B│H) = (2*8) + (250*2.51) = 643.5 bits 

which is significantly less than the 1,822 bits required for the naive encoding of B 

without any hypothesis. 

Note the straight line would not help in reducing the number of bits required to 

represent time series C, but using a sine wave as the hypothesis would 

significantly help. This observation inspired one of the principle uses of MDL, 

model section [28]. Statisticians use this principle to decide if some noisy 

observations suggest an underlying physical model is produced by, say, a 

piecewise linear model as opposed to a sinusoidal model. However, our work 

leverages off a simple but unexploited observation. The hypotheses are not limited 

to well-defined functions such as sine waves, wavelet basis functions, polynomial 

models, etc. The hypothesis model can be any arbitrary time series. We will see 

how this observation can be exploited in detail later, but in brief: if k subsequences 

                                                            
4 If we know the time series is z-normalized, we only need one byte to record the line. 

0 50 100 150 200 250

0

250

B H

B’ which is B-H, denoted as  B’ is B given H
B’ = (B|H)
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of a stream truly form a cluster, then it should be possible to store them in less 

space by encoding them as a set of difference vectors to the mean of all of them. 

Thus, we have a potential test to guide our search for clusters. 

Having seen this intuition, we can now formalize the notion of hypothesis as it 

pertains to our problem: 

Definition 7: A hypothesis H is a subsequence used to encode one or more 

other subsequences of the same length.  

As a practical matter, the encoding we use is the one visualized Figure 4, we 

simply subtract hypothesis H from the target subsequence(s) and encoded the 

difference vector(s). We could encode the difference vector(s) with, say, Huffman 

encoding, but as we noted in Definition 5, we really only care about the size of the 

encoding, so we simply measure the entropy of the difference vector(s) to get a 

lower bound of the size of encoding. 

A necessary (but not sufficient) condition to place two subsequences H and B into 

the same cluster is: 

    DL(B) >DL(B|H) 

This inequality requires that the subsequence B takes fewer bits to represent when 

H is used as a basis to encode it, encoding the intuition that the two subsequences 

are related or similar.   

We can hint at the utility of thinking about our data in terms of hypothesis 

encoding by revisiting our text example. When a clustering text stream, would it 

be better to merge A or B? 

A = {david, dovid},  B = {petersmith, petersmidt} 

The first case allows a tight cluster of two short words, is that better than a looser 

but longer cluster B? The problem is exacerbated when we consider the possibility 

of clusters with more than two members: how would we rank the relative utility of 

the tentative cluster C = {bob, rob, hob}? 

Normally, clustering decisions are made by considering Euclidean distance (or its 

text counterpart, Hamming distance); however, Euclidean distance only allows 

meaningful comparisons when all the subsequences are the same length. The 

solution for text, to use the length-normalized Hamming distance, cannot be 
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generalized here. The reason is subtle and underappreciated, suppose we have two 

subsequences of length k that are distance d apart. If we truncate the end points 

and measure the distance again, we might find it has increased! This is because we 

should only compare z-normalized time series when using Euclidean distance5, 

and after (re)z-normalizing the slightly shorter subsequences, we may find they 

have grown further apart. Thus, the z-normalized Euclidean distance function is 

not linear in length and is not even monotonic. 

We have already hinted at the fact that the DL function can use extra information, 

by using “given”, i.e.,  DL(B'│H) is the DL of B' given H. We can now formalize 

this notion: 

Definition 8: A conditional description length of a subsequence A when a 

hypothesis H is given is (ܪ|ܣ)ܮܦ = ܣ)ܮܦ −  (ܪ
Recall from Figure 3 and Figure 4 that the DL of a subsequence depends on the 

structure of the data. For example, a constant line has a very low DL, whereas a 

random vector has a very high DL. If A and H are very similar, their difference 

(A-H) will be close to a constant line and thus have a tiny DL. In essence then, the 

DL function gives us a parameter-free test to see if two subsequences should be 

clustered together.  

We generalize the notion of DL to multiple sequences next. We can apply the 

same spirit by using a hypothesis to calculate the minimum number of bits 

required to keep a cluster. We call this description length of a cluster: 

Definition 9: A Description Length of a Cluster (DLC) C is the number of 

bits needed to represent all subsequences in C. In this special case, H is the 

center of the cluster. Hence, the description length of cluster C is defined as:  (۱)ܥܮܦ = (ܪ)ܮܦ	 − (ܪ|ܣ)ܮܦ୅∈େݔܽ݉ +෍ ஺∈۱(ܪ|ܣ)ܮܦ  

The above DLC gives us a primitive to measure the reduction in bits achieved by 

encoding data with a hypothesis.  The two right terms in the equation record the 

number of bits needed to represent the cluster C. Concretely, if the cluster C 

                                                            
5 The solution of not normalizing the time series would mitigate this problem, but measuring the 
Euclidean distance between two time series with different offsets or amplitudes produces 
meaningless results [18]. 
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contains n subsequences, we need to keep at most n subsequences for 

reconstructing C. We choose to keep the hypothesis H and the n-1 smallest 

differences. Therefore, the description length of the cluster C is the combination of 

the description length of the hypothesis H and the minimum of any n-1 conditional 

description lengths with respect to H. 

Our clustering algorithm is essentially a search algorithm. Three operators avail of 

the DLC definition to test how many bits a particular choice can save. Thus, these 

three operators fall under the umbrella definition of bitsave: 

Definition 10:  A bitsave is the total number of bits saved after applying an 

operator that creates a new cluster, adds a subsequence to an existing cluster, 

or merges two existing clusters together. It is the difference in the number of 

bits before and after applying a given action:  

bitsave = DL(Before) - DL(After) 

In detail, the bitsave for each operator is defined as following: 
1)  Creating a new cluster C' from subsequences A and B 

 bitsave = DL(A) + DL(B) - DLC(C') 

2)  Adding a subsequence A to an existing cluster C 

 bitsave = DL(A) + DLC(C) - DLC(C') 

  where C' is the cluster C after including subsequence A. 

3)  Merging cluster C1 and C2 to a new cluster C'. 

 bitsave = DLC(C1) + DLC(C2) - DLC(C') 

Note that, as we discussed earlier, we do not use Euclidean distance to make 

decisions about which subsequences to place into which clusters. We use only use 

Euclidean distance in two subroutines: motif discovery and finding the closest 

subsequence from a given cluster center. Next, we will define closest subsequence 

or the nearest neighbor:  

Definition 11:  A nearest neighbor of the given subsequence A is the 

subsequence B such that  

Dist(A,B) ≤ Dist(A,X)   for any subsequences X 

Another definition, which we borrow from the literature [24], are time series motifs. 

Definition 12:  A time series motif is pair of subsequence A and B such that 

Dist(A,B) ≤ Dist(X,Y)   for any subsequences X≠Y, A≠B 
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Similar to the nearest neighbor, the time series motif contains two most similar 

subsequences in the given time series. We use the simple-but-robust Euclidean 

distance as dist function (cf. Definition 4) for finding both time series motif and 

the nearest neighbor of the given subsequence. Note that if subsequence X and Y 

are overlapped, it may lead to the discovery of trivial matches. For more details 

about the time series motif, we refer the reader to [24]. In next section, we will 

explain our algorithm in detail. 

4. CLUSTERING ALGORITHM  

Having introduced the necessary notation, we are finally in a position to introduce 

our algorithm. We begin by giving a simple text and visual intuition in the next 

section, and follow by giving detailed and annotated pseudo code in Section 4.2. 

4.1 The Intuition behind Stream Clustering  

Recall that our input is a single time series like the one shown in Figure 5.bottom 

and our required output is a set of clusters -- possibly of different lengths and 

sizes. Recall that the union of all the subsequences in this set of clusters may only 

cover a fraction of the input time series. Indeed, for pathological cases we are 

given a pure noise time series, we want our algorithm to return a null set of 

clusters. In Figure 5 we show our running example. It contains the interwoven 

calls of two very different species of birds. 

Figure 5. Two interwoven bird calls featuring the Elf Owl, and Pied-billed Grebe are shown in 

the original audio space (top), and as a time series extracted by using MFCC technique 

(middle) and then clustered by our algorithm (bottom).  
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Our proposed clustering algorithm is a bottom-up greedy search over the space of 

clusters. For the moment, we will ignore the computational effort that it requires 

and simply explain what is done, leaving the how it is (efficiently) done for the 

next section.  

Our algorithm is an iterative merging algorithm similar in spirit to an 

agglomerative clustering algorithm [17]. However, the differences are telling and 

worth enumerating: 

• Our algorithm typically stops merging before explaining all the data, thus 

producing a partitioning a subset of the data, not producing a hierarchy of all 

the data. 

• Agglomerative clustering algorithms are typically implemented such that they 

require quadratic space; our algorithm has only linear space requirements6. 

• Most critically, agglomerative clustering algorithms assume the K items of a 

fixed dimensionally (subsequence length) to be clustered are inputs to the 

algorithm. However, we do not know how many items will ultimately be 

clustered, or even how long the items will be. 

Similar to agglomerative clustering, we have a search problem that uses operators, 

in our case, create, add, and merge (Definition 10). When the algorithm begins, 

only create is available to us. 

We begin by finding the best initial pair of subsequences to combine so that we 

may create a cluster of two items. To find this best pair, we treat one as a 

hypothesis and see how well it encodes the other (Definition 8). The pair that 

reduces the bit cost the most is the pair of choice. This is shown in Figure 6 as 

Step 1.  

There is a potential problem here. Even if we fix the length of subsequences to 

consider to a constant s, the number of candidate pairs to consider is quadratic in 

the length of the time series, approximately O((m-s)2/2). Furthermore, there are no 

known shortcuts that let us search this space in sub-quadratic time. 

The solution to this problem is to note that Euclidean distance and conditional 

description length are highly correlated where either of them is small. We can 

                                                            
6 Linear space agglomerative clustering algorithms do exist, but require highly multiply redundant 
calculations to be performed, and are thus rarely used due to their lethargy. 
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leverage off this fact because there exist very fast algorithms to find the closest 

pair of subsequences (which are known as time series motifs [24]) under Euclidean 

distance. So rather than a brute force search using the conditional description 

length, we do a fast motif search and then test the motif pair’s conditional 

description length.  

 

Figure 6. A trace of our algorithm on the bird call data shown in Figure 5.bottom. 

In the next stage of the algorithm, there are two operators available to us. We can 

either add a third item to our existing cluster of size two, or we can create a new 

cluster, possibly of a different length. In Figure 6 in Step 2, we can see that in this 

case our scoring functions suggest creating a new cluster is the better option in.  

In the subsequent phase of the algorithm, it happens that all operators are available 

to us: we could try to create a new cluster, we could merge our two existing 

clusters, or we could add a subsequence to one of our two clusters. As we can see 

in Figure 6, Step 3, the last option is chosen.  

In the next iteration, the cheapest operator was to merge our two existing clusters 

as shown in Step 4. However, doing this does not decrease the size of the 

representation—it increases it. As such, our algorithm terminates after returning 

the two clusters it had created up to Step 3. The only other way that our algorithm 

can terminate is if it simply runs out of data to cluster. 
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4.2 Our algorithm in detail  

As we noted in the last section, our algorithm is a bottom-up search algorithm. The 

input is a single time series, and the output is a set of clusters of subsequences. 

Our algorithm can cluster subsequences of different lengths, and it does not 

require the number of clusters to be specified.  

There are three operators in our search algorithm: create, add, and merge. In each 

step, we do all (legal) operations and choose the operator which maximizes the 

number of bits saved as measure by bitsave (Definition 10). The current clusters 

are updated with respect to that choice.  

The algorithm can terminate in just two ways; either the best possible choice 

cannot save any bits, or all data is used up.  

Most attempts to cluster time series [6][10][11] suffer from a surfeit of parameters. 

Our algorithm allows essentially none. However, if we allow subsequences that 

are too short, we can get pathological results in some cases. For example, there are 

only two possible z-normalized subsequences of length two. Moreover, a user may 

wish to bias the algorithm towards certain clustering. For example, for electrical 

power demand load we may be interested in weekly or daily patterns. Thus, as 

shown in Table 1, we allow the user the option of suggesting an approximate 

length s. 

The algorithm begins by initializing the cluster set to empty, then it enters a loop 

until no more bits can be saved (line 2) or it runs out of data. Within each iteration 

the loop, we perform three operators create (line 4-9), add (line10-15), and merge 

(line16-22), and we keep the results of the most parsimonious operator. 

For the create process, we call a subroutine to find time series motifs under 

Euclidean distance using the fastest currently known technique [24]. Because we 

do not know how long the subsequences in the cluster should be, the algorithm 

runs MotifDiscovery multiple times on different lengths of motif (line 5). If 

the new cluster is created, then the number of bits saved is calculated (line 7). The 

temporary version of updated clusters are kept (line 8) and used if the algorithm 

eventually chooses to create this cluster (line 24). Recall that the details of 

function ComputeBitsave are provided in Definition 9 and 10. 
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Table 1: Main time series stream clustering algorithm 

Input:  ts : time series,   
 s  : approximate length 
Output: cluster : final cluster of subsequences 

1 
2 
3 
 
4 
5 
6 
7 
8 
9 
 
10 
11 
12 
13 
14 
15 
 
16 
17 
18 
19 
20 
21 
22 
 
23 
24 
25 

cluster = {} 
while bitsave>0 
  bitsave=-∞, i=0 
  // create new cluster 
  for len = s to 2s 
    (A,B)  = MotifDiscovery(ts,len) 
     C'    = CreateCluster(A,B)  
     bs.append(ComputeBitsave(C',A,B)) 
     cluster'.append(cluster	∪{C'}) 
  end for  
  // add subsequence to an existing cluster 
  for C ∈ cluster  
     A  = NearestNeighbor(ts,C) 
     C' = AddToCluster(C,A)  
     bs.append(ComputeBitsave(C',C,A)) 
     cluster'.append(cluster	∪{C'}-{C}) 
  end for 
  // merge 2 clusters 
  for C1 ∈ cluster 
    for C2 ∈ cluster and C1~=C2 
       C' = MergeClusters(C1,C2) 
       bs.append(ComputeBitsave(C',C1,C2))       
       cluster'.append(cluster	∪{C'}-{C1}-{C2}) 
    end for 
  end for 
  // update the result 
  [bitsave index] = max(bs); 
  cluster = cluster'(index); 
end while 

It is possible to add a subsequence into an existing cluster (line 10-15). We first 

find the most similar subsequence in the input time series with respect to the 

center of a given cluster (line 11); we can achieve this task by using any nearest-

neighbor search algorithm [12], including brute force search. After the search, the 

cluster is updated to include that nearest subsequence (line 12), the number of bits 

saved is calculated, and the temporary clusters are recorded (line 13-14). 

For our last operator, any pair of clusters is allowed to merge (line 18); we then 

compute the number of bits saved for each pair, and record the temporary cluster.  

After the algorithm measures the number of bits saved from all possible choices, 

the final cluster is updated with respect to the choice that maximizes the number of 

bits saved (line 23-24). 

We have glossed over an important detail: the two items being combined by the 

merge/add operators may be of different lengths. To allow this critical flexibility, 

we use a simple data structure to record a cluster. For any given cluster C, 
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C.size records the number of subsequences in the cluster, C.cen is the center 

of the cluster, C.seq is a set of subsequences in the cluster, and C.shift is a set 

of shift positions (i.e., offsets) of each subsequence in C when it aligned to the 

C.cen. Note that to compute the conditional description length (Definition 8), a 

subsequence and its hypothesis must be of the same length. 

Table 2 shows how a new cluster can be created from two subsequences of the 

same size. Because those two subsequences are from motif discovery under 

Euclidean distance, their align position is set to 0 (line 4). The center of new 

cluster is the average of those two subsequences. In Table 3, when we want to add 

a subsequence A to an existing cluster C, the new center is created by the weighted 

average of the current center and the subsequence (line 1). Because A is the nearest 

neighbor of C.cen, no offset alignment is needed for A. 

Table 2: Create  Operator 

Function C = CreateCluster(A,B) 

1 
2 
3 
4 

C.size = 2; 
C.cen  = (A+B)/2 
C.seq  = [A; B] 
C.shift= [0; 0] 

Table 3:  Add  Operator 

Function C = AddToCluster(C,A) 

1 
2 
3 
4 

C.cen  = (C.cen*C.size+A*1)/(C.size+1) 
C.size  =  C.size+1 
C.seq   = [C.seq; A] 
C.shift = [C.shift; 0] 

Table 4 shows how two clusters of different lengths can be merged into the same 

cluster. The new cluster contains all subsequences from both clusters (line 1-2). 

Because two clusters may be different lengths, we need to align them before 

finding the new center. As the Figure 6 example shows, Step 4 merges two 

clusters from Step 1 and Step 3. The red center in Step 1 is longer than the green 

center in Step 3. We align the red center at all possible offsets (line 6), and then 

create a new center by averaging two current centers. Parts of the new centers are 

created by weighted averaging from all (one or two) centers that cover that part 

(line 7-9). To make a decision among all possible offsets, MDL plays an important 

role again; at each offset, bitsave is calculated (line 11), and we choose the offset 

which can save the maximum number of bits (line 22-23). Similar to the code in 

line 6-13, which evaluates all offsets when C1.cen moves into C2.cen, the code 

in line 14-21 evaluates the inverse when C1.cen moves out of C2.cen. 



21 
 

Table 4: Merge  Operator 

Function C' = MergeClusters(C1,C2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

C'.seq = [C1.seq; C2.seq]  
C'.size = C1.size+C2.size 
n1=C1.size,    m1=length(C1.cen) 
n2=C2.size,    m2=length(C2.cen) 
i=0 
for off = 0 to m2 
  cen1 = [C2.cen(1,off), C1.cen] 
  cen2 = [C2.cen, C1.cen(1,m1+off-m2)] 
  C'.cen = (cen1*n1+cen2*n2)/(n1+n2) 
  C'.shift = [C1.shift+off; C2.shift] 
  bs.append(ComputeBitsave(C',C1,C2)) 
  Ctmp.append(C') 
end for 
for off = 1 to m1 
  cen1 = [C1.cen, C2.cen(1,m2+off-m1)] 
  cen2 = [C1.cen(1,off), C2.cen] 
  C'.cen = (cen1*n1+cen2*n2)/(n1+n2) 
  C'.shift = [C1.shift; C2.shift+off] 
  bs.append(ComputeBitsave(C',C1,C2)) 
  Ctmp.append(C') 
end for 
[bitsave index] = max(bs); 
C' = Ctmp(index); 

To summarize, our algorithm contains three operators (create, add, and merge), 

which all use MDL to decide the best choice at each step of the clustering. As 

there are no known indexing/motif discovery algorithms for MDL, we avail 

ourselves of two fast external modules that use Euclidean distance for motif 

discovery [24] and nearest neighbor search [20]. Using Euclidean distance as a 

fast proxy for MDL is possible because they are highly correlated when both are 

small. 

5. EXPERIMENTAL RESULTS 

We begin by stating our experimental philosophy. To ensure our experiments are 

reproducible, all codes/data are available at [34]. In addition, the site contains 

many more experiments omitted due to space limitations. Furthermore, the 

website contains video animations of the clustering process for each dataset. 

5.1 Comparison to Ground Truth 

We begin by considering a time series for which we have access to the ground 

truth (albeit indirectly). Consider the time series shown in Figure 7.top. A visual 

inspection gives a hint of some structure, but even on this tiny example, it is not 

clear exactly what the clustering should be -- or even what is the natural length for 
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potential clusters. This dataset was obtained by taking an audio snippet of a 

recording of Edgar Allen Poe’s poem “The Bells” and transforming it in to the 

Mel-Frequency Cepstral Coefficients (MFCC) retaining only the first coefficient. 

Figure 7. top) 29.8 seconds of an audio snippet, represented by the first coefficient in MFCC 

space, and then annotated  with colors to reflect the clusters. bottom) A trace of the steps use 

to produce the clustering. 

The clustering we obtained looks subjectively intuitive; however, because of the 

original source material we are in a unique position to do a more objective test. 

Table 5 shows the original source text brushed with the colors reflecting the 

clustering obtained. 

Table 5: The text corresponding to the time series shown in Figure 7, annotated by color/font 

Original Order Grouped by Clusters 

In a sort of Runic rhyme, 
To the throbbing of the bells--  
Of the bells, bells, bells,  
To the sobbing of the bells;  
Keeping time, time, time,  
As he knells, knells, knells, 
In a happy Runic rhyme,  
To the rolling of the bells,--  
Of the bells, bells, bells--  
To the tolling of the bells,  
Of the bells, bells, bells, bells,  
Bells, bells, bells,--  
To the moaning and the groan- 
ing of the bells. 

    bells,bells, bells 
    Bells, bells, bells 
Of the bells, bells, bells 
Of the bells, bells, bells 

   the throbbing of the bells 
   the sobbing of the bells 
   the tolling of the bells 

To the rolling of the bells 
To the moaning and the 
    time, time, time 
    knells, knells, knells 

sort of Runic rhyme 
groaning of the bells. 

The results are not perfect with reference to the text version. Recall that we are 

only considering one of the MFCC coefficients, instead of the ten plus typically 

used in speech processing. This allows some collisions, such as “time” and 

“knells”. However, the structure recovered by our algorithm is significant. Note 

that our clusters are of different sizes (three items, and two items) and of different 

lengths (from 55 points to 70 points). Also, note that we could have had a single 
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cluster of eighteen occurrences of the word “bells.” However, that would have 

obfuscated the information that this word tends to be repeated in this work, as in 

“bells, bells, bells.” These longer clusters are arguably more parsimonious.  

5.2 Clustering a Noisy Dataset 

In Figure 8, we show the results of clustering a noisy industrial dataset. The data 

comes from an industrial wire winding process. The original data consists of seven 

dimensions; here we show only the results of clustering the noisiest channel, 

labeled U1 (the results on the other channels are at [34]). Note that the data has 

significant non-uniform noise, including spikes and dropouts. While we do not 

have access to the ground truth here, the clusters, which have different sizes and 

length, clearly have the property of being similar within a cluster and dissimilar 

between clusters. Note that approximately 26% of the data remains unclustered. 

 

Figure 8. top) Dimension U1 of the Winding dataset.  middle) A trace of the clustering steps 

produced by our algorithm. bottom) Representative clusters obtained.  

5.3 Comparison to other Methods 

As we noted above there are few candidate strawmen to compare our work to. 

Here we compare our work to the most referenced work in the literature.  In a 

sequence of papers, Chen proposes a series of fixes for the stream clustering 

problem [5][6][7]. He demonstrates his ideas mostly on synthetic data; however, 
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as shown in Figure 9.right, he also tests on short section of the Koski heartbeat 

dataset. 

 

Figure 9. left) A screen dump of fig.11 from [6]. The original caption read “TF Clustering: 

Koski-ECG result”. right) An annotation of the clusters by a USC cardiologist. 

While the results are perhaps reasonable, it is not clear why we should have two 

clusters here since there is clearly just one heartbeat. In addition, there is a subtle 

artifact noticed by cardiologist, Dr. Helga Van Herle, whom we asked to examine 

this. The slight slope on the light-gray cluster show in Figure 9.left is not in the 

data; it comes from the fact that the input data is not an integer multiple of beats, 

instead being roughly 5.2 beats. Since the algorithm is trying to explain all the 

data, it must explain the extra P-wave by averaging it into a place where it does 

not belong. Furthermore, as acknowledged in the original paper, the algorithm 

requires the setting of several parameters and “magic numbers” (i.e., “we chose p 

as the number of points in the time series divided by 15..”). Finally, we note in 

passing that the algorithm requires multiple calls to a quadratic space and time (in 

the length of the time series) algorithm, which would make it impractical for many 

real data mining problems. Our algorithm requires linear space.  

In Figure 10, we show the clustering we achieved on exactly the same dataset. We 

believe the results here are intuitively correct, discovering a complete single 

heartbeat as the cluster. Note that our algorithm explains 87.5% of the data; it does 

not try to explain the extra P-wave “bump” caused by the fact that we do not have 

an integer number of heartbeats. 
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Figure 10. top) The same 2,000 data points from Koski-ECG as used in Figure 9.  middle) A 

trace of the clustering steps produced by our algorithm.  bottom) the single cluster discovered 

has five members. 

5.4 Scalability 

From our algorithm in Section 4.2, assume that MotifDiscovery takes time 

O(T). In each create step, MotifDiscovery is called multiple times to find 

motifs of different length; we run it at most O(s) times. Because each subsequence 

is of length at least s, there are at most O(m/s) new clusters to be created. This is 

why the running time for creating new clusters is O(T*s*m/s) = O(mT).  

Assume that NearestNeighbor can be finished in time O(ms). The maximum 

number of clusters we can have is O(m/s), and the original time series can be 

updated only when a new motif is discovered, so the number of clustering steps 

(cf. line 2 in Table 1) is at most O(m/s). Thus, for add steps we have O(ms * m/s * 

m/s) = O(m3/s).  

For merge steps, if a cluster is created by merging k clusters so far, the number of 

subsequences in that cluster is at most O(k). The length of its center is at most 

O(ks); therefore, the number of possible offsets is O(ks), and bitsave calculation is 

finished in time O(k2s2). The maximum number of clusters we can have is at most 

O(m/s), so we can have cluster of size k at most O(m/sk) clusters, and there are at 

most O(m/s) steps in our algorithm. This means that the running of merge steps is 

at most O(m/s*(m/sk)2*k2s2) = O(m3/s). Hence, the total running time of our 

algorithm is at most O(mT+m3/s) where T is a running time for a motif discovery. 

The empirical behavior is shown in Figure 11. 
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Figure 11. Running time of our algorithm on Koshi data when s = 350. 

To put these results in perspective, the ornithology lab we are working with has 

spent months collecting data in the field (cf. Figure 5), so they are willing to wait 

the hour we require to cluster several minutes of audio. Nevertheless, we believe 

that a 100X speedup will soon be possible simply by caching some near redundant 

motifs calculations.  

5.5 Disscusion of the MDL Choice 

Now that the reader has gleaned some intuition for our algorithm and its utility for 

clustering data, we will briefly revisit a discussion of why MDL on a discretized 

time series is our choice of measure to steer the clustering search.  

We cannot use Euclidean distance (or the related correlation or Dynamic Time 

Warping etc. [12][20]) directly because it does not allow us to compare the 

relative merits of clusters of different lengths or different sizes. In contrast, MDL 

does allow such meaningful comparisons.  Moreover, in the limited case when 

MDL and Euclidean distance can be compared (when time series lengths are the 

same), we find that the two measures are highly correlated so long as they are 

small (if both are destined to be large, it does not really matter how correlated they 

are). The relationship between Euclidean distance and MDL is shown in Figure 

12. 

We work in the discrete space rather than the original continuous space because 

MDL requires it, and because working with the discretized time series makes no 

perceptible difference in classification (as shown in Figure 2) or in similarity 

search, indexing, motif discovery or outlier discovery. 

Because of their relationship especially when the distance is small, to make an 

intractable problem solvable (in term of acceptable running time), we can apply 

ED-based techniques to speed up the algorithm in some modules. For example, 

instead of finding the pair of subsequences whose difference has the smallest 
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min max
min

max
ED vs MDL

ED

M
D

L

MDL, we can use the fast motif discovery algorithm from [24] to find the most 

similar pair using Euclidean distance. We also can apply some techniques, such as 

early abandoning and lower bounding, in searching a nearest subsequence of the 

existing clusters. 

 

 

Figure 12.  The relationship between Euclidean Distance (ED) of pairs of subsequences in a 

random walk time series and MDL of their difference. Euclidean distance is calculated in 

original continuous space but MDL is calculated in discrete space (64 cardinality).  

Although Euclidean distance can dramatically speed up the running time of 

algorithm, sometimes the most similar subsequences using Euclidean distance and 

MDL are not the same. This makes our final score, bitsave, non-monotonically 

decreasing as the readers may have noticed in Figure 7.bottom and in Figure 

8.middle.  

6. MULTI-DIMENSIONAL CLUSTERING 

In additional to a single dimensional time series clustering, our algorithm can be 

extended to cluster multi-dimensional time series data. In many applications that 

contain more than one feature, the quality of the clustering can be better if we can 

do clustering across different features or dimensions. For example, in motion 

capture, some activities have key features only in the upper parts of the body, but 

lower parts are keys in some activities. 

6.1 Notation 

For the sake of clarity, this section will define some necessary notations related to 

multi-dimensional time series clustering; however, we not that many of these 
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definitions are obvious analogs of the single-dimensional case discussed in Section 

3. We begin by defining multi-dimensional time series: 

Definition 13: A d-dimensional time series T is a d-dimensional ordered list of 

numbers. T = <T1,T2,…,Td> where a time series in dimension i, Ti = ti,1, ti,2 ,..., 

ti,m. Each value tj can be any finite number and m is the length of the time 

series, which is equal for all dimensions. 

When the original time series contain multiple dimensions, its subsequence is 

called a d-dimensional subsequence: 

Definition 14: A d-dimensional subsequence Ti,j,k of a d-dimensional time 

series T is a short time series of length k of dimension i which starts from 

position j. Formally, Ti,j,k = ti,j, ti,j+1, .., ti,j+k  where 1 ≤ i ≤ d  and 1 ≤  j ≤ m-k. 

As we mentioned before in previous sections, Euclidean distance and MDL are 

highly correlated when the distances are small. As in the single version algorithm, 

many techniques using the Euclidean distance are used for speeding up our 

algorithm. Hence, we define the Euclidean distance for two d-dimensional 

subsequences as following: 

Definition 15:  The Euclidean distance between two d-dimensional 

subsequences A and B of the same length, k, is:  

,ܣ)ݐݏ݅ܦ (ܤ = ඨ෍ ෍ ൫ܣ௜,௝ − ௜,௝൯ଶ௞௝ୀଵௗ௜ୀଵܤ  

The description length for a multi-dimensional time series is calculated based on 

the entropy of the given time series. We define entropy for d-dimensional time 

series as:  

Definition 16: The entropy of a d-dimensional time series T is defined as 

following equation. For special case when P = 0, ܲ logଶ ܲ is defined as 0. ܪ(ܶ) = 	−෍ ෍ ܲ( ௜ܶ = )logଶܲ(ݐ ௜ܶ = ୲୧ୢୀଵ(ݐ  

For simplicity, we define the entropy of d-dimensional time series as the simple 

summation of the entropy from each dimension. This means we treat each 

dimension independent from others. While we do not preclude other methods for 

calculating  d-dimensional entropy, this method works very well empirically.  
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However, there may be some room here to improve the quality of the clustering if 

we can exploit use the relationship between different dimensions. We leave this as 

the future improvement. 

Similar as in Definition 6 in Section 3.1, the description length of a multi-

dimensional time series T is defined as m*H(T) where m is the length of the time 

series T. We can reuse Definition 8, 9 and 10 in our multi-dimensional clustering 

algorithm.  

We invite the readers to revise some definitions in Section 3.1 before we move 

forward to the algorithm in next section. 

6.2 Multi-dimensional Clustering Algorithm 

In general, the idea of clustering multi-dimensional time series is similar to the 

idea of clustering a single dimensional time series in Section 4.2.  

The algorithm composes of three operations – create, add, and merge. The general 

idea is the same as in the previous algorithm. All possible operators will be 

considered and their bitsave will be computed. Then, the choice whose bitsave is 

maximum will be selected and the algorithm performs the operation corresponding 

to that choice. The algorithm for clustering multi-dimensional time series is shown 

in Table 6. 

We allow user to set the approximate length of subsequences, contained inside the 

final clusters. The set of the final clusters is initialed to an empty set (line 1). The 

algorithm will be terminated on only two conditions, first, when no possible 

choices can reduce the number of bits for representing the clusters and, second, 

when there is no data left and all clusters have been merged. 

In the create operation (line 4-10), we find a most similar pair of subsequences. 

The Euclidean distance is used here instead of MDL for speeding up the process 

and makes this process much faster. A trivial extension of the motif discovery 

algorithm from [24] using multi-dimensional Euclidean distance (cf. Definition 

15) is used here to find the most similar subsequences in multi-dimensional time 

series (line 6). Then, a new cluster is created and its bitsave is calculated (line 7-

8). For convenience, the temporary cluster is collected (line 9). 

In add process (line 11-17), the nearest neighbor of each existing cluster is 

discovered (line 13). The rest of the algorithm, including merge process (line 18-
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25), is the same as in the algorithm in Section 4.2. After all choices are calculated, 

the choice, which maximizes bitsave, will be selected to perform (line 27-28). 

Table 6: Multidimensional stream clustering algorithm 

Input:  ts : multidimensional time series,   
 s  : approximate length 
Output: cluster : final cluster of subsequences 

1 
2 
3 
 
4 
5 
6 
7 
8 
9 
10 
 
11 
12 
13 
14 
15 
16 
17 
 
18 
19 
20 
21 
22 
23 
24 
25 
 
26 
27 
28 
29 

cluster = {} 
while bitsave>0 
  bitsave=-∞, i=0 
 
  // create new cluster 
  for len = s to 2s 
    (A,B)  = MultiDimMotifDiscovery(ts,len) 
     C'    = CreateMultiDimCluster(A,B)  
     bs.append(ComputeBitsave(C',A,B)) 
     cluster'.append(cluster  U {C'}) 
  end for  
 
  // add subsequence to an existing cluster 
  for C ∈ cluster  
     A  = MultiDimNearestNeighbor(ts,C) 
     C' = AddToMultiDimCluster(C,A)  
     bs.append(ComputeBitsave(C',C,A)) 
     cluster'.append(cluster  U {C'}-{C}) 
  end for 
 
  // merge 2 clusters 
  for C1 ∈ cluster 
    for C2 ∈ cluster and C1~=C2 
       C' = MergeMultiDimClusters(C1,C2) 
       bs.append(ComputeBitsave(C',C1,C2))       
       cluster'.append(cluster  U {C'}-{C1}-{C2}) 
    end for 
  end for 
 
  // update the result 
  [bitsave index] = max(bs) 
  cluster = cluster'(index) 
end while 

Because each subsequence contains multi-dimensional data, the cluster 

representative or the cluster’s center also contains multi-dimensional data. Table 7 

explained how to create the cluster. The new cluster is always created from two 

subsequences so it will contain only two multi-dimensional subsequences.  

Table 7: Create  Operator 

Function C = CreateMultiDimCluster(A,B) 

1 
2 
3 
4 
5 
6 

C.size = 2 
for all dimension d 
 C.cend   = (Ad+Bd)/2 
 C.seqd   = {Ad, Bd} 
 C.shiftd = {0 0} 
end for 
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Similarly, how to add a multi-dimension subsequence to an existing cluster is 

explained in Table 8. The idea of all three operators is same as in the single-

dimension clustering algorithm. 

Table 8:  Add  Operator 

Function C = AddToMultiDimCluster(C,A) 

1 
2 
3 
4 
5 
6 

C.size = C.size+1 
for all dimension d 
 C.cend  = (C.cend*(C.size-1)+Ad*1)/C.size 
 C.seqd.append(Ad) 
 C.shiftd.append(0) 
end for 

Table 9 explains in detail how to merge two clusters. As in the single dimension 

version, when two clusters are being merged, we have to align their center to find 

the best position, whose bitsave is maximized, after merging. We can align the 

center of the first cluster’s center  when it moves  into  the center of another cluster 

Table 9: Merge  Operator 

Function C' = MergeMultiDimClusters(C1,C2) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

n1=C1.size,    m1=length(C1.cen) 
n2=C2.size,    m2=length(C2.cen) 
C'.size = n1+n2 
bs = {} 
Ctmp = {} 
for all dimension d 
 // add all sequences from C1 and C2 to C’ 
 C'.seqd = [C1.seqd ; C2.seqd]   
end for 
 

// align C1.cen by moving to all positions 
for off = 0 to m2 
 for all dimension d 
    // create centers of the same length 
    cen1 = [C2.cend(1,off), C1.cend] 
    cen2 = [C2.cend, C1.cend(1,m1+off-m2)] 
    C'.cend = (cen1*n1+cen2*n2)/(n1+n2) 
    C'.shiftd = [C1.shiftd+off; C2.shiftd] 
 end for 
   bs.append(ComputeBitsave(C',C1,C2)) 
   Ctmp.append(C') 
end for 
 

// move C1.cend to opposite direction 
for off = 1 to m1 
 for all dimension d 
    // create centers of the same length 
    cen1 = [C1.cend, C2.cend(1,m2+off-m1)] 
    cen2 = [C1.cend(1,off), C2.cend] 
    C'.cend = (cen1*n1+cen2*n2)/(n1+n2) 
    C'.shift = [C1.shiftd; C2.shiftd+off] 
    end for 
 bs.append(ComputeBitsave(C',C1,C2)) 
 Ctmp.append(C') 
end for 
[bitsave index] = max(bs); 
C' = Ctmp(index); 
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(line 10-21), and also when it moves out of another center (line 22-33). Each 

position in alignment is kept as a local variable inside the corresponding cluster 

(line 20). However, only the cluster which maximum bitsave is return (line 34-35). 

In next section, we will demonstrate that our algorithm can handle the time series 

which contains more than one dimension.  

6.3 Experimental Result 

We demonstrate our multi-dimensional clustering algorithm on a people activity 

dataset, Physical Activity Monitoring for Aging People (PAMAP) from [27]. In 

this dataset, eight subjects (people) perform both indoor and outdoor activities 

such as normal walk, Nordic walk, cycle, run, ascend stairs, and descend stairs. 

Each subject has sensors placed on three locations on their bodies, which are 

hand, chest and ankle. We pick one time series from each position; we choose to 

use only three time series generated by z-accelerometers instead of using all data 

from all 45 sensors because experience from indexing ASL [1] and motion 

capture data suggest that three or four time series is enough to represent most 

activities/behaviors. 

A snippet of a three dimensional time series showing an individual walking up and 

down stairs is shown in Figure 13. Each time series are generated from a z-

accelerometer. The data is from subject number 1 of indoor activities in PAMAP 

dataset [27]. In this example, the subject performed the sequence, walking up stair, 

walking down stair, and walking up stair. 

Figure 13. Three time series generated from z-accelerometer of sensors at hand, chest and shoe 

from PAMAP [27]. The subject performs three activities: descending stairs, ascending stairs, 

and descending stairs again.  
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The multidimensional clustering result is shown in Figure 14. Each color 

represents a cluster; hence, the subsequences of the same color are clustered into 

the same cluster. The result demonstrates that our algorithm can capture the 

similar actions inside the same activities. For example, three clusters appeared in 

both side of the time series, which are in the same action, i.e., walking down stair. 

Some data in the time series has been ignored as we can see in black color. From 

this example, we conjecture that the subject may occasionally have a special 

behavior because it looks like there are patterns inside the clusters. For example, it 

appear that she initially starts to climb stairs briskly (red), but begins to slow down 

as she was tired out after a few flights (blue). Likewise, the sequence of three 

clusters in the same order (pink, cyan, yellow) in both descending stairs sections is 

suggested. 

 

Figure 14. top) The multi-dimensional time series clustering result. Two clusters are detected 

in ascending stair, and three clusters are detected in descending stair. bottom) A trace of the 

multi-dimensional clustering steps produced by our algorithm. 

We also ran our single dimensional clustering algorithm on each dimension 

separately. The result shows that there are incorrect clusters across the different 

activities in the final clusters and, in some dimension, the algorithm is terminated 

very early and covers less than 25% of the data. Hence, in this example, the 
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clustering result from a single dimension is worse than the result form the multi-

dimensional clustering algorithm. We believe that the multi-dimensional time 

series can create the better clusters than the clusters created from just one 

dimension, especially when the dataset contains many related features such as 

motion capture. 

We can speed up the algorithm using Euclidean distance and make the problem 

solvable in an acceptable time, but we have to trade of the quality of the clustering 

somehow. Our parameter-lite algorithm can be extended to cluster multi-

dimensional time series and it works quite well; however, some readers may 

notice that the bitsave score (in Figure 14.bottom) is not much stable as the result 

of a single-dimensional clustering algorithm in Section 5. This is because the 

Euclidean distance is used instead of MDL in many core modules. By the curse of 

dimensionality, when the number of dimensionality is increase, the Euclidean 

distance performs worse and the difference between MDL and Euclidean distance 

is increase. We believe that if the multi-dimensional time series clustering using 

MDL has been well study in the future, some researchers will provide the distance 

which is fast enough and very close to MDL to get the better result. 

7. CONCLUSIONS 

In this work, we have shown that any attempt to cluster a single time series stream 

that insists on explaining all the data is almost certainly doomed to failure. We 

introduced a clustering representation that has the expressive power to ignore 

some of the data, and can have clusters with different length subsequences. We 

further showed an efficient and parameter-lite MDL based algorithm to perform 

the clustering. We have shown on our algorithm is effective on a wide variety of 

datasets, for both single and multi-dimensional problems. 

Currently our algorithm only works on batch time series. In ongoing work, we are 

attempting to generalize it to the online case.  
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