
1

MDL-Based Time Series Clustering

Thanawin Rakthanmanon Eamonn J. Keogh Stefano Lonardi

Department of Computer Science and Engineering

University of California, Riverside

Riverside, CA, 92521

{rakthant, eamonn, stelo} @cs.ucr.edu

Scott Evans

GE Global Research

evans@ge.com

ABSTRACT Time series data is pervasive across all human endeavors, and clustering is

arguably the most fundamental data mining application. Given this, it is somewhat surprising that

the problem of time series clustering from a single stream remains largely unsolved. Most work

on time series clustering considers the clustering of individual time series that have been carefully

extracted from their original context, e.g., gene expression profiles, individual heartbeats or

individual gait cycles. The few attempts at clustering time series streams have been shown to be

objectively incorrect in some cases, and in other cases shown to work only on the most contrived

synthetic datasets by carefully adjusting a large set of parameters. In this work, we make two

fundamental contributions that allow for the first time, the meaningful clustering of subsequences

from a time series stream. First, we show that the problem definition for time series clustering

from streams currently used is inherently flawed, and a new definition is necessary. Second, we

show that the Minimum Description Length (MDL) framework offers an efficient, effective and

essentially parameter-free method for time series clustering. We show that our method produces

objectively correct results on a wide variety of datasets from medicine, speech recognition,

zoology, gesture recognition, and industrial process analyses.

Keywords Time series; Clustering; MDL

 Received: Dec 11, 2011
 Revised: Mar 23, 2012
 Accepted: Apr 07, 2012

2

1. INTRODUCTION

Time series data is pervasive across almost all human endeavors, including

medicine, finance, science, and entertainment. As such it is hardly surprising that

it has attracted significant attention in the research community [1][4][25][32].

Given the ubiquity of clustering both as a data mining application in its own right

and as a subroutine in other higher-level data mining applications (i.e.,

summarization, outlier discovery, rule-finding, preprocessing for some

classification algorithms etc.), it is surprising that the problem of time series

clustering from a single time series stream remains largely unsolved, in spite of

significant efforts by the community [1][4][32]. Most work on time series

clustering considers the clustering of individual time series that have been

carefully extracted from their original context, say, gene expressions or extracted

signals such as individual heartbeats. The few attempts at clustering the contents

of a single time series stream have been shown to be objectively incorrect in some

cases [18], and in other cases shown to work only on the most contrived datasets

by carefully adjusting a large set of parameters. In this work, we make two

fundamental contributions. First, we show that the problem definition for time

series clustering from streams currently used is inherently flawed. Any

meaningful algorithm must avoid trying to cluster all the data. In other words, the

subsequences of a time series should only be clustered if they are clusterable.

This seems to open up a “chicken and egg” paradox. However, our second

contribution is to show that the Minimum Description Length (MDL) framework

offers an efficient, effective and essentially parameter-free solution to this

problem. MDL has had a significant impact in bioinformatics and data mining of

discrete objects such as natural language [15], but has yet failed to have a

significant impact on real-valued data mining [14][22][28].

We begin by giving the intuition behind the fundamental observation that

motivates and informs our work, that clustering of time series from a single stream

of data requires ignoring some of the data.

3

1.1 Why Clustering Time Series Streams requires Ignoring some

Data

The observation motivating our efforts to cluster time series is that any attempt

that insists on trying to explain all the data is doomed to failure. To see this

consider one of the most obviously “clusterable” time series data sources: motion-

captured sign language, such as American Sign Language (ASL). There has been

much recent work on nearest-neighbor classification of such data, with accuracies

greater than 90% frequently reported [1]. This suggests that a long data stream of

ASL might be amenable to clustering, where each cluster maps to a distinct

“word” or “phrase.”

However, all such data contains Movement Epenthesis (ME) [8][32]. During the

production of a sign language sentence, it is often the case that a movement

segment needs to be inserted between two consecutive signs to move the hands

from the end of one sign to the beginning of the next. These ME segments can be

as long as—or even longer than—the true signs, and are typically not performed

with the precision or repeatability of the actual words, since they have no

meaning. Recent sophisticated sign language recognition systems for continuous

streams have begun to recognize that “automated sign recognition systems need a

way to ignore or identify and remove the movement epenthesis frames prior to

translation of the true signs” [32].

What we observed about ASL as a concrete and intuitive example matches our

experience with dozens of other datasets, and indicates that this is a pervasive

phenomenon. We believe that almost all datasets have sections of data that do not

represent a discrete underlying behavior, but simply a transition between

behaviors or random drifts where no behavior is taking place. In most datasets that

we have examined, such sections constitute the majority of the data. If we are

forced to try to model these in our clusters, they will swamp the true significant

clusters. We can best demonstrate this effect, and hint at our proposed solution by

an experiment on a discrete analogue of ASL time series, in this case English text.

We emphasis that this is just a expository example, and if we were really assigned

to cluster such text data we could do better than the attempt shown below.

Consider the following string D, which from left to right mentions three versions

of the name David (English, Persian, Yiddish) and three versions of the name

4

Peter (English, Croatian, Danish). Note that all names have five letters each,

making this problem apparently simple.

David enjoined Peter who identified Davud son of Petar friend to Dovid and Peder, to do what...

Here the words between the names are exactly the epenthesis previously referred

to. To make it more like our time series problem, we can strip out the punctuation

and spacing, leaving us:

davidenjoinedpeterwhoidentifieddavudsonofpetarfriendtodovidandpedertodowhat

The discrete analogue of the time series clustering algorithm in [10] would begin

by extracting all the subsequences of a given fixed length. Let us assume for

simplicity the length five is used, and thus the data is transformed into:

david
avide
viden
idenj
...
owhat

In Figure 1 we show representative clusters for two values of K, if we perform

partitional clustering as in [10] on this extracted data.

Figure 1. Representative partitional clusters from dataset D for two settings of K.

Note that while the cluster of the name variants of David is discovered, we find

that under any setting of K there are equally significant meaningless clusters, for

example {nofpe, nedpe, andpe}. This is in spite of the fact that this can be

considered a particularly easy task. Exactly 40% of the signal consists of data we

hope to recover, and we deliberately avoided name variants of different lengths

(i.e., pieter, pere). In more realistic settings we expect much less of the data to

contain meaningful signals. Note also that the problem is not mitigated by using

other clustering variants. The problem is inherent in the false assumption that a

Three clusters of equal diameter when K = 20

{whoid, davud, njoin, dovid, david}
{ified, frien, oined, oiden, viden, vidan}
{todow, todov, sonof}

Three clusters of equal diameter when K = 40
{avuds, ovida, avide}
{davud, dovid, david}
{nofpe, nedpe, andpe}

5

clustering of a single stream that must explain all such data could ever produce

meaningful results [18].

1.2 How MDL Can Help

In contrast to the previous section, it is instructive to see what our proposed

algorithm will do in this case. While the details of our algorithm are not

introduced until Section 4, we can still outline the basic intuition here.

The original string D has a bit-level representation whose length we denote as

DL(D). Our algorithm can be imagined as attempting to losslessly compress the

data by finding repeated structure in it. As there is little exactly repeated structure,

we must find approximately repeated structure and encode the differences. For

example, if we find the approximately repeated versions of the name “david”, we

can think of one version as being a model or hypotheses for the data, and encode

only the difference between the other occurrences:

 H1 = {1:david}

 1____enjoinedpeterwhoidentified1___u_sonofpetarfriendto1_o___andpedertodowhat

In terms of MDL we can see david as a partial hypothesis H1 or description of the

data. This model has some size, which is simply the length in bits of the word

DL(H1) = DL(david). In addition, the size of the remaining data was both reduced

by factoring out the common structure and (slightly) increased by the overhead of

the pointers to the dictionary, etc1. When encoded with the hypothesis, the length

(in bits) of the description of the data is given as DL(D│H1). The total cost of both

the hypothesis and the data encoded using the hypothesis is just DL(H1) +

DL(D│H1).

Because this sum is less than the length of the original data DL(D), we feel that we

are making progress. Perhaps, however, there is more structure we can exploit. A

brief inspection of the data suggests another model, H2, that exploits both repeated

names:

 H2 = {1:david 2:peter}

 1___enjoined2___whoidentified1___u_sonof2___a_friendto1_o___and2__d__todowhat

1 In this toy example, we are deliberately glossing over the concrete details of how the pointers are
represented and how the amount compression achieved is measured, etc. [21]. We will formalize
these details in Section 3.

6

Because DL(H2) + DL(D│H2) < DL(H1) + DL(D│H1), we prefer this new

hypothesis as a model of the data.

Are we now done? We can try other hypotheses. For example, we could consider

the hypothesis H3 = {1:david 2:peter 3:ono}, attempting to exploit the two

occurrences of a pattern “o*o” (i.e.,..sonof.. and ..to do..). However, because this

pattern is short, and only has two occurrences, we cannot break even with the cost

of the overhead:

DL(H2) + DL(D│H2) < DL(H3) + DL(D│H3)

Because we cannot find any other hypotheses that produce a smaller model, we

invoke the MDL principle to claim that H2 = {1:david 2:peter} is the best model of

the data D. Here best means something beyond simply achieving the greatest

compression. We can claim that MDL approach has achieved the most

parsimonious explanation of the data, recovering the true underlying structure

[9][13][16][15][21]. In at least this case, where the sentence was contrived as an

excuse to use two names trice, MDL did recover the true underlying structure.

Note that while our informally stated algorithm does manage to recover the two

embedded clusters, it does not attempt to explain all of the data. This is a critical

observation, in order to cluster a single stream of data, be it discrete or real-valued,

we must be able to represent and rank solutions that ignore some of the data.

2. RELATED WORK

The tasks of clustering multiple time series streams, or many individual time series

(i.e., gene expressions) have received significant attention, but the solutions do not

inform the problem we consider here, the task of clustering a single time series

stream. The most commonly referenced technique for clustering a single time

series stream is presented in [10] as a subroutine for rule discovery in time series.

In essence the method slides a fixed length window across the stream, extracting

all subsequences which are then clustered with K-Means. The reader may have

already spotted a flaw here; the algorithm tries to explain all the data. In [18] (and

follow-up works by more than twenty other authors [5][6][11]), it was shown that

this method can only produce cluster centers that are sine waves, and the output of

the algorithm is essentially independent of the input. Note that even if the

7

algorithm did not have these fatal flaws, it assumes the cluster all have equal

length, and that we know the correct value of K. As we shall show, our method

requires neither assumption.

Since the problem with [10] was pointed out in 2005 [18], at least a dozen

solutions have been proposed. In Section 5.3 we show that the most referenced of

these works [6] does not produce objectively correct results, even after extensive

parameter tuning by the original authors on a relatively simple problem.

While there have been some efforts to use MDL with time series [26][29], they all

operate on a quantized representation of the data. This has the disadvantage of

requiring three parameters (cardinality, dimensionality and window size),

eliminating the greatest advantage of MDL, its intrinsically parameter-free nature.

While MDL has had surprisingly little impact in data mining, it is a tool of choice

for many bioinformatics problems. For example, working with RNA data, Evans

et. al. have proposed a method using data compression and the MDL principle that

is capable of identifying motif sequences, some of which were discovered to be

miRNA target sites implicated in breast cancer [13]. Moreover, the authors

showed the generality of their ideas by applying them, unmodified, to the problem

of network traffic anomalies [14]. There is also a significant work on using MDL

to mine graphs [16][25], dating back to classic work by Cook et al. [9].

Finally, we note that the task was informed by, and may have implications for

many other time series problems, including time series segmentation2 [4]. To see

why, let us revisit the technique of text analogy. It is not obvious how one should

segment the three concatenated words “hisabasiais”. Perhaps the best we could do

is to exploit the known frequencies of bigrams and trigrams, etc. In fact, most time

series segmentation algorithms essentially do the real-valued equivalent of this [4].

However, if we see another such triplet of three concatenated words from later in

the same stream, for example “withoutabasiais”, we can immediately see that

“abasia” must be a word3.

2 The phrase “time series segmentation” is unfortunately overloaded. It can mean approximating the
data with the smallest number of piecewise polynomial segments for a given error threshold, or as
here; extracting small, discrete, semantically meaningful segments of data [4].
3 Abasia is the inability to walk due to impaired muscle coordination.

8

3. BACKGROUND AND NOTATION

3.1 Definitions and Notation

We begin by defining the data type of interest, time series:

Definition 1: A time series T is an ordered list of numbers. T = t1, t2 ,...,tm.

Each value ti can be any finite number (e.g., for two-byte values they could be

integers in range [-32,768, 32,767]) and m is the length of time series T.

Before continuing, we must make and justify a choice. The MDL technique that is

at the heart of our algorithm requires discrete data, but most time series datasets

use four or eight bytes per value, and are thus real-valued [23]. Our solution is

simply to cast the real-valued numbers into a reduced cardinality version. Does

such a reduction lose meaningful information? To test this, we did one nearest-

neighbor classification on eighteen public time series datasets, for cardinalities

from the original four bytes down to a single bit. Figure 2 shows the results. As

we can see, we can drastically reduce cardinality without reducing accuracy. The

original four-byte cardinality is typically a by-product of file format convention or

hardware specification, and not a claim as to the intrinsic cardinality of the data.

Figure 2. Classification accuracy on 18 time series datasets as a function of the data

cardinality. Even if we reduce the cardinality of the data from the original 4,294,967,296 to a

mere 64 (vertical bar), the accuracy does not decrease.

We note that there may be other things we could have done. For example, the

MML framework [31] which is closely related to MDL would allows us to work

in original continuous space. However, we choose MDL because it is more

familiar and it allows for a more intuitive explanation of our algorithms. Likewise,

we have at least a dozen choices of how to discretize the time series (adaptive

binning, uniform binning, SAX etc.); however, after testing all published

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deceasing Cardinality

C
lassification A

ccu
racy

9

algorithms and finding it made little or no difference, we settled on the simple idea

shown below in Definition 3.

Based on the observations in Figure 2, we will simply use 64-value (6-bit)

cardinality in the rest of this work.

While the source data is one long time series, we ultimately wish to cluster it into

sets of shorter subsequences:

Definition 2: A subsequence Ti,k of a time series T is a short time series of

length k which starts from position i. Formally, Ti,k = ti,ti+1,..,ti+k-1, 1 ≤ i ≤ m-

k+1.

As we previously noted, we are working in a space of reduced cardinality.

Because comparing time series with different offsets and amplitudes is

meaningless [18], we must (slightly) adapt the normalization process for our

discrete representation:

Definition 3: A discrete normalization function DNorm is a function to

normalize a real-valued subsequence T into b-bit discrete value of range

[1,2b]. It is defined as followings: ݉ݎ݋ܰܦ(ܶ) = ݀݊ݑ݋ݎ	 ቆ൬ ܶ ݔܽ݉݊݅݉− −݉݅݊൰ ∗ (2௕ − 1)ቇ + 1

where min and max are the minimum and maximum value in T, respectively.

Based on the results in Figure 2, b is fixed at 6 for all experiments. We need to

define a distance measure; we use the ubiquitous Euclidean distance measure:

Definition 4: The distance between two subsequences Ti,k and Tj,k is the

Euclidean distance (ED) between Ti,k and Tj,k. Both subsequences must be in

the same length. Hence, it is:

)ݐݏ݅ܦ ௜ܶ,௞, ௝ܶ,௞) = ඨ෍ ൫ݐ௜ା௟ − ௝ା௟൯ଶ௞ିଵ௟ୀ଴ݐ

As we shall see later, the Euclidean distance is not general enough to support

clustering from time series streams; nevertheless, it is still a useful subroutine to

speed up our more general measures. As generally noted [3][19][30][33], the

Euclidean distance is a fast and robust distance measure.

10

For both the full time series T and any subsequences derived from it, we are

interested in knowing how many bits are necessary to represent it. Normally the

number of bits depends solely on the data format, which is typically a reflection

of some arbitrary choices of hardware and software. In contrast, we are interested

in knowing the minimum number of bits to exactly represent the data. In the

general case, this number is not calculable, as it is the Kolmogorov complexity of

the time series [22]. However, there are numerous ways to approximate this,

using Huffman coding, Shanon-Fano coding, etc. Because entropy is a lower

bound on the average code length from any such encoding, we can use the

entropy of the time series as its description length:

Definition 5: The entropy of a time series T is defined as following. For

special case when P = 0, ܲ logଶ ܲ is defined as 0. ܪ(ܶ) = 	−෍ ܲ(ܶ = (ݐ logଶ ܲ(ܶ = ௧(ݐ

We can now define the description length of a time series.

Definition 6: A description length DL of a time series T of length m is the

total number of bits required to represent it, that is DL(T)= m*H(T).

The DL of a time series using entropy clearly depends on the data itself, not just

arbitrary representational choices. Figure 3 shows four time series, which all

require 250 bytes to characterize in the original representation, but which have

differing entropies and thus different description lengths.

Figure 3. Four time series of length 250 and with a cardinality of 256. Naively all require 250

bytes to represent, but they have different description lengths.

The reader may have anticipated the following observation. While the (slightly

noisy) straight line B has high entropy, we would subjectively consider it a simple

shape. It is simple given our belief (hypothesis) that it is a slightly corrupt version

of a straight line. If H is this hypothesis, then we can consider instead the entropy

of a time series B', which as shown in Figure 4, is simply B encoded using H, and

0 50 100 150 200 250

A

0

250
B

C

D

11

written as B' = (B│H). As a practical matter, to use H to encode B, we simply

subtract H from B to get a difference vector B', and encode this simpler vector B'.

Figure 4. Time series B can be represented exactly as the sum of the straight line H and the

difference vector B'.

While the vector B' is also of length 250, it has only 10 unique values, all of which

are small in magnitude, thus its entropy rate is only 2.51 bits. In contrast, B has

172 unique values and an entropy rate of 7.29. Note that if we are given only B',

we cannot reconstruct B; we also need to know the slope and mean of the line.

Thus, when reporting the overall number of bits for B', we must also consider the

number of bits it takes to encode the hypothesis (the line H). We can encode the

line simply by recording the heights’ two locations, the first and last points4, each

of which requires a single byte. Thus, the number of bits required to represent B

using our hypothesis is:

DL(B) = DL(H) + DL(B│H) = (2*8) + (250*2.51) = 643.5 bits

which is significantly less than the 1,822 bits required for the naive encoding of B

without any hypothesis.

Note the straight line would not help in reducing the number of bits required to

represent time series C, but using a sine wave as the hypothesis would

significantly help. This observation inspired one of the principle uses of MDL,

model section [28]. Statisticians use this principle to decide if some noisy

observations suggest an underlying physical model is produced by, say, a

piecewise linear model as opposed to a sinusoidal model. However, our work

leverages off a simple but unexploited observation. The hypotheses are not limited

to well-defined functions such as sine waves, wavelet basis functions, polynomial

models, etc. The hypothesis model can be any arbitrary time series. We will see

how this observation can be exploited in detail later, but in brief: if k subsequences

4 If we know the time series is z-normalized, we only need one byte to record the line.

0 50 100 150 200 250

0

250

B H

B’ which is B-H, denoted as B’ is B given H
B’ = (B|H)

12

of a stream truly form a cluster, then it should be possible to store them in less

space by encoding them as a set of difference vectors to the mean of all of them.

Thus, we have a potential test to guide our search for clusters.

Having seen this intuition, we can now formalize the notion of hypothesis as it

pertains to our problem:

Definition 7: A hypothesis H is a subsequence used to encode one or more

other subsequences of the same length.

As a practical matter, the encoding we use is the one visualized Figure 4, we

simply subtract hypothesis H from the target subsequence(s) and encoded the

difference vector(s). We could encode the difference vector(s) with, say, Huffman

encoding, but as we noted in Definition 5, we really only care about the size of the

encoding, so we simply measure the entropy of the difference vector(s) to get a

lower bound of the size of encoding.

A necessary (but not sufficient) condition to place two subsequences H and B into

the same cluster is:

 DL(B) >DL(B|H)

This inequality requires that the subsequence B takes fewer bits to represent when

H is used as a basis to encode it, encoding the intuition that the two subsequences

are related or similar.

We can hint at the utility of thinking about our data in terms of hypothesis

encoding by revisiting our text example. When a clustering text stream, would it

be better to merge A or B?

A = {david, dovid}, B = {petersmith, petersmidt}

The first case allows a tight cluster of two short words, is that better than a looser

but longer cluster B? The problem is exacerbated when we consider the possibility

of clusters with more than two members: how would we rank the relative utility of

the tentative cluster C = {bob, rob, hob}?

Normally, clustering decisions are made by considering Euclidean distance (or its

text counterpart, Hamming distance); however, Euclidean distance only allows

meaningful comparisons when all the subsequences are the same length. The

solution for text, to use the length-normalized Hamming distance, cannot be

13

generalized here. The reason is subtle and underappreciated, suppose we have two

subsequences of length k that are distance d apart. If we truncate the end points

and measure the distance again, we might find it has increased! This is because we

should only compare z-normalized time series when using Euclidean distance5,

and after (re)z-normalizing the slightly shorter subsequences, we may find they

have grown further apart. Thus, the z-normalized Euclidean distance function is

not linear in length and is not even monotonic.

We have already hinted at the fact that the DL function can use extra information,

by using “given”, i.e., DL(B'│H) is the DL of B' given H. We can now formalize

this notion:

Definition 8: A conditional description length of a subsequence A when a

hypothesis H is given is (ܪ|ܣ)ܮܦ = ܣ)ܮܦ − (ܪ
Recall from Figure 3 and Figure 4 that the DL of a subsequence depends on the

structure of the data. For example, a constant line has a very low DL, whereas a

random vector has a very high DL. If A and H are very similar, their difference

(A-H) will be close to a constant line and thus have a tiny DL. In essence then, the

DL function gives us a parameter-free test to see if two subsequences should be

clustered together.

We generalize the notion of DL to multiple sequences next. We can apply the

same spirit by using a hypothesis to calculate the minimum number of bits

required to keep a cluster. We call this description length of a cluster:

Definition 9: A Description Length of a Cluster (DLC) C is the number of

bits needed to represent all subsequences in C. In this special case, H is the

center of the cluster. Hence, the description length of cluster C is defined as: (۱)ܥܮܦ = (ܪ)ܮܦ	 − (ܪ|ܣ)ܮܦ୅∈େݔܽ݉ +෍ ஺∈۱(ܪ|ܣ)ܮܦ

The above DLC gives us a primitive to measure the reduction in bits achieved by

encoding data with a hypothesis. The two right terms in the equation record the

number of bits needed to represent the cluster C. Concretely, if the cluster C

5 The solution of not normalizing the time series would mitigate this problem, but measuring the
Euclidean distance between two time series with different offsets or amplitudes produces
meaningless results [18].

14

contains n subsequences, we need to keep at most n subsequences for

reconstructing C. We choose to keep the hypothesis H and the n-1 smallest

differences. Therefore, the description length of the cluster C is the combination of

the description length of the hypothesis H and the minimum of any n-1 conditional

description lengths with respect to H.

Our clustering algorithm is essentially a search algorithm. Three operators avail of

the DLC definition to test how many bits a particular choice can save. Thus, these

three operators fall under the umbrella definition of bitsave:

Definition 10: A bitsave is the total number of bits saved after applying an

operator that creates a new cluster, adds a subsequence to an existing cluster,

or merges two existing clusters together. It is the difference in the number of

bits before and after applying a given action:

bitsave = DL(Before) - DL(After)

In detail, the bitsave for each operator is defined as following:
1) Creating a new cluster C' from subsequences A and B

 bitsave = DL(A) + DL(B) - DLC(C')

2) Adding a subsequence A to an existing cluster C

 bitsave = DL(A) + DLC(C) - DLC(C')

 where C' is the cluster C after including subsequence A.

3) Merging cluster C1 and C2 to a new cluster C'.

 bitsave = DLC(C1) + DLC(C2) - DLC(C')

Note that, as we discussed earlier, we do not use Euclidean distance to make

decisions about which subsequences to place into which clusters. We use only use

Euclidean distance in two subroutines: motif discovery and finding the closest

subsequence from a given cluster center. Next, we will define closest subsequence

or the nearest neighbor:

Definition 11: A nearest neighbor of the given subsequence A is the

subsequence B such that

Dist(A,B) ≤ Dist(A,X) for any subsequences X

Another definition, which we borrow from the literature [24], are time series motifs.

Definition 12: A time series motif is pair of subsequence A and B such that

Dist(A,B) ≤ Dist(X,Y) for any subsequences X≠Y, A≠B

15

Similar to the nearest neighbor, the time series motif contains two most similar

subsequences in the given time series. We use the simple-but-robust Euclidean

distance as dist function (cf. Definition 4) for finding both time series motif and

the nearest neighbor of the given subsequence. Note that if subsequence X and Y

are overlapped, it may lead to the discovery of trivial matches. For more details

about the time series motif, we refer the reader to [24]. In next section, we will

explain our algorithm in detail.

4. CLUSTERING ALGORITHM

Having introduced the necessary notation, we are finally in a position to introduce

our algorithm. We begin by giving a simple text and visual intuition in the next

section, and follow by giving detailed and annotated pseudo code in Section 4.2.

4.1 The Intuition behind Stream Clustering

Recall that our input is a single time series like the one shown in Figure 5.bottom

and our required output is a set of clusters -- possibly of different lengths and

sizes. Recall that the union of all the subsequences in this set of clusters may only

cover a fraction of the input time series. Indeed, for pathological cases we are

given a pure noise time series, we want our algorithm to return a null set of

clusters. In Figure 5 we show our running example. It contains the interwoven

calls of two very different species of birds.

Figure 5. Two interwoven bird calls featuring the Elf Owl, and Pied-billed Grebe are shown in

the original audio space (top), and as a time series extracted by using MFCC technique

(middle) and then clustered by our algorithm (bottom).

0.5 1 1.5 2 2.5 3 x 10 50

50 100 150 200 250 3000

50 100 150 200 250 3000

16

Our proposed clustering algorithm is a bottom-up greedy search over the space of

clusters. For the moment, we will ignore the computational effort that it requires

and simply explain what is done, leaving the how it is (efficiently) done for the

next section.

Our algorithm is an iterative merging algorithm similar in spirit to an

agglomerative clustering algorithm [17]. However, the differences are telling and

worth enumerating:

• Our algorithm typically stops merging before explaining all the data, thus

producing a partitioning a subset of the data, not producing a hierarchy of all

the data.

• Agglomerative clustering algorithms are typically implemented such that they

require quadratic space; our algorithm has only linear space requirements6.

• Most critically, agglomerative clustering algorithms assume the K items of a

fixed dimensionally (subsequence length) to be clustered are inputs to the

algorithm. However, we do not know how many items will ultimately be

clustered, or even how long the items will be.

Similar to agglomerative clustering, we have a search problem that uses operators,

in our case, create, add, and merge (Definition 10). When the algorithm begins,

only create is available to us.

We begin by finding the best initial pair of subsequences to combine so that we

may create a cluster of two items. To find this best pair, we treat one as a

hypothesis and see how well it encodes the other (Definition 8). The pair that

reduces the bit cost the most is the pair of choice. This is shown in Figure 6 as

Step 1.

There is a potential problem here. Even if we fix the length of subsequences to

consider to a constant s, the number of candidate pairs to consider is quadratic in

the length of the time series, approximately O((m-s)2/2). Furthermore, there are no

known shortcuts that let us search this space in sub-quadratic time.

The solution to this problem is to note that Euclidean distance and conditional

description length are highly correlated where either of them is small. We can

6 Linear space agglomerative clustering algorithms do exist, but require highly multiply redundant
calculations to be performed, and are thus rarely used due to their lethargy.

17

leverage off this fact because there exist very fast algorithms to find the closest

pair of subsequences (which are known as time series motifs [24]) under Euclidean

distance. So rather than a brute force search using the conditional description

length, we do a fast motif search and then test the motif pair’s conditional

description length.

Figure 6. A trace of our algorithm on the bird call data shown in Figure 5.bottom.

In the next stage of the algorithm, there are two operators available to us. We can

either add a third item to our existing cluster of size two, or we can create a new

cluster, possibly of a different length. In Figure 6 in Step 2, we can see that in this

case our scoring functions suggest creating a new cluster is the better option in.

In the subsequent phase of the algorithm, it happens that all operators are available

to us: we could try to create a new cluster, we could merge our two existing

clusters, or we could add a subsequence to one of our two clusters. As we can see

in Figure 6, Step 3, the last option is chosen.

In the next iteration, the cheapest operator was to merge our two existing clusters

as shown in Step 4. However, doing this does not decrease the size of the

representation—it increases it. As such, our algorithm terminates after returning

the two clusters it had created up to Step 3. The only other way that our algorithm

can terminate is if it simply runs out of data to cluster.

Step 1: Create a cluster
from top-1 motif

Step 2: Create another cluster
from next motif

Step 3: Add subsequence to
an existing cluster

Step 4: Merge 2 clusters
(rejected)

Subsequences Center/Hypothesis

1 2 3 4
-4
-2
0
2

Step of the clustering processb
it

sa
ve

p
er

 u
n

it

Clustering stops here

Create
Add
Merge

18

4.2 Our algorithm in detail

As we noted in the last section, our algorithm is a bottom-up search algorithm. The

input is a single time series, and the output is a set of clusters of subsequences.

Our algorithm can cluster subsequences of different lengths, and it does not

require the number of clusters to be specified.

There are three operators in our search algorithm: create, add, and merge. In each

step, we do all (legal) operations and choose the operator which maximizes the

number of bits saved as measure by bitsave (Definition 10). The current clusters

are updated with respect to that choice.

The algorithm can terminate in just two ways; either the best possible choice

cannot save any bits, or all data is used up.

Most attempts to cluster time series [6][10][11] suffer from a surfeit of parameters.

Our algorithm allows essentially none. However, if we allow subsequences that

are too short, we can get pathological results in some cases. For example, there are

only two possible z-normalized subsequences of length two. Moreover, a user may

wish to bias the algorithm towards certain clustering. For example, for electrical

power demand load we may be interested in weekly or daily patterns. Thus, as

shown in Table 1, we allow the user the option of suggesting an approximate

length s.

The algorithm begins by initializing the cluster set to empty, then it enters a loop

until no more bits can be saved (line 2) or it runs out of data. Within each iteration

the loop, we perform three operators create (line 4-9), add (line10-15), and merge

(line16-22), and we keep the results of the most parsimonious operator.

For the create process, we call a subroutine to find time series motifs under

Euclidean distance using the fastest currently known technique [24]. Because we

do not know how long the subsequences in the cluster should be, the algorithm

runs MotifDiscovery multiple times on different lengths of motif (line 5). If

the new cluster is created, then the number of bits saved is calculated (line 7). The

temporary version of updated clusters are kept (line 8) and used if the algorithm

eventually chooses to create this cluster (line 24). Recall that the details of

function ComputeBitsave are provided in Definition 9 and 10.

19

Table 1: Main time series stream clustering algorithm

Input: ts : time series,
 s : approximate length
Output: cluster : final cluster of subsequences

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21
22

23
24
25

cluster = {}
while bitsave>0
 bitsave=-∞, i=0
 // create new cluster
 for len = s to 2s
 (A,B) = MotifDiscovery(ts,len)
 C' = CreateCluster(A,B)
 bs.append(ComputeBitsave(C',A,B))
 cluster'.append(cluster	∪{C'})
 end for
 // add subsequence to an existing cluster
 for C ∈ cluster
 A = NearestNeighbor(ts,C)
 C' = AddToCluster(C,A)
 bs.append(ComputeBitsave(C',C,A))
 cluster'.append(cluster	∪{C'}-{C})
 end for
 // merge 2 clusters
 for C1 ∈ cluster
 for C2 ∈ cluster and C1~=C2
 C' = MergeClusters(C1,C2)
 bs.append(ComputeBitsave(C',C1,C2))
 cluster'.append(cluster	∪{C'}-{C1}-{C2})
 end for
 end for
 // update the result
 [bitsave index] = max(bs);
 cluster = cluster'(index);
end while

It is possible to add a subsequence into an existing cluster (line 10-15). We first

find the most similar subsequence in the input time series with respect to the

center of a given cluster (line 11); we can achieve this task by using any nearest-

neighbor search algorithm [12], including brute force search. After the search, the

cluster is updated to include that nearest subsequence (line 12), the number of bits

saved is calculated, and the temporary clusters are recorded (line 13-14).

For our last operator, any pair of clusters is allowed to merge (line 18); we then

compute the number of bits saved for each pair, and record the temporary cluster.

After the algorithm measures the number of bits saved from all possible choices,

the final cluster is updated with respect to the choice that maximizes the number of

bits saved (line 23-24).

We have glossed over an important detail: the two items being combined by the

merge/add operators may be of different lengths. To allow this critical flexibility,

we use a simple data structure to record a cluster. For any given cluster C,

20

C.size records the number of subsequences in the cluster, C.cen is the center

of the cluster, C.seq is a set of subsequences in the cluster, and C.shift is a set

of shift positions (i.e., offsets) of each subsequence in C when it aligned to the

C.cen. Note that to compute the conditional description length (Definition 8), a

subsequence and its hypothesis must be of the same length.

Table 2 shows how a new cluster can be created from two subsequences of the

same size. Because those two subsequences are from motif discovery under

Euclidean distance, their align position is set to 0 (line 4). The center of new

cluster is the average of those two subsequences. In Table 3, when we want to add

a subsequence A to an existing cluster C, the new center is created by the weighted

average of the current center and the subsequence (line 1). Because A is the nearest

neighbor of C.cen, no offset alignment is needed for A.

Table 2: Create Operator

Function C = CreateCluster(A,B)

1
2
3
4

C.size = 2;
C.cen = (A+B)/2
C.seq = [A; B]
C.shift= [0; 0]

Table 3: Add Operator

Function C = AddToCluster(C,A)

1
2
3
4

C.cen = (C.cen*C.size+A*1)/(C.size+1)
C.size = C.size+1
C.seq = [C.seq; A]
C.shift = [C.shift; 0]

Table 4 shows how two clusters of different lengths can be merged into the same

cluster. The new cluster contains all subsequences from both clusters (line 1-2).

Because two clusters may be different lengths, we need to align them before

finding the new center. As the Figure 6 example shows, Step 4 merges two

clusters from Step 1 and Step 3. The red center in Step 1 is longer than the green

center in Step 3. We align the red center at all possible offsets (line 6), and then

create a new center by averaging two current centers. Parts of the new centers are

created by weighted averaging from all (one or two) centers that cover that part

(line 7-9). To make a decision among all possible offsets, MDL plays an important

role again; at each offset, bitsave is calculated (line 11), and we choose the offset

which can save the maximum number of bits (line 22-23). Similar to the code in

line 6-13, which evaluates all offsets when C1.cen moves into C2.cen, the code

in line 14-21 evaluates the inverse when C1.cen moves out of C2.cen.

21

Table 4: Merge Operator

Function C' = MergeClusters(C1,C2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

C'.seq = [C1.seq; C2.seq]
C'.size = C1.size+C2.size
n1=C1.size, m1=length(C1.cen)
n2=C2.size, m2=length(C2.cen)
i=0
for off = 0 to m2
 cen1 = [C2.cen(1,off), C1.cen]
 cen2 = [C2.cen, C1.cen(1,m1+off-m2)]
 C'.cen = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shift+off; C2.shift]
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for
for off = 1 to m1
 cen1 = [C1.cen, C2.cen(1,m2+off-m1)]
 cen2 = [C1.cen(1,off), C2.cen]
 C'.cen = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shift; C2.shift+off]
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for
[bitsave index] = max(bs);
C' = Ctmp(index);

To summarize, our algorithm contains three operators (create, add, and merge),

which all use MDL to decide the best choice at each step of the clustering. As

there are no known indexing/motif discovery algorithms for MDL, we avail

ourselves of two fast external modules that use Euclidean distance for motif

discovery [24] and nearest neighbor search [20]. Using Euclidean distance as a

fast proxy for MDL is possible because they are highly correlated when both are

small.

5. EXPERIMENTAL RESULTS

We begin by stating our experimental philosophy. To ensure our experiments are

reproducible, all codes/data are available at [34]. In addition, the site contains

many more experiments omitted due to space limitations. Furthermore, the

website contains video animations of the clustering process for each dataset.

5.1 Comparison to Ground Truth

We begin by considering a time series for which we have access to the ground

truth (albeit indirectly). Consider the time series shown in Figure 7.top. A visual

inspection gives a hint of some structure, but even on this tiny example, it is not

clear exactly what the clustering should be -- or even what is the natural length for

22

potential clusters. This dataset was obtained by taking an audio snippet of a

recording of Edgar Allen Poe’s poem “The Bells” and transforming it in to the

Mel-Frequency Cepstral Coefficients (MFCC) retaining only the first coefficient.

Figure 7. top) 29.8 seconds of an audio snippet, represented by the first coefficient in MFCC

space, and then annotated with colors to reflect the clusters. bottom) A trace of the steps use

to produce the clustering.

The clustering we obtained looks subjectively intuitive; however, because of the

original source material we are in a unique position to do a more objective test.

Table 5 shows the original source text brushed with the colors reflecting the

clustering obtained.

Table 5: The text corresponding to the time series shown in Figure 7, annotated by color/font

Original Order Grouped by Clusters

In a sort of Runic rhyme,
To the throbbing of the bells--
Of the bells, bells, bells,
To the sobbing of the bells;
Keeping time, time, time,
As he knells, knells, knells,
In a happy Runic rhyme,
To the rolling of the bells,--
Of the bells, bells, bells--
To the tolling of the bells,
Of the bells, bells, bells, bells,
Bells, bells, bells,--
To the moaning and the groan-
ing of the bells.

 bells,bells, bells
 Bells, bells, bells
Of the bells, bells, bells
Of the bells, bells, bells

 the throbbing of the bells
 the sobbing of the bells
 the tolling of the bells

To the rolling of the bells
To the moaning and the
 time, time, time
 knells, knells, knells

sort of Runic rhyme
groaning of the bells.

The results are not perfect with reference to the text version. Recall that we are

only considering one of the MFCC coefficients, instead of the ten plus typically

used in speech processing. This allows some collisions, such as “time” and

“knells”. However, the structure recovered by our algorithm is significant. Note

that our clusters are of different sizes (three items, and two items) and of different

lengths (from 55 points to 70 points). Also, note that we could have had a single

200 400 600 800 1000 12000

1 2 3 4 5 6 7 8 9 10
Step of the clustering process

b
it

sa
ve

pe
r

un
it

-1

0

1

2

Clustering stops here

Create
Add
Merge

23

cluster of eighteen occurrences of the word “bells.” However, that would have

obfuscated the information that this word tends to be repeated in this work, as in

“bells, bells, bells.” These longer clusters are arguably more parsimonious.

5.2 Clustering a Noisy Dataset

In Figure 8, we show the results of clustering a noisy industrial dataset. The data

comes from an industrial wire winding process. The original data consists of seven

dimensions; here we show only the results of clustering the noisiest channel,

labeled U1 (the results on the other channels are at [34]). Note that the data has

significant non-uniform noise, including spikes and dropouts. While we do not

have access to the ground truth here, the clusters, which have different sizes and

length, clearly have the property of being similar within a cluster and dissimilar

between clusters. Note that approximately 26% of the data remains unclustered.

Figure 8. top) Dimension U1 of the Winding dataset. middle) A trace of the clustering steps

produced by our algorithm. bottom) Representative clusters obtained.

5.3 Comparison to other Methods

As we noted above there are few candidate strawmen to compare our work to.

Here we compare our work to the most referenced work in the literature. In a

sequence of papers, Chen proposes a series of fixes for the stream clustering

problem [5][6][7]. He demonstrates his ideas mostly on synthetic data; however,

0 200 400 600

500 1000 1500 2000 25000

dropouts

spikes

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2

0

2

Step in clustering process

b
it

sa
ve

p
er

 u
ni

t

Clustering stops here

Create
Add
Merge

24

as shown in Figure 9.right, he also tests on short section of the Koski heartbeat

dataset.

Figure 9. left) A screen dump of fig.11 from [6]. The original caption read “TF Clustering:

Koski-ECG result”. right) An annotation of the clusters by a USC cardiologist.

While the results are perhaps reasonable, it is not clear why we should have two

clusters here since there is clearly just one heartbeat. In addition, there is a subtle

artifact noticed by cardiologist, Dr. Helga Van Herle, whom we asked to examine

this. The slight slope on the light-gray cluster show in Figure 9.left is not in the

data; it comes from the fact that the input data is not an integer multiple of beats,

instead being roughly 5.2 beats. Since the algorithm is trying to explain all the

data, it must explain the extra P-wave by averaging it into a place where it does

not belong. Furthermore, as acknowledged in the original paper, the algorithm

requires the setting of several parameters and “magic numbers” (i.e., “we chose p

as the number of points in the time series divided by 15..”). Finally, we note in

passing that the algorithm requires multiple calls to a quadratic space and time (in

the length of the time series) algorithm, which would make it impractical for many

real data mining problems. Our algorithm requires linear space.

In Figure 10, we show the clustering we achieved on exactly the same dataset. We

believe the results here are intuitively correct, discovering a complete single

heartbeat as the cluster. Note that our algorithm explains 87.5% of the data; it does

not try to explain the extra P-wave “bump” caused by the fact that we do not have

an integer number of heartbeats.

PR

S

Q
Artifact of
clustering
algorithm

25

Figure 10. top) The same 2,000 data points from Koski-ECG as used in Figure 9. middle) A

trace of the clustering steps produced by our algorithm. bottom) the single cluster discovered

has five members.

5.4 Scalability

From our algorithm in Section 4.2, assume that MotifDiscovery takes time

O(T). In each create step, MotifDiscovery is called multiple times to find

motifs of different length; we run it at most O(s) times. Because each subsequence

is of length at least s, there are at most O(m/s) new clusters to be created. This is

why the running time for creating new clusters is O(T*s*m/s) = O(mT).

Assume that NearestNeighbor can be finished in time O(ms). The maximum

number of clusters we can have is O(m/s), and the original time series can be

updated only when a new motif is discovered, so the number of clustering steps

(cf. line 2 in Table 1) is at most O(m/s). Thus, for add steps we have O(ms * m/s *

m/s) = O(m3/s).

For merge steps, if a cluster is created by merging k clusters so far, the number of

subsequences in that cluster is at most O(k). The length of its center is at most

O(ks); therefore, the number of possible offsets is O(ks), and bitsave calculation is

finished in time O(k2s2). The maximum number of clusters we can have is at most

O(m/s), so we can have cluster of size k at most O(m/sk) clusters, and there are at

most O(m/s) steps in our algorithm. This means that the running of merge steps is

at most O(m/s*(m/sk)2*k2s2) = O(m3/s). Hence, the total running time of our

algorithm is at most O(mT+m3/s) where T is a running time for a motif discovery.

The empirical behavior is shown in Figure 11.

500 1000 1500 20000

1 2 3 4
Step of the clustering process

B
its

av
e

pe
r

un
it

0
1
2
3 Clustering stops

here, because there
is essentially no
data left to cluster

Cluster
plotted

Stacked,
Dithered

26

Figure 11. Running time of our algorithm on Koshi data when s = 350.

To put these results in perspective, the ornithology lab we are working with has

spent months collecting data in the field (cf. Figure 5), so they are willing to wait

the hour we require to cluster several minutes of audio. Nevertheless, we believe

that a 100X speedup will soon be possible simply by caching some near redundant

motifs calculations.

5.5 Disscusion of the MDL Choice

Now that the reader has gleaned some intuition for our algorithm and its utility for

clustering data, we will briefly revisit a discussion of why MDL on a discretized

time series is our choice of measure to steer the clustering search.

We cannot use Euclidean distance (or the related correlation or Dynamic Time

Warping etc. [12][20]) directly because it does not allow us to compare the

relative merits of clusters of different lengths or different sizes. In contrast, MDL

does allow such meaningful comparisons. Moreover, in the limited case when

MDL and Euclidean distance can be compared (when time series lengths are the

same), we find that the two measures are highly correlated so long as they are

small (if both are destined to be large, it does not really matter how correlated they

are). The relationship between Euclidean distance and MDL is shown in Figure

12.

We work in the discrete space rather than the original continuous space because

MDL requires it, and because working with the discretized time series makes no

perceptible difference in classification (as shown in Figure 2) or in similarity

search, indexing, motif discovery or outlier discovery.

Because of their relationship especially when the distance is small, to make an

intractable problem solvable (in term of acceptable running time), we can apply

ED-based techniques to speed up the algorithm in some modules. For example,

instead of finding the pair of subsequences whose difference has the smallest

5000 10000 15000 20000 25000 300001000

0

4000

8000

12000

T
im

e
(s

ec
)

Size of time series

Scalability16000

27

min max
min

max
ED vs MDL

ED

M
D

L

MDL, we can use the fast motif discovery algorithm from [24] to find the most

similar pair using Euclidean distance. We also can apply some techniques, such as

early abandoning and lower bounding, in searching a nearest subsequence of the

existing clusters.

Figure 12. The relationship between Euclidean Distance (ED) of pairs of subsequences in a

random walk time series and MDL of their difference. Euclidean distance is calculated in

original continuous space but MDL is calculated in discrete space (64 cardinality).

Although Euclidean distance can dramatically speed up the running time of

algorithm, sometimes the most similar subsequences using Euclidean distance and

MDL are not the same. This makes our final score, bitsave, non-monotonically

decreasing as the readers may have noticed in Figure 7.bottom and in Figure

8.middle.

6. MULTI-DIMENSIONAL CLUSTERING

In additional to a single dimensional time series clustering, our algorithm can be

extended to cluster multi-dimensional time series data. In many applications that

contain more than one feature, the quality of the clustering can be better if we can

do clustering across different features or dimensions. For example, in motion

capture, some activities have key features only in the upper parts of the body, but

lower parts are keys in some activities.

6.1 Notation

For the sake of clarity, this section will define some necessary notations related to

multi-dimensional time series clustering; however, we not that many of these

28

definitions are obvious analogs of the single-dimensional case discussed in Section

3. We begin by defining multi-dimensional time series:

Definition 13: A d-dimensional time series T is a d-dimensional ordered list of

numbers. T = <T1,T2,…,Td> where a time series in dimension i, Ti = ti,1, ti,2 ,...,

ti,m. Each value tj can be any finite number and m is the length of the time

series, which is equal for all dimensions.

When the original time series contain multiple dimensions, its subsequence is

called a d-dimensional subsequence:

Definition 14: A d-dimensional subsequence Ti,j,k of a d-dimensional time

series T is a short time series of length k of dimension i which starts from

position j. Formally, Ti,j,k = ti,j, ti,j+1, .., ti,j+k where 1 ≤ i ≤ d and 1 ≤ j ≤ m-k.

As we mentioned before in previous sections, Euclidean distance and MDL are

highly correlated when the distances are small. As in the single version algorithm,

many techniques using the Euclidean distance are used for speeding up our

algorithm. Hence, we define the Euclidean distance for two d-dimensional

subsequences as following:

Definition 15: The Euclidean distance between two d-dimensional

subsequences A and B of the same length, k, is:

,ܣ)ݐݏ݅ܦ (ܤ = ඨ෍ ෍ ൫ܣ௜,௝ − ௜,௝൯ଶ௞௝ୀଵௗ௜ୀଵܤ

The description length for a multi-dimensional time series is calculated based on

the entropy of the given time series. We define entropy for d-dimensional time

series as:

Definition 16: The entropy of a d-dimensional time series T is defined as

following equation. For special case when P = 0, ܲ logଶ ܲ is defined as 0. ܪ(ܶ) = 	−෍ ෍ ܲ(௜ܶ =)logଶܲ(ݐ ௜ܶ = ୲୧ୢୀଵ(ݐ

For simplicity, we define the entropy of d-dimensional time series as the simple

summation of the entropy from each dimension. This means we treat each

dimension independent from others. While we do not preclude other methods for

calculating d-dimensional entropy, this method works very well empirically.

29

However, there may be some room here to improve the quality of the clustering if

we can exploit use the relationship between different dimensions. We leave this as

the future improvement.

Similar as in Definition 6 in Section 3.1, the description length of a multi-

dimensional time series T is defined as m*H(T) where m is the length of the time

series T. We can reuse Definition 8, 9 and 10 in our multi-dimensional clustering

algorithm.

We invite the readers to revise some definitions in Section 3.1 before we move

forward to the algorithm in next section.

6.2 Multi-dimensional Clustering Algorithm

In general, the idea of clustering multi-dimensional time series is similar to the

idea of clustering a single dimensional time series in Section 4.2.

The algorithm composes of three operations – create, add, and merge. The general

idea is the same as in the previous algorithm. All possible operators will be

considered and their bitsave will be computed. Then, the choice whose bitsave is

maximum will be selected and the algorithm performs the operation corresponding

to that choice. The algorithm for clustering multi-dimensional time series is shown

in Table 6.

We allow user to set the approximate length of subsequences, contained inside the

final clusters. The set of the final clusters is initialed to an empty set (line 1). The

algorithm will be terminated on only two conditions, first, when no possible

choices can reduce the number of bits for representing the clusters and, second,

when there is no data left and all clusters have been merged.

In the create operation (line 4-10), we find a most similar pair of subsequences.

The Euclidean distance is used here instead of MDL for speeding up the process

and makes this process much faster. A trivial extension of the motif discovery

algorithm from [24] using multi-dimensional Euclidean distance (cf. Definition

15) is used here to find the most similar subsequences in multi-dimensional time

series (line 6). Then, a new cluster is created and its bitsave is calculated (line 7-

8). For convenience, the temporary cluster is collected (line 9).

In add process (line 11-17), the nearest neighbor of each existing cluster is

discovered (line 13). The rest of the algorithm, including merge process (line 18-

30

25), is the same as in the algorithm in Section 4.2. After all choices are calculated,

the choice, which maximizes bitsave, will be selected to perform (line 27-28).

Table 6: Multidimensional stream clustering algorithm

Input: ts : multidimensional time series,
 s : approximate length
Output: cluster : final cluster of subsequences

1
2
3

4
5
6
7
8
9
10

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28
29

cluster = {}
while bitsave>0
 bitsave=-∞, i=0

 // create new cluster
 for len = s to 2s
 (A,B) = MultiDimMotifDiscovery(ts,len)
 C' = CreateMultiDimCluster(A,B)
 bs.append(ComputeBitsave(C',A,B))
 cluster'.append(cluster U {C'})
 end for

 // add subsequence to an existing cluster
 for C ∈ cluster
 A = MultiDimNearestNeighbor(ts,C)
 C' = AddToMultiDimCluster(C,A)
 bs.append(ComputeBitsave(C',C,A))
 cluster'.append(cluster U {C'}-{C})
 end for

 // merge 2 clusters
 for C1 ∈ cluster
 for C2 ∈ cluster and C1~=C2
 C' = MergeMultiDimClusters(C1,C2)
 bs.append(ComputeBitsave(C',C1,C2))
 cluster'.append(cluster U {C'}-{C1}-{C2})
 end for
 end for

 // update the result
 [bitsave index] = max(bs)
 cluster = cluster'(index)
end while

Because each subsequence contains multi-dimensional data, the cluster

representative or the cluster’s center also contains multi-dimensional data. Table 7

explained how to create the cluster. The new cluster is always created from two

subsequences so it will contain only two multi-dimensional subsequences.

Table 7: Create Operator

Function C = CreateMultiDimCluster(A,B)

1
2
3
4
5
6

C.size = 2
for all dimension d
 C.cend = (Ad+Bd)/2
 C.seqd = {Ad, Bd}
 C.shiftd = {0 0}
end for

31

Similarly, how to add a multi-dimension subsequence to an existing cluster is

explained in Table 8. The idea of all three operators is same as in the single-

dimension clustering algorithm.

Table 8: Add Operator

Function C = AddToMultiDimCluster(C,A)

1
2
3
4
5
6

C.size = C.size+1
for all dimension d
 C.cend = (C.cend*(C.size-1)+Ad*1)/C.size
 C.seqd.append(Ad)
 C.shiftd.append(0)
end for

Table 9 explains in detail how to merge two clusters. As in the single dimension

version, when two clusters are being merged, we have to align their center to find

the best position, whose bitsave is maximized, after merging. We can align the

center of the first cluster’s center when it moves into the center of another cluster

Table 9: Merge Operator

Function C' = MergeMultiDimClusters(C1,C2)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35

n1=C1.size, m1=length(C1.cen)
n2=C2.size, m2=length(C2.cen)
C'.size = n1+n2
bs = {}
Ctmp = {}
for all dimension d
 // add all sequences from C1 and C2 to C’
 C'.seqd = [C1.seqd ; C2.seqd]
end for

// align C1.cen by moving to all positions
for off = 0 to m2
 for all dimension d
 // create centers of the same length
 cen1 = [C2.cend(1,off), C1.cend]
 cen2 = [C2.cend, C1.cend(1,m1+off-m2)]
 C'.cend = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shiftd = [C1.shiftd+off; C2.shiftd]
 end for
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for

// move C1.cend to opposite direction
for off = 1 to m1
 for all dimension d
 // create centers of the same length
 cen1 = [C1.cend, C2.cend(1,m2+off-m1)]
 cen2 = [C1.cend(1,off), C2.cend]
 C'.cend = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shiftd; C2.shiftd+off]
 end for
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for
[bitsave index] = max(bs);
C' = Ctmp(index);

32

(line 10-21), and also when it moves out of another center (line 22-33). Each

position in alignment is kept as a local variable inside the corresponding cluster

(line 20). However, only the cluster which maximum bitsave is return (line 34-35).

In next section, we will demonstrate that our algorithm can handle the time series

which contains more than one dimension.

6.3 Experimental Result

We demonstrate our multi-dimensional clustering algorithm on a people activity

dataset, Physical Activity Monitoring for Aging People (PAMAP) from [27]. In

this dataset, eight subjects (people) perform both indoor and outdoor activities

such as normal walk, Nordic walk, cycle, run, ascend stairs, and descend stairs.

Each subject has sensors placed on three locations on their bodies, which are

hand, chest and ankle. We pick one time series from each position; we choose to

use only three time series generated by z-accelerometers instead of using all data

from all 45 sensors because experience from indexing ASL [1] and motion

capture data suggest that three or four time series is enough to represent most

activities/behaviors.

A snippet of a three dimensional time series showing an individual walking up and

down stairs is shown in Figure 13. Each time series are generated from a z-

accelerometer. The data is from subject number 1 of indoor activities in PAMAP

dataset [27]. In this example, the subject performed the sequence, walking up stair,

walking down stair, and walking up stair.

Figure 13. Three time series generated from z-accelerometer of sensors at hand, chest and shoe

from PAMAP [27]. The subject performs three activities: descending stairs, ascending stairs,

and descending stairs again.

200 400 600 800 1000 1200 1400 1600 1800 20000

Hand

Chest

Ankle

Descend Stair Descend StairAscend Stair

33

200 400 600 800 1000 1200 1400 1600 1800 20000

Hand

Chest

Ankle

Descend Stair Descend StairAscend Stair

The multidimensional clustering result is shown in Figure 14. Each color

represents a cluster; hence, the subsequences of the same color are clustered into

the same cluster. The result demonstrates that our algorithm can capture the

similar actions inside the same activities. For example, three clusters appeared in

both side of the time series, which are in the same action, i.e., walking down stair.

Some data in the time series has been ignored as we can see in black color. From

this example, we conjecture that the subject may occasionally have a special

behavior because it looks like there are patterns inside the clusters. For example, it

appear that she initially starts to climb stairs briskly (red), but begins to slow down

as she was tired out after a few flights (blue). Likewise, the sequence of three

clusters in the same order (pink, cyan, yellow) in both descending stairs sections is

suggested.

Figure 14. top) The multi-dimensional time series clustering result. Two clusters are detected

in ascending stair, and three clusters are detected in descending stair. bottom) A trace of the

multi-dimensional clustering steps produced by our algorithm.

We also ran our single dimensional clustering algorithm on each dimension

separately. The result shows that there are incorrect clusters across the different

activities in the final clusters and, in some dimension, the algorithm is terminated

very early and covers less than 25% of the data. Hence, in this example, the

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2

0

2

Step in clustering process

bi
ts

av
e

pe
r

un
it Clustering stops here Create

Add
Merge

34

clustering result from a single dimension is worse than the result form the multi-

dimensional clustering algorithm. We believe that the multi-dimensional time

series can create the better clusters than the clusters created from just one

dimension, especially when the dataset contains many related features such as

motion capture.

We can speed up the algorithm using Euclidean distance and make the problem

solvable in an acceptable time, but we have to trade of the quality of the clustering

somehow. Our parameter-lite algorithm can be extended to cluster multi-

dimensional time series and it works quite well; however, some readers may

notice that the bitsave score (in Figure 14.bottom) is not much stable as the result

of a single-dimensional clustering algorithm in Section 5. This is because the

Euclidean distance is used instead of MDL in many core modules. By the curse of

dimensionality, when the number of dimensionality is increase, the Euclidean

distance performs worse and the difference between MDL and Euclidean distance

is increase. We believe that if the multi-dimensional time series clustering using

MDL has been well study in the future, some researchers will provide the distance

which is fast enough and very close to MDL to get the better result.

7. CONCLUSIONS

In this work, we have shown that any attempt to cluster a single time series stream

that insists on explaining all the data is almost certainly doomed to failure. We

introduced a clustering representation that has the expressive power to ignore

some of the data, and can have clusters with different length subsequences. We

further showed an efficient and parameter-lite MDL based algorithm to perform

the clustering. We have shown on our algorithm is effective on a wide variety of

datasets, for both single and multi-dimensional problems.

Currently our algorithm only works on batch time series. In ongoing work, we are

attempting to generalize it to the online case.

ACKNOWLEDGEMENT

We would like to acknowledge the financial support for our research provided by

the Royal Thai Government and NSF grants 0803410 and 0808770.

35

REFERENCES

[1] V. Athitsos, H. Wang, and A. Stefan, “A database-based framework for gesture
recognition,” Personal and Ubiquitous Computing, vol. 14, no. 6, 2010, pp. 511-526.

[2] T. Bastogne, H. Noura, A. Richard, and J. M. Hittinger, “Application of subspace methods
to the identification of a winding process,” Proc. of the 4th European Control Conference,
Brussels, Belgium, 1997.

[3] G. E. A. P. A. Batista, X. Wang, E. J. Keogh, “A Complexity-Invariant Distance Measure
for Time Series,” SDM, 2011, pp. 699-710.

[4] D. Bouchard and N. I. Badler, “Semantic Segmentation of Motion Capture Using Laban
Movement Analysis,” IVA, 2007, pp 37-44 .

[5] J. R. Chen. “Making Subsequence Time Series Clustering Meaningful,” ICDM, 2005, pp.
114-121.

[6] J. R. Chen., “Useful Clustering Outcomes from Meaningful Time Series Clustering,” The
Australasian Data Mining Conference. 2007.

[7] J. R. Chen., Making clustering in delay-vector space meaningful. Knowl. Inf. Syst. 11, 3
(2007), 369-385.

[8] Z. J. Chuang, C. H. Wu, and W. S. Chen, “Movement Epenthesis Generation Using
NURBS-Based Spatial Interpolation,” IEEE Trans. Circuit and Systems for Video
Technology, vol. 16, no. 11, Nov. 2006, pp. 1313-1323.

[9] D. J. Cook and L. B. Holder, “Substructure Discovery Using Minimum Description Length
and Background Knowledge,” J. Artificial Intelligence Research, vol. 1 , 1994, pp. 231-255.

[10] G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule Discovery from Time
Series,” Proc. of the 3rd KDD, 1998, pp. 16-22.

[11] A. M. Denton, C. A. Basemann, and D. H. Dorr, “Pattern-based time-series subsequence
clustering using radial distribution functions,” Knowledge and Information Systems journal,
vol. 18, No. 1, Jan. 2009, pp. 1-27.

[12] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh, “Querying and mining
of time series data: experimental comparison of representations and distance measures,”
PVLDB, vol. 1, no. 2, 2008, pp. 1542-1552.

[13] S. C. Evans et. al. “MicroRNA target detection and analysis for genes related to breast
cancer using MDLcompress,” EURASIP J. Bioinform. Syst. Biol., 2007, pp. 1-16.

[14] S. C. Evans, E. Eiland, T. S. Markham, J. Impson, and A. Laczo, “MDLcompress for
Intrusion Detection: Signature Inference and Masquerade Attack,” MILCOM, Orlando,
Florida, 2007.

[15] P.D. Grünwald, I.J. Myung, and M.A. Pitt, Advances in Minimum Description Length:
Theory and Applications, MIT Press, 2005.

[16] I. Jonyer, L. B. Holder, and D. J. Cook, “MDL-based context-free graph grammar induction
and applications,” Journal on Artificial Intelligence Tools, vol. 13, no. 1, 2004, pp. 65-79.

[17] S. D. Kamvar, D. Klein, and C. D. Manning, “Interpreting and Extending Classical
Agglomerative Clustering Algorithms using a Model-Based approach,” ICML, 2002, pp.
283-290.

[18] E. J. Keogh and J. Lin, “Clustering of time-series subsequences is meaningless: implications
for previous and future research,” Knowl. Inf. Syst., vol. 8, no. 2, 2005, pp. 154-177.

[19] E. J. Keogh, J. Lin, S. H. Lee, and H V. Herle, “Finding the most unusual time series
subsequence: algorithms and applications,” Knowl. Inf. Syst., vol 11, no. 1, 2007, pp. 1-27.

[20] E. J. Keogh and S. Kasetty, “On the Need for Time Series Data Mining Benchmarks: A
Survey and Empirical Demonstration,” Data Mining and Knowledge Discovery, vol. 7, no.
4, 2003, pp. 349-371.

[21] H. Li and N. Abe, “Clustering Words with the MDL Principle,” Proc. of the 16th Int’ Conf’
on Computational Linguistics, 1996, pp. 5-9.

[22] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, 2nd
ed., Springer Verlag, 1997.

[23] Y.I. Molkov, D. N. Mukhin, E. M. Loskutov, and A. M. Feigin, Using the minimum
description length principle for global reconstruction of dynamic systems from noisy time
series. Phys. Rev. E 80, 046207, 2009.

[24] A. Mueen, E. J. Keogh, and N. B. Shamlo, “Finding Time Series Motifs in Disk-Resident
Data,” ICDM, 2009, pp. 367-376.

36

[25] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu, “Hierarchical, Parameter-Free
Community Discovery,” PKDD 2008, pp. 170-187.

[26] E. Pednault, “Some Experiments in Applying Inductive Inference Principles to Surface
Reconstruction,” IJCAI, 1998, pp. 1603-09.

[27] A. Reiss, M. Weber and D. Stricker, “Exploring and Extending the Boundaries of Physical
Activity Recognition,” IEEE SMC Workshop on Robust Machine Learning Techniques for
Human Activity Recognition, 2011.

[28] R. A. Stine, “Model Selection Using Information Theory and the MDL Principle,”
Sociological Methods and Research, vol. 33, no. 2, Nov. 2004, pp. 230-260.

[29] Y. Tanaka, K. Iwamoto, and K. Uehara, K. “Discovery of time-series motif from multi-
dimensional data based on MDL principle,” Machine Learning, vol. 58, no. 2, 2005.

[30] K. Ueno, X. Xi, E. J. Keogh, D. J. Lee, “Anytime Classification Using the Nearest Neighbor
Algorithm with Applications to Stream Mining,” ICDM, 2006, pp. 623-632

[31] C. S. Wallace and D. M. Boulton, 1968. An information measure for classification.
Computer Journal vol. 11, no. 2, Aug. 1968, pp. 185-194.

[32] R. Yang, S. Sarkar, and B. L. Loeding, “Handling Movement Epenthesis and Hand
Segmentation Ambiguities in Continuous Sign Language Recognition Using Nested
Dynamic Programming,” IEEE PAMI, vol. 32, no. 3, 2010, pp. 462-477.

[33] D. Yankov, E. J. Keogh, U. Rebbapragada, “Disk aware discord discovery: finding unusual
time series in terabyte sized datasets,” Knowl. Inf. Syst., vol 17, no. 2, 2008, pp. 241-262.

[34] Supporting webpage. http://www.cs.ucr.edu/~rakthant/TSEpenthesis

Thanawin Rakthanmanon is currently a Ph.D. candidate of Computer
Science at the University of California, Riverside. His research interests are
Data Mining and Machine Learning, especially in efficient algorithm
development, motif discovery, time series clustering/classification, and
document analysis. He receives the Royal Thai Government Scholarship for
studying his doctoral program.

Eamonn Keogh is a full professor of Computer Science at the University of
California, Riverside. His research interests are in Data Mining, Machine
Learning and Information Retrieval. Several of his papers have won best
paper awards, including papers at SIGKDD, ICDM and SIGMOD. Dr.
Keogh is the recipient of a 5-year NSF Career Award for “Efficient
Discovery of Previously Unknown Patterns and Relationships in Massive
Time Series Databases”.

Stefano Lonardi is Professor and Vice Chair of the Department of Computer
Science and Engineering at University of California, Riverside, CA. He is
also a faculty member of the Graduate Program in Genetics, Genomics and
Bioinformatics, the Center for Plant Cell Biology, the Institute for
Integrative Genome Biology, and the Graduate Program in Cell, Molecular
and Developmental Biology. Stefano's recent research interest includes
design of algorithms, computational molecular biology, data compression
and data mining. He has published over 40 papers in major theoretical
computer science and computational biology journals and has over 50
publications in referred international conferences. In the year 2005, he
received the CAREER award from National Science Foundation. He has
received funding from NSF, NIH, DARPA, and USDA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

