
Efficiently Finding Near Duplicate Figures in
Archives of Historical Documents

Thanawin Rakthanmanon Qiang Zhu Eamonn J. Keogh
Department of Computer Science and Engineering

University of California, Riverside, CA, USA
Email: {rakthant, qzhu, eamonn}@cs.ucr.edu

Abstract—The increasing interest in archiving all of
humankind’s cultural artifacts has resulted in the
digitization of millions of books, and soon a significant
fraction of the world’s books will be online. Most of the data
in historical manuscripts is text, but there is also a
significant fraction devoted to images. This fact has driven
much of the recent increase in interest in query-by-content
systems for images. While querying/indexing systems can
undoubtedly be useful, we believe that the historical
manuscript domain is finally ripe for true unsupervised
discovery of patterns and regularities. To this end, we
introduce an efficient and scalable system that can detect
approximately repeated occurrences of shape patterns both
within and between historical texts. We show that this
ability to find repeated shapes allows automatic annotation
of manuscripts, and allows users to trace the evolution of
ideas. We demonstrate our ideas on datasets of scientific
and cultural manuscripts dating back to the fourteenth
century.

Keywords-component, cultural artifacts, duplication detection,
repeated patterns

I. INTRODUCTION

The world’s books and manuscripts are being
digitized at an increasing rate, and within a few years, the
majority of the world’s books will be online. Much of the
data will be text, most of which is more or less amiable to
optical character recognition. However, in addition, there
will be perhaps hundreds of millions of pages that contain
one or more images. It is clear that these images will be
very difficult to process. Indeed, data mining of modern
photograph images is challenging, and in the case of
images from historical manuscripts the challenges are
compounded by the problems of fading, staining, wear,
insect damage, abrasions, foxing, pencil annotations, and
distortion artifacts from the digitization process, etc.
[24][25].

In spite of these challenges, it is clear that the wealth
of figures from historical manuscripts offer unique
possibilities for data mining of important cultural
artifacts. While the completely automated extraction of
data from these texts will remain a significant challenge
for some time to come, in this work, we introduce a
specialized sub-routine that is achievable and useful.
This sub-routine is the automatic discovery of
approximately duplicated figures, both within and
between texts.

Our ideas can best be explained with a simple
motivating example. In the early part of the 19th century,
relatively inexpensive high-powered microscopes became
available for the first time. This initiated an explosion of
interest in Diatoms, a major group of eukaryotic algae,
whose extraordinary shapes delighted and puzzled
Victorian naturalists. Consider the two plates shown in
Figure 1. They are typical examples from the perhaps
hundreds of books on Diatoms published during the
Victorian era [23][28][32].

Figure 1. Two plates from 19th-century texts on Diatoms. left) Plate 6 of
[23] right) Plate 5 of [28]. Note that in each plate we point to a
triangular specimen, Biddulphia alternans.

Thanks to efforts by digital archivists, hundreds of
these works, representing over one million individual
shapes, have been digitized and placed online. Some of
them are scholarly classics, such as W. & G.S. West: A
Monograph of the British Desmidiaceae [32], which is
still referenced in modern scientific texts, and some of
them are vanity publications by “gentlemen scholars”.
Figure 2 shows a zoom-in detail from each of the plates
in Figure 1.

If we were hosting archives of Diatom images, we
might wish to add mutual hyperlinks between each
occurrence of Biddulphi aalternans, since any researcher
with an interest in one, will surely have an interest in the
other. Here we show just one pair of shapes deserving of
a mutual hyperlink; however, in the domain of Diatoms,
there are at least a thousand species defined by a unique

shape, which could have all their occurrences linked
together.

Figure 2. left) Two plates in Figure 1. right) A zoom-in of the same
species, Biddulphia alternans appearing in both texts.

Figure 3 shows another example where linking
between two manuscripts is helpful (figure best viewed in
color). The 1915 text (left) has much greater information
and annotations about a medal, but the image is B/W. In
contrast, the older text (right) clearly shows that the
circular ring is blue. In this case, the combination of these
two figures contains more information than either one on
its own.

Figure 3. left) A figure from page 7 of [10], a 1915 text on peerage. The
original text is monochrome. right) A figure from page 109 of [4], an
1858 text on honors and decorations.

There are many other examples that demonstrate that
linking two shapes within or between books can be of
help to historians, genealogists or scientists. However, to
the best of our knowledge, this problem has never been
addressed. In this work, we demonstrate a technique to
allow automatic discovery of repeated shapes in historical
manuscripts. Beyond the obvious image processing
challenges, and the problem of defining an appropriately
robust distance measure, the biggest challenge is clearly
scalability. Even if we have only 100,000 shapes in a
collection, a brute force “all-to-all” algorithm would
require approximately five billion distance calculations,
an untenable proposition. Our algorithm is inspired by
motif-discovery in bioinformatics [31], as DNA motifs
can be considered as near-duplicate strings. As we shall
show, it can (significantly) adapt bioinformatics
algorithms to discover duplicated shapes in time linear to
the number of “black” pixels in the text.

While there is a significant amount of related work in
detection of near-duplicate images, we believe that none
of it addresses the task at hand. The vast majority of such
work is focused on matching whole images, after one of
them has been distorted by cropping, resizing, color
normalization etc. However, none of these works can
locate near-duplicate sub-images inside the documents.
For example, Chum et al. introduced an efficient method
based on the technique of min-Hash to detect near-
duplicate images with respect to the query image [6].
Locality-sensitive hashing is one of the best-known
techniques to use in near-duplicate image detection
[5][18], and we were inspired by this idea to develop our
technique (Section IV). However, most of literature on
near-duplicate detection is aimed at locating the nearest
neighbor of the given queries. However, for our task we
are not given a query, instead we want to automatically
discovery similar pairs of figures.

By analogy the relationship between these two
problems is similar to the much better studied problems
in time series data mining [22], of finding the nearest
neighbors of the query subsequences vs. finding the time
series motif or the most two similar subsequences. In
2007, Xi et al.[34] proposed a method to find image
motifs or the most similar pair of images in the image
database. They transformed shapes into time series,
which is robust, scale invariance and rotation invariance.
However, all images are must fully pre-processed
including background removing and image segmentation.
In contrast, we make no such assumptions.

Image preprocessing such as image binarization
[14][17] and image segmentation[3][15] is an important
step in document analysis. Images segmentation can
distinguish images and text in documents. In 2011, Grana
et al. [15] proposed a novel technique to segment the
images using directional histogram generated by the
value of autocorrelation matrix, which is a summation of
the relevant directions of the texture inside the block
inside the documents. By the way, the quality of the
result of our work could be improved by using these
image segmentation techniques; however, the longer pre-
processing time will be required.

The rest of this paper is organized as follows. In
Section II we introduce all necessary notations and
definitions. We introduce an exact, but untenably slow
algorithm in Section III. Then, in Section IV we show a
very fast approximate algorithm that exploits novel
observations and ideas from bioinformatics and image
processing. Section V sees a detailed empirical study on
real data. The theoretical analysis is introduced in Section
VI. We offer conclusions and directions for future work
in Section VII.

II. BACKGROUND AND NOTATION

We begin by introducing all necessary notations and
definitions. These notations are illustrated in Figure 6.

A. Definitions and Notation

Whether we are mining archives of postcards, books,
maps, etc., we can see our data source as bitmap
documents:

Definition 1: A document, D, is a matrix with ternary
values which are 1, 0, and -1. For any pixel in the
given document that is black or white, we will set the
corresponding point to be 1 or 0, respectively. The
value -1 is reserved for the null or the area outside the
original document. A document size n pixel by m
pixel will be kept by using a matrix of ternary values
size n×m.

The historical documents may originally be B/W or
color. For our purposes, we are only interested in shape,
so as Definition 1 hints, we binarize all images. The
binarization of images in the context of historical
manuscripts is a well-studied problem (see [14][17] and
references therein) and a relatively easy task for most
documents. Nevertheless, we clearly cannot guarantee
perfect automatic binarization of large unstructured
collections of manuscripts. As we shall show in Section
V, our solution to this problem is to use a distance
measure and an algorithm that is robust to large amounts
of noise and distortions.

Historical documents are often represented by a single
surviving instance and many of them have imperfections.
As shown in Figure 4, the corners may be burned or
worn, or they may have holes due to insect damage [25].
We can support such documents by using null values for
the area outside of the document but within the minimum
rectangular boundary of document. Most professional
scanners of historical manuscripts use a background color
or texture that makes the occurrence of “holes” obvious.

Figure 4. Examples of texts with “holes”.

From the definition above, we regard documents as
containing only a single “page”. To apply our algorithm
to many pages of a book or many books, we can simply
concatenate each page into a long logical document and
use a line of null values to separate one page from the
others.

We do not expect (or want) to find globally repeated
pages, so we confine our attention to small regions of
interest within a page; these we call windows:

Definition 2: A window is a rectangular area inside a
document whose size is specified by the user. It is
defined by

௫ܹ,௬ ൌ ሼ݀, א ݅ | ܦ א ሾݔ, ݔ ݆ ݀݊ܽ ௫ሻݏ א ሾݕ, ݕ ܵ௬ሻሽ

where sx and sy are a user-defined width and height.

The data inside the window is a ternary value just like
the data in the document. While a document may contain

many pages, no window is allowed to span two pages.
For the rest of this paper, we use the term Wa
interchangeably with the term Wx,y if the starting position
of window Wa is (x,y), i.e., in Figure 6, Wa=W3,2.

There are many ways to measure the similarity
between given images. However, most techniques make
assumptions about the data. For example, geometric
hashing [33] assumes the figures have well-defined
points of interest, such as intersections, end-points, areas
of maximum curvature, etc. However, even if these
assumptions are true, this leads to the non-trivial sub-
problem of locating the points of interest. This may be
very difficult in our domain of interest. Other distance
measures assume that the shapes are fully connected [1],
or form closed contours [19]. However, as we shall see,
neither assumption generally holds in our domain of
interest. SIFT and it’s variants (G-RIFT, SURF) make
less assumptions, but even after tweaking their many
parameters, they did not perform well on the problems in
Section V.A(to be fair, they are not designed for this
domain), so we omit them from further consideration in
this work.

Given the above, we need to use a distance measure
which is robust to the inevitable noise/distortions we will
encounter, and which is general enough to work without
any explicit assumptions about the data. Furthermore, as
we shall see later, our basic idea to speed up the
discovery of repeated figures is to use a “hashing-like”
idea from bioinformatics; thus, we need a distance
measure that is amenable to hashing.

The recently introduced GHT distance [2][35] is just
such a measure. We will explain this in more detail in
Section II.B and Section V.A. In the meantime, we use it
to define the distance between any pair of windows as the
following:

Definition 3: The distance between window Wa and Wb is
defined as dist(Wa,Wb). We use the GHT distance as a
similarity distance between two windows. Thus, the
distance is

dist(Wa,Wb) = GHT(Wa,Wb).

As we can see in Figure 5, our distance measure is
offset-invariant. As we shall see, this simple fact allows
us to greatly speed up our search algorithm (especially
for texts with a lot of “white space”) by significantly
reducing the number of distance comparisons needed. We
will expand on this idea in Section IV.A.

Figure 5. The distance measure we use is offset-invariant, so the
distance between any pair of windows, left, center or right above, is
exactly zero. This simple fact can be exploited to greatly reduce the
search space of motif discovery. Since a pattern from another book that
matches one of the above with a distance X must match all with distance
X, we only need to include any one of the above in our search.

Recall that our task can be reduced to finding the
most similar pair of windows in the document. However,
a pathological solution to this would be to have two
windows with high overlap, as in the windows Wc and
Wd, shown in Figure 6.

We call a pair of windows a trivial match if its
windows have a high degree of overlap.

Definition 4: A pair of windows {Wa,Wb} of size
sx×sy is a trivial match if its windows are overlapped
more than α times the total area of a window (0 ≤ α<
1), formally,

(sx-|bx-ax|)*(sy-|by-ay|) ≥ α*sx*sy and (sx-|bx-ax|) ≥ 0
where (ax,ay) and (bx,by) are the starting positions of
windows Wa and Wb, respectively. If {Wa,Wb} is not a
trivial match, we call it a non-trivial match.

For the special case when α=0, no overlap between
two windows of motifs is allowed; in this case, if
windows Wa and Wb are share one pixels or more,
{Wp,Wq} will be a trivial match by the definition. In
Figure 6, if we set α=0.5, both {We,Wf} and {Wc,Wd} are
trivial matches but {Wa,Wb} is a non-trivial match.

D

Wa

=W3,2

Wb

=W20,3

Wc Wd We Wf

1

0

-1

Figure 6. An illustration of our notation. Here the document D consists
of two pages, separated by null values. Intuitively we expect the “T”
shape in window Wa to match the shape shown in Wb. However, note
that the trivial matching pair of Wc and Wd (also pair We and Wf) are
actually more similar, and need to be excluded to prevent pathological
results.

Among all possible pairs of windows, we want to find
the pair that has the smallest distance between each other
and is a non-trivial match. We call this pair the motif
window:

Definition 5: A motif window (or just motif) is a non-
trivial pair of windows {Wa,Wb} such that the distance
between windows Wa and Wb is the smallest of all
other possible pairs.

motif = {{Wa,Wb} | minWa,Wb dist(Wa,Wb)}

The definitions above assume that we are looking for
exactly one near-duplicated figure. However, we can
easily generalize this to allow the discovery of multiple
motifs. In order to do so we must eliminate some
pathological solutions, as shown in Figure 7.

To avoid redundant solutions in discovering multiple
motifs, we will explicitly exclude insignificant motifs
from our solution. We define an insignificant motif as the
following:

Figure 7. An illustration of a pathological solution to finding the top two
motif pairs between two century-old texts. top) The desirable solution
finds the crescent and label (rotated “E”). bottom) A redundant and
undesirable solution that we must explicitly exclude is finding one
pattern (the label) twice.

Definition 6: A motif {Wa,Wb} is insignificant if
another motif {Wc,Wd} exists such that

i. dist(Wa,Wb) ≥ dist(Wc,Wd)
ii. {Wa,Wc} and/or {Wb,Wd} are trivial matches.

The motif windows are insignificant if at least one of
their windows shares a large part with other motifs.
However, different motifs can share small parts with each
other. Next, we define a top-k motif window as the
following:

Definition 7: A top-k motif window is the set of k
most similar pairs of windows, none of which is
insignificant.

In Figure 7.bottom, only one true motif window is
discovered, and the other one is insignificant.

B. Generalized Hough Transform

The Hough Transform [16] was introduced by Hough
as a tool for finding well-defined geometric shapes (lines,
curves, rectangles, etc.) in images [12]. The idea was
generalized by many others, including Ballard, who
introduced the Generalized Hough Transform to detect
arbitrary shapes in images [2]. Computing the GHT
distance between pairs of windows is relatively
expensive. In particular, the time complexity for each
GHT calculation is O(nb

2), where nb is the number of
black pixels in the window.

However, a recent paper by Zhu et al. [35] shows
some computational tricks to reduce the amortized time
for a single comparison, when a higher level algorithm
requires multiple comparisons (i.e. clustering or query-
by-content). In this work we use the ideas presented by
Zhu, but as we shall see, they alone are not sufficient to
provide the scalability we require in this domain.

There are two reasons why we chose to use the GHT
distance for the problem at hand. Firstly, as shown by
Zhu et al. and confirmed by our experiments, the measure
is very robust and accurate [35]. Secondly, as we shall
see, the method lends itself to being adapted to the
random projection framework, which is used to solve the
motif discovery problem in bioinformatics [31].

III. EXACT ALGORITHM TO FIND MOTIFS

Given a document D and (user defined) window size
s, we want to find the top-k motifs in a given document.
For simplicity, in the rest of this paper we will explain
only how to find the top-1 motif because the extension to
top-k is trivial.

A. Brute Force Algorithm

We can easily find the top-1 window motif by
comparing the distances from all pairs of windows, as
shown in Table I.

This simple algorithm uses nested loops (lines 3 and
4) to test all possible pairings of motif windows, checking
whether or not two particular windows are trivial (cf.
Definition 4), recording the one with the smallest
distance. Unfortunately, this algorithm has an obvious
flaw which makes it untenable for real problems: it will
simply take a great deal of time even for a small
document.

TABLE I.
BRUTE FORCE ALGORITHM

Algorithm: Brute force algorithm to find the top-1 window motif
Input: D : document
 sx sy : window size
Output: motif : window motif
1
2
3
4
5
6
7
8
9
10

W = set of all windows of size sx×sy in D
bsf = ∞
for a = 1 to |W|
 for b = a+1 to |W|
 if(~IsTrivial(Wa,Wb))&&(dist(Wa,Wb)<bsf)
 bsf = dist(Wa,Wb)
 motif = (Wa,Wb)
 end
 end
end

Assume that the document is size n×n and the user-
defined window is size s×s. The brute force algorithm
must consider every pair of windows, requiring it to
compute GHT distances O(n4) times. Each GHT
calculation takes time O(nb

2), and nb, the number of black
pixels in a window, can be as large as s2; it is usually
larger than s. Hence, the total running time for the brute
force is O(s2n4).

To give concrete numbers, suppose the original
document is a B/W image of size 1 megabyte, or
1000x1000 pixel2. The set of all windows, W, is
approximately 106 (line 1). To find a motif using the
brute force algorithm, we need to compute the GHT
distances about 5×1011 times (line 3-4). This would take
approximately 108 seconds, or 3 years. Because the brute
force algorithm cannot find motifs even in a small
document in an acceptable amount of time, we will
introduce a fast approximate algorithm for this task.

IV. OUR ALGORITHM

In this section, we introduce a sub-linear time motif
discovery algorithm. We begin by giving the intuition
behind three ideas that we will exploit to make our
algorithm scalable. Later we will show a concrete
algorithm that exploits these ideas.

A. Intuitions behind our Algorihm

1) Downsampling helps scalability

Our first observation was originally made to help
improve scalability, but as a happy side effect, it also
greatly improves accuracy. Figure 8 shows the effect of
downsampling on our data of interest.

A B DC

Figure 8. A) Two figures from table 16 of a 1907 text on Native
American rock art [20] (one image recolored red for clarity). B) No
matter how we shift these two figures, no more than 16% of their pixels
overlap. C) Downsampled versions of the figures share 87.2% of their
pixels as in (D).

Because downsampling will greatly decrease the
number of windows that must be examined, it will clearly
improve efficiency. It is natural to ask if this reduction in
resolution will reduce the accuracy. The surprising
answer is that the opposite is true; downsampling (except
when taken to the extreme) actually improves accuracy
by eliminating spurious precision and reducing the shape
to its bare minimum. We note that we are not claiming
this observation as an original contribution; Zhu et al.
pointed this out and demonstrated it with detailed
experiments [35]. However, the next two ideas are
original and unique to our domain.

2) Random projection further reveals similarities

While the downsampling idea introduced in the last
section reduces both the time for a single distance
calculation and the number of distance calculations that
must be performed, the number of distance calculations
required by the brute force algorithm is still on the order
of O(n4). We have just drastically reduced the value of
“n”. In order to make significant progress on this
problem, we need a much faster way to identify
(potentially) very similar shapes. Figure 9 shows the
intuition as to how we might achieve this.

Assume we have a pair of windows {Wa,Wb} of size
17×14, containing two similar, but not identical figures,
whose distance is equal to nineteen (i.e., dist(Wa,Wb)=19).
For example, in Figure 9 we have two anthropomorphic
examples of rock art with this property. Suppose that we
randomly choose a single location, x=randint(1:17)
and y=randint(1:14), and set that pixel to white in
both figures. What effect would this have on the
distance? There are only two possibilities:

i) The corresponding pixels in the two windows are
already either white or both black. In either case, the
distance does not change. ii) Exactly one of the
corresponding pixels was black, and changing it to white
must decrease the distance.

From this analysis, we can see that “deleting” black
pixels (randomly projecting windows to a lower
dimensional space [31]) must decrease or hold steady the
distance between two objects. This is important, because

if we manage to decrease the distance to zero, we can
find such zero distance pairs in only linear (in the number
of windows) time using hashing. This idea is inspired
from the well-known hashing technique, min-Hash [6].

A C

D
Mask template

B

Figure 9. A) If we randomly choose some locations (masks) on the
underlying bitmap grid on which the two figures (B) shown in Figure 8
lie, and then remove those pixels from the figures, then the distance
between the edited figures (C) can only stay the same or decrease.
Several random attempts at removing ¼ of the pixels in the two figures
eventually produced two identical edited figures (D).

In the example shown in Figure 9, ignoring one pixel
is clearly not enough to make the two figures identical;
we actually need to remove at least 19. Furthermore, we
need to remove the correct set of 19. A simple
combinatorial calculation will convince the reader that
this is very unlikely to happen if we choose 19 pixels at
random. The obvious solution, to ignore more than 19
pixels, say 100, contains a problem. If we ignore too
many pixels we will also allow two very different figures
to hash together.

To some extent, this is a problem we can live with.
Even if two very different figures are projected onto a
very low dimensional space where they hash together as a
false positive, we can later check their distance in the
original space. The only danger is that if we have too
many false positives, then checking them all may not be
much faster than a brute force search.

At first blush the problem may seem insurmountable,
because we have the extremely delicate task of making
all similar things identical, without making (too many)
different things identical. Fortunately, there is a solution
to a nearly identical problem in DNA motif discovery in
bioinformatics, which we can leverage off [31]. The idea
(informally stated) is to be conservative in the number of
pixels we remove, but to do multiple independent rounds
of projection (hashing). This increases the number of true
positives, while also reducing the number of false
positives.

3) Numerosity reduction improves scalability

The final observation we will make has already been
hinted at in Figure 5. Even after downsampling, there are
many windows that must be explored in order to find a
motif (or top-k motifs). The number of windows of size
sx×sy in a document of size n×m is quadratic in terms of
the document size, or more precisely, is (n-sx+1)(m-sy+1),
which is O(n2) when n=m. Naturally, all of these
windows have a great deal of redundancy with their
neighbors, and many windows may be totally blank or
contain only a handful of pixels. Based on this
observation, we can reduce the number of windows in the

document dramatically by filtering out all but one
representative example of a set of redundant windows,
and also filter out windows that do not have enough black
pixels to form any meaningful shape. We call the
remaining windows in the document after this process,
potential windows:

Definition 8: A potential window is a window whose
number of black pixels is at least a threshold t and not
less than other adjacent windows. Then, the set of
potential windows P is defined as

}.)(

)()(}1,0,1{,|{

,

,,,

tWsumand

WsumWsumWP

yx

yxyxyx

Let sum(·) be the total number of black pixels in the
particular window: sum(Wx,y) . In the case of a null
value, we can set di,j to either 0 or 1.

This idea can be visualized in Figure 10, where
potential windows are centered on the peaks of a 3D
heatmap.

Figure 10. The summation of the number of black pixels in windows.
Only windows corresponding to peaks above the threshold (the red line)
need to be tested. The arrows show the center position of six potential
windows.

We simply set the parameter t to an average number
of black pixels in a specific window size, and the results
show that our algorithm works well on this default value.
Ties can be resolved by selecting just one potential
window, changing the definition from “≥” to “>”.

We note that this step also has an analogue in
bioinformatics algorithms [22]. Many motif discovery
algorithms do a preprocessing step of removing regions
of low complexity DNA (for example, a long run of a
single amino acid) to both speed up search and eliminate
pathological solutions.

B. Motif Discovery

We are finally in a position to explain our algorithm
and how it exploits the three ideas from the last section.
In essence, we downsample the original book, extract all
potential windows and hash them with random
projection. All pairs that collide are inspected in the
original space to see if they are true motifs. Our
algorithm is described in Table II.

Our algorithm uses four more inputs than the brute
force algorithm. The first is the downsampling scale, ds,
and the other three parameters are used in random
projection.

In line 1, we downsample the original document D
into the smaller version, DD, with the scale ds. While
there are many algorithms for rescaling images, we
simply downsample by majority voting the values inside
ds×ds pixels in the original document to create a new pixel
in the new document, DD. Hence, DD will be smaller
than D by a factor of ds2.

The next step is to locate all windows in the new
document in line 2. Note that the total search space is
reduced from O(n4) to O(n4/ds4). Further note that in our
implementation, we do not set W explicitly. We still need
to further reduce the search space, so in line 3 we apply
the third idea from the last section. In order to locate the
potential windows (cf. Definition 8), for all windows we
calculate the total number of black pixels inside that
window. We can do this in linear time with respect to the
number of pixels in the document. We then locate all
potential windows which are at the local maxima of the
summation plot, as visualized in Figure 10. Now our
search space is massively reduced; for example, in Figure
10, there are less than 30 potential windows among
22,000 original windows.

TABLE II.
OUR ALGORITHM

Algorithm: DocMotif

Input: D : document sx sy : window size
 ds : downsampling scale it : number of iteration
 hds : hash downsampling scale mask : masking ratio
Output: motif : window motif
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

DD = DownSamplingDoc(D,ds)

W = set of all windows of size sx×sy in DD

P = LocatePeaks(W)

P = AlignCenter(P)

HSig = Ø

for i = 1 to it

 hsig = HashSignature(P, hds, mask)

 HSig = HSig hsig
end

cand = CollidedWindow(HSig)

best-so-far = ∞
for all pair of windows (wa,wb) in cand

 if(IsTrivial(wa, wb))

 continue;

 end

 if(lb_dist(wa,wb) < best-so-far)

 if(dist(wa,wb) < best-so-far)

 best-so-far = dist(wa,wb)

 motif = (wa,wb)

 end

 end

end

The number of peaks or potential windows is data
dependent. It is possible that there are a lot of small peaks
in the document. For example, as in Figure 10, there are 3
potential windows on the right which are created from the
same symbol. We solve this problem in line 4 with a

simple solution. We align every potential window by
moving its center of mass to the center of the window. As
a result of this process, potential windows may slightly
change their position, so if several windows are aligned
to the same position, we pick only one window at the
position.

After all potential windows have been enumerated,
we hash them using random projection (line 5-9). This
idea is essentially the same as the one shown in Figure 9;
we create a hash signature from each figure by randomly
removing some pixels from them (line 7). Then, we find
all pairs of windows that “collide”; that is, they share the
same signature (line 10). To create the hash signature in
line 7, we do two steps. First, we further downsample all
potential windows to a smaller size. The parameter
controlling this is called hds, or hash downsampling
scale. Then, we randomly remove some pixels, the
number of which is controlled by the parameter mask. We
do this random projection it times to increase the
probability that two similar items will collide at least
once. Note that only one collision is required to ensure
we discover the motif.

In the last step, we create a set of all candidate pairs,
cand (line 10). We can now calculate the true GHT
distance of each pair, and the motif is a pair of windows
that has the smallest distance, ignoring as always the
trivial pairs (line 13). Lines 12 to 22 are essentially the
brute force search (see Table I), but over a relatively tiny
subset of the original possibilities. Because the GHT
calculation is expensive, we avail of a recently published
speed-up trick [35]. We calculate the GHT’s lower bound
first (line 16). If the lower bound is bigger than the best-
so-far, we do not calculate the expensive GHT distance.
Otherwise, we update the best-so-far using the GHT
distance (line 18-19).

There is one trivial but very useful modification we
can make to the algorithm. We can input two books
instead of one, and insist (by adding an extra test on line
13) that the motif's two occurrences have one
representative from each book. This is an idea hinted at in
the first three figures in this work. We may see this as a
motif join between two texts.

V. EXPERIMENTAL RESULTS

We have designed all experiments such that they are
reproducible, and as such, all data and code are freely
available at [37].

In this section we wish to empirically demonstrate the
following: that the GHT distance measure, operating on
downsampled data, is appropriate for our domain; that
our algorithm can find meaningful motifs in real data, and
that this information is useful to domain experts; and that
our algorithm is scalable enough to allow mining of large
texts. Finally, we wish to show that although our
algorithm has several parameters, these are easy to set,
and their exact value is not critical to efficiency or
effectiveness.

A. Sanity Check for the GHT Measure

While our experimental case studies (cf. Section V.B)
offer compelling anecdotal evidence that our method
finds truly similar figures, it would be useful to see
objective tests. To our knowledge, there is no benchmark
dataset to test on; however, we can show the suitability of
our ideas for objective tests in very similar
domains/problems.

We would like the tests to demonstrate two things:
that our choice of the GHT as a similarity measure in this
domain is warranted, and that the extreme downsampling
we perform to improve scalability does not hurt accuracy.
We achieve these aims by testing on datasets of hand-
drawn figures. Two of the datasets are from a collection
of old music scores (17th-19th centuries) [13][26], and
thus are very representative of our domain of interest, and
the third one is a modern architectural symbol dataset
[21], in which various users hand copied symbols, and is
thus also very similar to the task at hand. As Figure 11
shows, these are non-trivial problems. In particular, the
symbols in the first two datasets come from degraded
texts, written by individuals who may have lived
centuries apart and in different countries. Rather than
fine-tune our method, we simply hard coded the
downsampling to 20×20 for all datasets.

Figure 11. Samples showing the interclass variability in the hand-drawn
datasets. left) Samples from the music datasets. right) Samples from the
architectural dataset.

Table III shows the one-nearest-neighbor leaving-one-
out accuracy.

TABLE III.
THE ACCURACY OF GHT ON 3 HAND-DRAWN SYMBOL PROBLEMS

 # instances # classes Accuracy

Clefs 2,128 3 99.58%

Accidentals & Clefs 4,098 7 98.49%

Architectural 7,414 50 99.29%

While others have worked on these datasets, we did
not directly compare our results to theirs. The published
approaches on these datasets are so slow (an O(n3)
warping method for the music symbols [13][26], and an
O(n3) adjacency grammar method for the architectural
symbols [21]), that in both cases the authors abandoned
any attempt at a full leaving-one-out on the entire dataset,
and instead created various smaller subsets (hand crafted
and thus difficult to meaningfully compare to). However,
our accuracies are so close to perfect in every case that
our claim is clearly demonstrated: the GHT on
downsampled images is an effective distance measure for
these kinds of images.

B. Motifs between Two Manuscripts

While there is undeniable utility in discovering motifs
within a single text, the real power of motif discovery

will undoubtedly come from the linking of two motifs
between two or more apparently disparate texts.

Taryn Rampley, a Ph.D. student in anthropology at
the University of California-Riverside, is interested in
correlating DNA studies of peoples from the Americas
with studies of cultural artifacts [27]. In particular, she is
looking for evidence of cultural transmission from North
America to South America prior to contact with
Europeans. While this evidence might be found through
jewelry, textiles, weapons or language, this researcher is
focusing on petroglyphs (rock art), of which there are
several million documented examples in the Americas.

This student gave us a classic reference text on
Californian petroglyphs [29], which includes a 104 page
petroglyph catalog, containing about 2,852 individual
examples of petroglyphs. We scanned this text with an
off-the-shelf scanner. Figure 12.left shows two
representative pages.

Thanks to the Google Book Project, the web is replete
with possible texts with which to compare. One such text
that caught our attention is a 1907 text by the German
ethnologist and explorer Theodor Koch-Grünberg (1872–
1924) which discusses the origin and significance of rock
art in South America [20]. This text contains 233 images
of petroglyphs hand-traced by the author. Figure 12.right
shows two representative pages.

Figure 12. left) Two typical pages from Californian petroglyphs [29].
right) Two typical pages from [20]. Note that the minor artifacts are
from the original Google scanning.

We ran our motif join algorithm on these two texts;
Figure 13 shows a selection of the top fifty results.

Figure 13. Five random motif pairs from the top fifty pairs created by
joining the two texts [20] and [29]. Note that these results suggest that
our algorithm is robust to line thickness, solid vs. hollow shapes, and
various other distortions.

While the figure pairs are clearly somewhat similar,
the anthropologist does not feel that this provides
evidence of cultural transmission. If we repeat the
experiment by comparing the reference text to
petroglyphs from Arizona or Utah, the joins are much
more similar. Currently, these conclusions are subjective
and tentative; in ongoing work we are working with
anthropologists to produce a principled theoretical
framework for drawing such conclusions. While we defer
detailed scalability results to the next section, we note
that this join took approximately one minute.

motif between two books

motif inside one book

Before moving on, it is worth re-examining Figure 13
to note the invariances our algorithm has achieved. For
example, in the Figure 13.middle our algorithm
discovered a pair of anthropomorphic figures in spite of
the fact that one has a solid head and antenna. To
appreciate why we can achieve such invariances we invite
the reader to review Figure 8 and Figure 9, whose
examples we drew from one of these texts [20].

Such robustness is critical if we are to investigate
hand drawn texts in addition to the printed texts we
consider next. As part of another project on mining
cultural artifacts we are also interested in mining the vast
literature on genealogy and heraldry that dates back to the
12th century [8][9]. Figure 14 shows a typical result in
this domain.

In order to make a point about some invariances our
distance measure achieved in this domain, Figure 15
shows a zoom-in of the two pairs of discovered motifs
shown in Figure 14. Note that in both cases the two
members of each motif differ slightly in scale. This is
presumably due to differences in the scanning process,
since it is likely that the images were produced by the
intaglio process, and printed from the same plate. In any
case, our method is robust to such minor scale changes.

Figure 14. The top two inter-book motifs discovered when linking a
1921 text, British Heraldry [8] (left), with a 1909 text, English Heraldic
Book-Stamps, Figured and Described [9] (center), and (right).

Note also that the figures are not identical; for
example, the helmet in the later text has additional
shading on the right side of the dome and under the chin.
Again, our method is robust to this issue.

Figure 15. A zoom-in of the motifs discovered in Figure 14. Note that
the two helmets differ in size by about 11%, and our algorithm was
invarient to this difference.

However, the most interesting point about this
example is the (relative) invariance to the user-specified
size parameter. Note that as shown in Figure 15, we set a
window size and aspect ratio that happens to be perfect to
enclose the crown. To enclose the helmet, we really need
a window size that is about twice as large and with a

more vertical aspect ratio. Nevertheless, in spite of a
suboptimal window size we still found the helmet motif.
This is not a one-off fortuitous occurrence, but generally
true (see additional examples at [37]). So long as the
user-supplied size is within a factor of two or so of the
motif size, we will robustly find it. If the uncertainty in
size is greater than a factor of two, our algorithm is
efficient enough to allow range-doubling search.

Because our algorithm can discover motifs between
different books, it is of utility in locating similar patterns
in different books, and combining the information
between those books such as shape, texture, color, etc.,
and filling in missing details.

The following example demonstrates that motifs can
help us to flesh out some missing data. In 1863, A
Manual of Heraldry, Historical and Popular [7] showed
the heraldic shield of King George III of England after
year 1801 and his successors, George IV and William IV,
as in Figure 16.left. However, later in 1913, Leopards of
England explained that King George IV and King William
had changed the arms a little as shown in Figure
16.middle, “Fourteen years later the Congress of Vienna
erected the electorate of Hanover into a kingdom,
whereupon the elector’s hat was changed into a royal
crown, … until the death of the last English king of the
house of Brunswick in 1837”[11].

Figure 16. (left) Arms of King George III and his successors from A
Manual of Heraldry, Historical and Popular, 1863 [7]. Two similar
arms are explained in Leopards of England, 1913 [11]. (middle) Arm of
King George IV and his successor’s King William IV. (right) Arms of
King George III after the constitutional change .

Thus by finding motifs within one text [7], and
between two texts [7] and [11], we can automatically
interpolate the missing color information in an
monochromic figure.

In the next section, we show that the efficiency and
accuracy of our algorithm are largely invariant to
parameter choice.

C. Scalability and Noise Tolerance

Testing the scalability of our approach on real data
provides us with significant challenges, since the running
time of our algorithm depends on the data. For example,
suppose a book has a perfect motif on pages 1 and 51, but
otherwise there are no significant repeated patterns. The
time to search a subset consisting of the first 50 pages
would be much greater than the time taken to search the

first 100 pages, since the latter would encounter a high
quality best-so-far early on. Given this, we test the
scalability on an artificial book over which we have
perfect control. We made every effort to make a realistic
book, but when in doubt we made choices designed to
strain our algorithm.

We generated an artificial book using the idea of a 14-
segment display that be used to create any English
alphabetical character or digit. Figure 17.left shows some
samples. In our artificial book, each page contains a
random selection of 100 characters and the size of each
page is 1330x1220 pixels, as shown in Figure 17.middle.
While it is very unlikely that any random character would
be created twice, such an occurrence would greatly favor
our algorithm. We therefore further distort the book by
two methods: adding a random polynomial warping
(modeling a distortion caused by non-contact scanning)
to the pages and adding some Gaussian noise, as shown
in Figure 17.right.

In order to set the parameters for our experiments, we
did the following: we created a two-page “book” and
spent less than five minutes “playing” with it to find
reasonable parameter values. Once we had found these
values, we fixed them for all data sizes up to 2,048 pages.

Figure 17. left) The 14-segment template used to create characters. We
can turn on/off each segment independently to generate a vast alphabet.
middle) An example of a page which is generated from the process.
right) A page of the book after adding polynomial distortion (top half),
and Gaussian noise with mean 0 and variance 0.10 (bottom half).

As we can see in Figure 18, our algorithm can find the
top motif in a 128-page book in a minute and in a 2,048-
page book in half an hour. Note that these times are close
to the time taken to scan (at least valuable) books of this
size, so they are not unreasonable.

Scalability

0

500

1000

1500

2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Polynomial
distortion

No distortion

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of Pages

Sample Motifs

Figure 18. Time to discover motifs in books of increasing size. Our
algorithm can find a motif in 512 pages in 5.5 minutes and 2048 pages
in 33 minutes. (inset) As a sanity check we confirmed that the
discovered motifs are plausible, as here (noise removed for clarity).

Note that in this figure and some figures to follow,
some lines are difficult to tell apart; however, this is the
point of these experiments: to show that our algorithm is
not sensitive to distortions/noise/parameter choices.

We also test the noise tolerance of our algorithm by
generating an artificial book with Gaussian noise added.
The mean of the Gaussian noise is set to 0 and its
variance is varied from 0 to 0.20. The results in Figure 19
show that our algorithm can tolerate significant noise
(var=0.15).

When the book contains too much noise (var=0.20),
the number of potential windows will increase because it
is difficult to align all potential windows from a figure
into the same position. Hence, the running time increases.
However, this case corresponds to a very heavily
degraded image.

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Pages
1 2 4 8 16 32 64 128 256

0

1

10

100
250

Effect of Gaussian Noise
Var = 0.20

No noise
Var = 0.01
Var = 0.05
Var = 0.10
Var = 0.15

Figure 19. Effect of Gaussian noise. Our algorithm can handle
significant amounts of noise. An example of a page containing noise at
var=0.10 is shown in Figure 17.right.

To concretely ground the amount of speed-up our
algorithm can achieve we did the following experiment.
On a 512-page book, we compared the running times of:

1. Exact motif search over the entire document by
applying motif discovery technique in [22]

2. Exact motif search over just the potential
windows

3. Our proposed algorithm, DocMotif.

The results are shown in Figure 20. We can see that
the running time of heuristic search from [22], which is
much faster than brute force search, rapidly becomes
untenable, taking, for example, more than a day for just 8
pages and (an estimated) six months to finish all 512
pages. Our simple trick of only searching over potential
windows reduces the search time to just 6.9 hours for the
full 512 pages; however, our proposed algorithms take a
mere 342.4 seconds.

0

0.5

1.0

1.5

2.0

2.5

3.0
x 104

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Number of Pages

Brute Force (All Windows)

Brute Force (Potential Windows)
Our Algorithm

1 2 4 8 16 32 64 128 256 512

Figure 20. The total execution time of three search algorithms: an exact
motif search, an exact motif search on just the potential windows, and
our algorithm DocMotif.

D. Robustness of Parameters

We have an obligation to explain how the choice of
parameters affects the speed of motif discovery and the
quality of motifs. As we shall see, our algorithm is not
particularly sensitive to parameter choice. Recall that in
the previous sections we have set the parameters based on
a few minutes’ experience with a two-page sample. Our
simple test for parameter sensitivity is to hold three
parameters firm, and adjust the other parameters to higher

and lower values, to see what effect this has. Figure 21
tells us that for the most part, the algorithm’s
performance does not rely critically on parameter
choices. Of course, this dramatic speed-up would be
worthless if the faster algorithms produced inferior
results. However, as we shall show empirically in Section
V.B, the results of all algorithms are virtually identical.

In the random projection process, the length of the
hash signature is affected by two parameters, which are
the hash downsampling scale hds and masking ratio
mask. When the signature is shorter, the probability of
collisions increases (including false positives that must be
checked and dismissed). Thus, when we remove more
pixels from a window by increasing mask, the running
time will increase, as shown in Figure 21.A. As we can
easily see in Figure 9, if we continuously remove pixels,
eventually all windows will collide to the same shape
(with pure white or no content left).

Downsampling

DS=3
DS=4

DS=5

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

E
xe
cu
tio
n
T
im
e
(s
ec
)

D

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

E
xe
cu
tio
n
T
im
e
(s
ec
)

HDS = 3

HDS = 2

HDS = 1

Hash Downsampling
B

Number of Pages

10 iterations
9 iterations

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

E
xe
cu
tio
n
T
im
e
(s
ec
)

Number of Iterations
11 iterations

C

Masking Ratio

20%
30%

40%

50%

60%

0

100

200

300

400

500

600

E
xe
cu
tio
n
T
im
e
(s
ec
)

1 2 4 8 16 32 64 128 256 512

A

Figure 21. The effect of parameters on our algorithm. We test on
artificial books with polynomial distortion and each result is averaged
over ten runs. The bold/red line represents the parameters learned from
just the first two pages.

Similar to mask which has a linear effect, hds has a
quadratic effect on the length of the hash signature, so if
we change it, the running time may change significantly
as shown in Figure 21.B. Recall that hds=2, meaning that
we condense 4 pixels to just one. The number of
iterations has very little effect (Figure 21.C), which is
also true for the bioinformatics algorithm that inspired us
[31].

The downsampling scale ds parameter (cf. Figure 8)
can reduce the search space and increases the quality of
the motifs by allowing a greater invariance to noise.
Figure 21.D shows that if we fix all other parameters and
vary this parameter, the total running time will increase
as ds increases. When ds increases, the downsampled
document, DD (cf. Table II), contains fewer pixels and
also less information to represent any figure; so after
random projection there will be more spurious collisions,

increasing the number of false positives that must be
checked and thus increasing the running time.

As with any approximate algorithm, the quality of the
result is important. Hence, we calculate the quality of
top-20 motifs by using their total distance. Figure 22
shows the average distance for different parameters
values, compared to the exact search algorithm.

Here the quality of the top twenty motifs is simply the
sum of all twenty distances of each motif pair (i.e.,
Definition 3). As Figure 22 shows, the quality of
DocMotif is very good under any parameter setting, even
for small books, but as the size of the book increases, the
results are essentially indistinguishable from the exact
search, which takes about 67,500 times longer.

2 4 8 16 32 64 128 256 512
0

5

10

15

20

25

30
Mask 60%
Mask 50%
Mask 40%
Mask 30%
Mask 20%
BruteForce

A
ve

ra
g

e
D

is
ta

nc
e

Masking Ratio

A

2 4 8 16 32 64 128 256 512
0

5

10

15

20

25

30

A
ve

ra
g

e
D

is
ta

nc
e

i teration=5
iteration=9
iteration=10
iteration=11
iteration=20
BruteForce

Number of Iterations

C

Number of pages

2 4 8 16 32 64 128 256 512
0

5

10

15

20

25

30

A
ve

ra
g

e
D

is
ta

nc
e

HDS=2 (4:1)
HDS=3 (9:1)
BruteForce

Hash Downsampling

B

Figure 22. The average distance from top-20 motifs from our algorithm
and the exact search algorithm. The bold/red line shows the default
parameters. This shows that the quality of motifs is not sensitive to
different parameter settings and very close to the result from the exact
search algorithm.

E. Data Mining Palm Leaf Manuscripts

We conclude by noting that our algorithm is currently
being evaluated for mining massive (four million leafs)
archives of palm leaf manuscripts such as the one shown
in Figure 23, for medical knowledge.

Figure 23. An example of a palm leaf manuscript.

Figure 24 shows six motifs discovered from a 52-page
palm leaf manuscript. In addition to discover similar
figures from manuscripts, these examples demonstrate that
our algorithm also work well on discovering motifs in
handwritten documents. Note that we did not do much on
image processing such as text line detection or text
segmentation, except image binarization. However, the
high quality motifs in a handwritten document are
achieved as shown in Figure 24.

Figure 24. Six example motifs from a palm leaf manuscript. The
window size is set to 30×100 pixel2.

Because it is an interesting and visual example, we
present this example as a one-minute long YouTube
video [36]. The video demonstrates the speed, robustness
and accuracy of our algorithm, even in the face of
complex and degraded texts.

VI. THEORETICAL ANALYSIS

In this section we briefly introduce some results that
make much of the discussion of parameter setting in the
previous section moot. In essence, we show that, given
some very mild assumptions, we can simply derive the
best parameters to use, given just the user-required
confidence in finding the true motif. Concretely, if an end-
user wishes to find the true best motif in a text, with a
confidence conf (conf is the probability that the returned
motif is the one the brute force search would have
returned), she can use the following results to find the
appropriate parameters to use.

In this analysis, we assume that there is only one motif
in the document with distance d and mean and standard
deviation distribution of the distance between each pair of
windows µ and σ, respectively. The window size is
N=sx×sy. Note that if there is more than one motif in the
given dataset, we still get the same result because the
content (or location of black pixels) in each non-related
window are independent.

Theorem: If two windows of the motif collide with
confidence at least conf, the probability that any pair of
windows will collide at most: ݅ݐ כ ௨ିଵ + 2݇ݏܽ݉ כ ݐ݅ כ ఓାଵ∑ୀଶௗ݇ݏଶ݉ܽߪ 1/ሺ݉ܽ݇ݏ݅ଷሻ

where the masking ratio mask can be defined by:

mask ≥ ଵே ቂ൫1 െ ሺ1 െ ሻଵ/௧൯ଵ/ௗ݂݊ܿ כ ሺܰ െ ݀ 1ሻ ݀ െ 1ቃ
The detail of mathematical proof is provided in

Appendix A. We can use these results to find the optimal
set of parameters in a four dimensional space. To give the
visual intuition of this in one dimensional space, we can
hold 3 parameters fixed at reasonable values, and use the
above theorems to plot the number of false positives
created (hence, the time taken) vs. the value of the free
parameter. In Figure 25.top we allow the masking ratio to
vary, and in Figure 25.bottom we allow the number of
iterations to vary.

These results bode very well for our algorithm. In the
first case, they tell us that if the masking ratio is anywhere
from about 60% to 90%, our algorithm will produce very
few false positives that need to be eliminated, thus giving
our algorithm essentially sub-linear time performance.

Number of Iterations
1 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

of
 C

ol
lis

io
n Masking Ratio (%)

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 C

ol
lis

io
n

d = 4

Sample motif with d = 4

d = 4

Time taken
equivalent to

brute force search

Time taken
equivalent to

constant search

Time taken
equivalent to

constant search

Figure 25. The effects of masking ratio (top) and the number of
iterations (bottom) parameters on the spurious collision ratio, Given
there is least one motif with a distance d in the data. The figures for
other values of d are at [37]. Here we fixed µ=100 and σ=10.

Note that in the latter case, the minimum value is at 4.
After that, the cost very slowly rises, because we have
found (with very high probability) the true motif, and the
additional iterations have a small overhead while
contributing nothing to the speedup.

We have tested these theoretical results with
experiments, and found that our theoretical model is
accurate, but slightly conservative. In other words, setting
the parameters is even easier than predicted here.

VII. CONCLUSIONS

We have said little about related work thus far
because there is little that does exactly what we propose.
Xi et al. do consider “Finding Motifs in a Database of
Shapes” [34]. However, they make two critical
assumptions that are not true in our case (or in general):
that the individual shapes can be perfectly extracted, and
that all shapes can be represented by a closed contour. Of
course, our work does borrow heavily from the huge
literature on motif discovery in bioinformatics; see [31]
and the references thereof. Likewise, we have exploited
both the classic ideas of the GHT [2], and the recent
extensions by [35]. There is an active community
working on computerized historical document analyses
[14][17][24]: however, while great many papers address
query-by-content, including [13][21][26] the task of motif
discovery in this domain has not been addressed thus far.

We have shown the first general technique for the
unsupervised discovery of repeated patterns both within
and between texts. We have demonstrated that our
algorithm is scalable, it can produce meaningful results
that are useful to domain experts, and its parameters are
easy to set. In future work we plan to integrate our ideas
with (OCRed) text mining algorithms, and leverage off
very recent theoretical results in bioinformatics to remove
the need to set any parameters in our algorithm.

APPENDIX A: MATHEMATICAL ANALYSIS

According to our algorithm explained in Section IV,
there are three main steps make our algorithm ultra fast by
reducing the number expensive real distance calculations.
Firstly, we locate the potential windows among all
windows inside the books. With a good preprocessing,
potential windows are not hard to locate as we describe in

Section IV.A, and the number of potential windows are,
expectedly, in the same order of magnitude as the number
of figures inside the books which is depended on window
size. Secondly, we apply our hashing technique and then
calculate the distances between every window pairs which
share same signatures. While a motif collides, some of
other pairs may also collide by coincidence; we call this
kind of windows, non-motif. It is non-trivial to calculate
the expected number of false collisions, which is at the
heart of this section. Thirdly, instead of calculating all
expansive real distances, we apply the lower bound first
introduced by Zhu et al. [35] to reduce the number of real
distance calculations.

In this section, we will guarantee the maximum
number of false collisions occurred in our random
projection process.

Assumptions:

In order to give the number of false collision, our
assumptions are:

1. In each image, black pixels are appeared randomly
and uniformly.

2. The motif is the pair of windows which has the
smallest distance. Thus, in this proof, all other pairs are
considered as non-motifs and can only increase the
number of false collisions.

Note that in real situation, there are many motifs or
similar figures, and the number of false collision will be
smaller than the one shown in this section.

3. We know in advance the mean µ and standard
deviation σ of the distribution of the distances of all
window pairs.

Note that we do not assume that all windows have the
same number of black pixels or, even, the distance
distribution is Gaussian.

Notations:

For simplicity, we use some new nicknames for some
parameters introduced in Section IV.

N: user-defined size of image. (N=sx*sy)
s : masking ratio (0 ≤ s ≤ 1) or mask in Table .
t : number of iteration or it in Table .
µ: mean of distance distribution from all window pairs.
σ : standard derivation of the distance distribution.
conf : user-defined confidence which is the probability

that at least one iteration the motif will appear in the
same bucket.

Lemma1: Given windows Wa and Wb, if d=dist(Wa,Wb),
the probability that Wa and Wb will collide in 1 iteration of
random projection is: ݏௗ P[Wa and Wb collide in 1 iteration] ቀ௦ேିௗାଵேିௗାଵ ቁௗ

Proof:

Because the distance between Wa and Wb is d, if the
removed pixels cover all of these d pixels, Wa and Wb will
have the same signature, the remaining pixels. In our
hashing process, we randomly remove sN pixels from N-
pixel windows.

Then, the probability of distance d will collide is :

Pd = P[Wa and Wb collide in 1 iteration]

= P[Wa and Wb has same hash signature]

=
୭ ୵ୟ୷ୱ ୲୦ୟ୲ ୟ୪୪ ௗ ୮୧୶ୣ୪ୱ ୟ୰ୣ ୰ୣ୫୭୴ୣୢ ୵୦ୣ୬ ୵ୣ ୰ୣ୫୭୴ୣ ௦ே ୮୧୶ୣ୪ୱ# ୭ ୟ୪୪ ୮୭ୱୱ୧ୠ୪ୣ ୵ୟ୷ୱ ୲୭ ୰ୣ୫୭୴ୣ ௦ே ୮୧୶ୣ୪ୱ

=
ቀ ேିௗ௦ேିௗቁቀ ே௦ேቁ =

ሺேିௗሻ!ሺ௦ேିௗሻ! ሺேି௦ேሻ! ሺ௦ேሻ! ሺேି௦ேሻ!ே!

=
௦ேሺ௦ேିଵሻሺ௦ேିଶሻ.…ሺ௦ேିௗାଵሻே ሺேିଵሻ ሺேିଶሻ … ሺேିௗାଵሻ

Because of 1 ≥ s ≥ 0, then

௦ேே ௦ேିଵேିଵ ௦ேିଶேିଶ ڮ ௦ேିௗାଵேିௗାଵ

Note that P0 =
௦ேே = s and ݀ 1, Pd = Pd-1* ቀ௦ேିௗାଵேିௗାଵ ቁ.

Then, Pd-1 > Pd. Hence, Pd is monotonic decreasing.
ௗݏ ൌ ቀ௦ேே ቁௗ

>
௦ேሺ௦ேିଵሻሺ௦ேିଶሻ.…ሺ௦ேିௗାଵሻே ሺேିଵሻ ሺேିଶሻ … ሺேିௗାଵሻ ቀ௦ேିௗାଵேିௗାଵ ቁௗ

Therefore, ݏௗ P[Wa and Wb collide] ቀ௦ேିௗାଵேିௗାଵ ቁௗ
 □

Lemma2: For given windows Wa and Wb, if
d=dist(Wa,Wb), the probability that they will collide in t
iteration is:

P[Wa and Wb collide in t iterations] 1 െ ൬ 1 െ ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧

Proof: Let p=P[Wa and Wb collide in 1 iteration].

From Lemma 1, p ቀ௦ேିௗାଵேିௗାଵ ቁௗ
.

Then, P[Wa and Wb collide in t iterations]=1- (1- p)t. □

Corollary1: If the motif whose distance is d collides with
probability at least user-defined confidence, conf, and the
value of the number of iteration t is given, then, the
masking ratio s which satisfy that the motif will be
collide with confidence conf is:

s ≥
ଵே ቂ൫1 െ ሺ1 െ ሻଵ/௧൯ଵ/ௗ݂݊ܿ כ ሺܰ െ ݀ 1ሻ ݀ െ 1ቃ

Proof:
By Lemma2, P[the motif collides in t iterations]

≥ 1 െ ൬ 1 െ ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧
≥ conf □

Corollary2: If the motif whose distance is d collides with
probability at least user-defined confidence, conf, and the
value of the masking ratio s is given, then, the number of
iterations t which satisfy that the motif will be collide
with confidence conf is:

t ≥ ݈݃ ሺ1 െ ቀ1 ݈݃ / ሻ݂݊ܿ െ ሺ௦ேିௗାଵேିௗାଵ ሻௗቁ

Proof:
By Lemma2, P[the motif collides in t iterations]

≥ 1 െ ൬ 1 െ ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧
≥ conf □

Now we can guarantee the minimum probability that

the motif will collide (share same signature) in at least one
iteration by Corollary1. For the rest of this section, we
assume that the user want to find the motif with

probability at least conf, i.e., 99%. Thus, we will find the
upper bound of the probability that other pairs of
windows, non-motifs, will collide after removing some
black pixels. Contrary to the motif, increasing number of
iterations can increase the number of non-motif collisions.

Chebyshev’s Inequality:

Given a distribution X with mean µ and standard

deviation σ and k ≥0, then, P[|x - µ| ≥ kσ] ≤
ଵమ

Then,
ଵమ ≥ P[|x - µ| ≥ kσ] ≥ P[µ - x ≥ kσ] = P[µ - kσ ≥ x]

Substitute variable by ݇ ൌ ఓିௗఙ ; hence, P[x ≤ d] ≤
ఙమሺఓିௗሻమ

Lemma3: In one iteration, any pair of windows will
collide at most 2ߪଶݏఓିଵ ∑ 1/ሺݏ݅ଷሻఓିଵୀଵ ݏ௨ିଵ.
Proof:
For any given windows Wc and Wd,

by Lemma1, we know that
 P[Wc and Wd collide | dist(Wc ,Wd)=d] = Pd < sd

P[any pair of windows collides in 1 iteration]

 ஶP[dist(Wc ,Wd)=x]*P[Wc,Wd collide | dist(Wc ,Wd)=x]dx =

= ∑ௗୀஶ ௗௗାଵ
P[dist(Wc ,Wd)=x]*P[Wc ,Wd collide |

dist(im1,im2)=x]dx

From the definition Pd in Lemma1, ൌ ∑ௗୀஶ ௗௗାଵ
P[dist(Wc ,Wd)=x]*Px dx

Because Pd is monotonic decreasing, ∑ௗୀஶ ௗௗାଵ
P[dist(Wc ,Wd)=x]*Pd dx ൌ ∑ௗୀஶ ௗܲௗௗାଵ

P[dist(Wc ,Wd)=x]dx

From Lemma1, ∑ௗୀஶ ௗௗାଵௗݏ
P[dist(Wc ,Wd)=x]dx ∑ௗୀஶ ௗP[d ≤ dist(Wc ,Wd) < d+1] ൌݏ ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]

 + ∑ௗୀ௨ିଵஶ ௗP[d ≤ dist(Wc ,Wd) < d+1] ݏ ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]

௨ିଵ∑ௗୀ௨ିଵஶݏ + P[d ≤ dist(Wc ,Wd) < d+1] ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]

௨ିଵሺ1ݏ + െP[µ-1 ≤ dist(Wc ,Wd)]) ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1] + ݏ௨ିଵ

The maximum is obtained when all Chebyshev’s
inequalities are tight.

When the inequalities are tight, we have

P[d ≤ dist(im1,im2) ≤ d+1]

= P[dist(im1,im2) ≤ d+1] - P[dist(im1,im2) ≤ d]

= ఙమሺఓିௗିଵሻమ െ ఙమሺఓିௗሻమ

P[any pair of windows collides in 1 iteration] ∑ௗୀஶ ௗP[d ≤ dist(Wc ,Wd) < d+1]ݏ

ൌ ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]

 + ∑ௗୀ௨ିଵஶ ௗP[d ≤ dist(Wc ,Wd) < d+1] ൌݏ ∑ௗୀஶ ௗݏ ቀ ఙమሺఓିௗିଵሻమ െ ఙమሺఓିௗሻమቁ + ݏ௨ିଵ

Substitute variable by d=µ-x ൌ ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଵሺ௫ିଵሻమ െ ଵ௫మቁ + ݏ௨ିଵ ൌ ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଶ௫ିଵሺ௫ିଵሻమ௫మቁ + ݏ௨ିଵ ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଶ௫ሺ௫ିଵሻమ௫మቁ + ݏ௨ିଵ ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଶሺ௫ିଵሻయቁ + ݏ௨ିଵ

Substitute variable by x=i+1

= ∑ௗୀஶ ଶߪఓିାଵݏ ቀ ଶయቁ + ݏ௨ିଵ

ఓାଵ∑ௗୀஶݏଶߪ2 = 1/ሺݏ݅ଷሻ + ݏ௨ିଵ □

Corollary3: In t iterations, any pair of windows will
collide at most 1-(1-Q)t where Q = 2ߪଶݏఓାଵ∑ௗୀஶ 1/ሺݏ݅ଷሻ
 .௨ିଵݏ +
Proof: Obvious by Lemma3. □

Theorem1: In t iterations, any pair of windows will
collide at most ݏݐ௨ିଵ ఓାଵ∑ௗୀஶݏଶߪݐ2 1/ሺݏ݅ଷሻ
Proof: 1 െ ሺ1 െ ܳሻ௧ ൌ ܳݐ െ ቀ2ݐቁ ܳଶ െ ቀ3ݐቁ ܳଷ െ .ܳݐ ≥ (ڮ

Then, follow by Corollary 3. □

ACKNOWLEDGEMENTS

We would like to acknowledge the financial support
for our research provided by the Royal Thai Government
and NSF grants 0803410 and 0808770.

REFERENCES

[1] X. Bai, X. Yang, L. Latecki, and W. Liu, “Learning
context sensitive shape similarity by graph transduction,”
IEEE TPAMI, 2009.

[2] D. H. Ballard, “Generalizing the Hough transform to detect
arbitrary shapes,” Pattern Recognition, vol. 13, 1981, pp.
111-22.

[3] S. S. Bukhari, F. Shafait, and T. M. Breuel, “Improved
document image segmentation algorithm using
multiresolution morphology,” Document Recognition and
Retrieval, 2011, pp. 1-10.

[4] B. J. Burke, Book of Orders of Knighthood and
Decorations of Honour of all Nations, London: Hurst and
Blackett, 1858.

[5] O. Chum, J. Philbin, M. Isard, and A. Zisserman, “Scalable
near identical image and shot detection,” CIVR, 2007, pp.
549-556.

[6] O. Chum, J. Philbin, and A. Zisserman,“Near Duplicate
Image Detection: min-Hash and tf-idf Weighting,” BMVC,
2008.

[7] C. Boutell, A Manual of Heraldry, Historical and Popular,
Winsor and Newton, 1863.

[8] C. Davenport, British Heraldry, Methuen, London, 1921.
[9] C. Davenport, English heraldic book-stamps, figured and

described, London: Archibald Constable. ltd, 1909.

[10] C. R. Dod, and R. P. Dod, Dod’s Peerage, Baronetage and
Knightage of Great Britain and Ireland for 1915, London:
Simpkin, Marshall, Hamilton, Kent. ltd, 1915.

[11] E. E. Dorling, Leopards of England, and other papers on
heraldry, Constable & Company limited, London, 1913.

[12] R. Duda, and P. Hart, “Use of the Hough transform to
detect lines and curves in pictures,” Comm. ACM, vol. 15,
1, 1972, pp. 11-15.

[13] A. Fornés, J. Lladós, and G. Sanchez, “Old Handwritten
Musical Symbol Classification by a Dynamic Time
Warping Based Method,” Graphics Recognition, 2007.

[14] B. Gatos, I. Pratikakis, and S. J. Perantonis, “An adaptive
binarisation technique for low quality historical
documents,” Workshop on Document Analysis Systems,
2004.

[15] C. Grana, D. Borghesani, and R. Cucchiara. “Automatic
segmentation of digitalized historical manuscripts,”
Multimedia Tools Applications, vol. 55, 3, 2011, pp. 483-
506.

[16] P. V. C. Hough, Method and mean for recognizing
complex pattern. USA patent 3069654, 1996.

[17] E. Kavallieratou and E. Stamatatos, “Adaptive binarization
of historical document images,” ICPR, 2006, pp.742–745.

[18] Y. Ke, R. Sukthankar, L. Huston, “An efficient parts-based
near-duplicate and sub-image retrieval system,” ACM
Multimedia, 2004, pp. 869-876.

[19] E. Keogh, L. Wei, X. Xi, M. Vlachos, S. Lee, and P.
Protopapas, “Supporting exact indexing of arbitrarily
rotated shapes and periodic time series under Euclidean
and warping distance measures,” VLDB Journal, vol. 18, 3,
2009, pp. 611-30.

[20] T. Koch-Grünberg, Suሷdamerikanische Felszeichnungen
(South American petroglyphs), Berlin, E. Wasmuth A-G,
1907.

[21] J. Mas, G. Sanchez, and J. Llados, “An Incremental Parser
to Recognize Diagram Symbols and Gestures represented
by Adjacency Grammars,” Graphics Recognition, 2006,
pp. 252-263.

[22] A. Mueen, E. Keogh, and N. Shamlo, “Finding Time
Series Motifs in Disk-Resident Data,” ICDM, 2009, pp.
367-376.

[23] A. Pritchard, A history of Infusoria, including
Desmidiaceae and Diatomaceae, British and foreign. Ed.
IV. 968. London, 1861.

[24] G. Ramponi, F. Stanco, W. D. Russo, S. Pelusi, and P.
Mauro, Digital automated restoration of manuscripts and
antique printed books, 2005, EVA.

[25] J. V. Richardson Jr., Bookworms: The Most Common
Insect Pests of Paper in Archives, Libraries, and Museums.

[26] G. Sanchez, et al., “A platform to extract knowledge from
graphic documents. application to an architectural sketch
understanding scenario,” DAS, 2004, pp. 389-400.

[27] K. B. Schroeder, et al. “Haplotypic Background of a
Private Allele at High Frequency in the Americas,”
Molecular Biology and Evolution, 2009, pp. 995-1016.

[28] W. Smith, A synopsis of the British Diatomaceae: with
remarks on their structure, function and distribution, pp.
[V]-XXXIII, pp. 1-89, 31 pls. London, 1853.

[29] Smith, G. A. and Turner, W. G. Indian Rock Art of
Southern California with Selected Petroglyph Catalog, San
Bernardino County, 1975.

[30] T. Rakthanmanon, Q. Zhu, and E. J. Keogh. “Mining
Historical Documents for Near-Duplicate Figures,” ICDM,
2011, pp. 557-566.

[31] M. Tompa and J. Buhler, “Finding motifs using random
projections,” Computational Molecular Biology, 2001, pp.
67-74.

[32] W. West and G. S. West, A Monograph of the British
Desmidiaceae, vols. I–V, Ray Soc, London, 1904.

[33] H. J. Wolfson and I. Rigoutsos, “Geometric Hashing: An
Overview,” IEEE Computer Science, vol. 4, 4, 1997.

[34] X. Xi, E. Keogh,L. Wei, and A. Mafra-Neto, “Finding
Motifs in a Database of Shapes,” SIAM Conference on
Data Mining, 2007.

[35] Q. Zhu, X. Wang, E. Keogh, and S. H. Lee, “Augmenting
the Generalized Hough Transform to Enable the Mining of
Petroglyphs,” SIGKDD, 2009.

[36] Mining Historical Archives for Near-Duplicate Figures
http://www.youtube.com/watch?v=QYY8A6CwS-A 2011.

[37] Project Website: http://www.cs.ucr.edu/~rakthant/DocMotif

Thanawin Rakthanmanon is currently a
Ph.D. candidate of Computer Science at
the University of California, Riverside. His
research interests are Data Mining and
Machine Learning, especially in efficient
algorithm development, motif discovery,
time series clustering/classification, and
document analysis. He receives the Royal
Thai Government Scholarship for studying
his doctoral program.

Qiang Zhu received the Ph.D. degree in the
field of Computer Science from the
University of California, Riverside in 2011.
He is a Data Scientist at StumbleUpon Inc.
in San Francisco, CA. His research
interests include Data Mining, Pattern
Recognition and Information Retrieval,
with a focus on similarity search, motif
discovery and clustering for large-scale
time series and shapes/images datasets.

Eamonn Keogh is a full professor of
Computer Science at the University of
California, Riverside. His research
interests are in Data Mining, Machine
Learning and Information Retrieval.
Several of his papers have won best paper
awards, including papers at SIGKDD,
ICDM and SIGMOD. Dr. Keogh is the
recipient of a 5-year NSF Career Award
for “Efficient Discovery of Previously
Unknown Patterns and Relationships in
Massive Time Series Databases”.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

