
Efficiently Finding Near Duplicate Figures in 
Archives of Historical Documents 

Thanawin Rakthanmanon      Qiang Zhu     Eamonn J. Keogh 
Department of Computer Science and Engineering 

University of California, Riverside, CA, USA 
Email: {rakthant, qzhu, eamonn}@cs.ucr.edu 

 
 
 

Abstract—The increasing interest in archiving all of 
humankind’s cultural artifacts has resulted in the 
digitization of millions of books, and soon a significant 
fraction of the world’s books will be online. Most of the data 
in historical manuscripts is text, but there is also a 
significant fraction devoted to images. This fact has driven 
much of the recent increase in interest in query-by-content 
systems for images. While querying/indexing systems can 
undoubtedly be useful, we believe that the historical 
manuscript domain is finally ripe for true unsupervised 
discovery of patterns and regularities. To this end, we 
introduce an efficient and scalable system that can detect 
approximately repeated occurrences of shape patterns both 
within and between historical texts. We show that this 
ability to find repeated shapes allows automatic annotation 
of manuscripts, and allows users to trace the evolution of 
ideas. We demonstrate our ideas on datasets of scientific 
and cultural manuscripts dating back to the fourteenth 
century. 
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I.  INTRODUCTION 

The world’s books and manuscripts are being 
digitized at an increasing rate, and within a few years, the 
majority of the world’s books will be online. Much of the 
data will be text, most of which is more or less amiable to 
optical character recognition. However, in addition, there 
will be perhaps hundreds of millions of pages that contain 
one or more images. It is clear that these images will be 
very difficult to process. Indeed, data mining of modern 
photograph images is challenging, and in the case of 
images from historical manuscripts the challenges are 
compounded by the problems of fading, staining, wear, 
insect damage, abrasions, foxing, pencil annotations, and 
distortion artifacts from the digitization process, etc. 
[24][25]. 

In spite of these challenges, it is clear that the wealth 
of figures from historical manuscripts offer unique 
possibilities for data mining of important cultural 
artifacts. While the completely automated extraction of 
data from these texts will remain a significant challenge 
for some time to come, in this work, we introduce a 
specialized sub-routine that is achievable and useful.  
This sub-routine is the automatic discovery of 
approximately duplicated figures, both within and 
between texts. 

Our ideas can best be explained with a simple 
motivating example. In the early part of the 19th century, 
relatively inexpensive high-powered microscopes became 
available for the first time. This initiated an explosion of 
interest in Diatoms, a major group of eukaryotic algae, 
whose extraordinary shapes delighted and puzzled 
Victorian naturalists. Consider the two plates shown in 
Figure 1. They are typical examples from the perhaps 
hundreds of books on Diatoms published during the 
Victorian era [23][28][32].  

Figure 1. Two plates from 19th-century texts on Diatoms. left) Plate 6 of 
[23] right) Plate 5 of [28]. Note that in each plate we point to a 
triangular specimen, Biddulphia alternans. 

Thanks to efforts by digital archivists, hundreds of 
these works, representing over one million individual 
shapes, have been digitized and placed online. Some of 
them are scholarly classics, such as W. & G.S. West: A 
Monograph of the British Desmidiaceae [32], which is 
still referenced in modern scientific texts, and some of 
them are vanity publications by “gentlemen scholars”. 
Figure 2 shows a zoom-in detail from each of the plates 
in Figure 1. 

If we were hosting archives of Diatom images, we 
might wish to add mutual hyperlinks between each 
occurrence of Biddulphi aalternans, since any researcher 
with an interest in one, will surely have an interest in the 
other. Here we show just one pair of shapes deserving of 
a mutual hyperlink; however, in the domain of Diatoms, 
there are at least a thousand species defined by a unique 



shape, which could have all their occurrences linked 
together. 

Figure 2. left) Two plates in Figure 1. right) A zoom-in of the same 
species, Biddulphia alternans appearing in both texts. 

Figure 3 shows another example where linking 
between two manuscripts is helpful (figure best viewed in 
color). The 1915 text (left) has much greater information 
and annotations about a medal, but the image is B/W. In 
contrast, the older text (right) clearly shows that the 
circular ring is blue. In this case, the combination of these 
two figures contains more information than either one on 
its own. 

Figure 3. left) A figure from page 7 of [10], a 1915 text on peerage. The 
original text is monochrome. right) A figure from page 109 of [4], an 
1858 text on honors and decorations. 

There are many other examples that demonstrate that 
linking two shapes within or between books can be of 
help to historians, genealogists or scientists. However, to 
the best of our knowledge, this problem has never been 
addressed. In this work, we demonstrate a technique to 
allow automatic discovery of repeated shapes in historical 
manuscripts. Beyond the obvious image processing 
challenges, and the problem of defining an appropriately 
robust distance measure, the biggest challenge is clearly 
scalability. Even if we have only 100,000 shapes in a 
collection, a brute force “all-to-all” algorithm would 
require approximately five billion distance calculations, 
an untenable proposition. Our algorithm is inspired by 
motif-discovery in bioinformatics [31], as DNA motifs 
can be considered as near-duplicate strings. As we shall 
show, it can (significantly) adapt bioinformatics 
algorithms to discover duplicated shapes in time linear to 
the number of “black” pixels in the text.  

While there is a significant amount of related work in 
detection of near-duplicate images, we believe that none 
of it addresses the task at hand. The vast majority of such 
work is focused on matching whole images, after one of 
them has been distorted by cropping, resizing, color 
normalization etc. However, none of these works can 
locate near-duplicate sub-images inside the documents. 
For example, Chum et al. introduced an efficient method 
based on the technique of min-Hash to detect near-
duplicate images with respect to the query image [6]. 
Locality-sensitive hashing is one of the best-known 
techniques to use in near-duplicate image detection 
[5][18], and we were inspired by this idea to develop our 
technique (Section IV). However, most of literature on 
near-duplicate detection is aimed at locating the nearest 
neighbor of the given queries. However, for our task we 
are not given a query, instead we want to automatically 
discovery similar pairs of figures. 

By analogy the relationship between these two 
problems is similar to the much better studied problems 
in time series data mining [22], of finding the nearest 
neighbors of the query subsequences vs. finding the time 
series motif or the most two similar  subsequences. In 
2007, Xi et al.[34]  proposed a method to find image 
motifs or the most similar pair of images in the image 
database. They transformed shapes into time series, 
which is robust, scale invariance and rotation invariance. 
However, all images are must fully pre-processed 
including background removing and image segmentation. 
In contrast, we make no such assumptions. 

Image preprocessing such as image binarization 
[14][17] and image segmentation[3][15] is an important 
step in document analysis. Images segmentation can 
distinguish images and text in documents. In 2011, Grana 
et al. [15] proposed a novel technique to segment the 
images using directional histogram generated by the 
value of autocorrelation matrix, which is a summation of 
the relevant directions of the texture inside the block 
inside the documents. By the way, the quality of the 
result of our work could be improved by using these 
image segmentation techniques; however, the longer pre-
processing time will be required. 

The rest of this paper is organized as follows. In 
Section II we introduce all necessary notations and 
definitions. We introduce an exact, but untenably slow 
algorithm in Section III. Then, in Section IV we show a 
very fast approximate algorithm that exploits novel 
observations and ideas from bioinformatics and image 
processing. Section V sees a detailed empirical study on 
real data. The theoretical analysis is introduced in Section 
VI. We offer conclusions and directions for future work 
in Section VII.  

II. BACKGROUND AND NOTATION 

We begin by introducing all necessary notations and 
definitions. These notations are illustrated in Figure 6. 



A. Definitions and Notation 

Whether we are mining archives of postcards, books, 
maps, etc., we can see our data source as bitmap 
documents: 

Definition 1:  A document, D, is a matrix with ternary 
values which are 1, 0, and -1. For any pixel in the 
given document that is black or white, we will set the 
corresponding point to be 1 or 0, respectively. The 
value -1 is reserved for the null or the area outside the 
original document. A document size n pixel by m 
pixel will be kept by using a matrix of ternary values 
size n×m. 

The historical documents may originally be B/W or 
color. For our purposes, we are only interested in shape, 
so as Definition 1 hints, we binarize all images. The 
binarization of images in the context of historical 
manuscripts is a well-studied problem (see [14][17] and 
references therein) and a relatively easy task for most 
documents. Nevertheless, we clearly cannot guarantee 
perfect automatic binarization of large unstructured 
collections of manuscripts. As we shall show in Section 
V, our solution to this problem is to use a distance 
measure and an algorithm that is robust to large amounts 
of noise and distortions. 

Historical documents are often represented by a single 
surviving instance and many of them have imperfections. 
As shown in Figure 4, the corners may be burned or 
worn, or they may have holes due to insect damage [25]. 
We can support such documents by using null values for 
the area outside of the document but within the minimum 
rectangular boundary of document. Most professional 
scanners of historical manuscripts use a background color 
or texture that makes the occurrence of “holes” obvious.  

Figure 4. Examples of texts with “holes”. 

From the definition above, we regard documents as 
containing only a single “page”. To apply our algorithm 
to many pages of a book or many books, we can simply 
concatenate each page into a long logical document and 
use a line of null values to separate one page from the 
others. 

We do not expect (or want) to find globally repeated 
pages, so we confine our attention to small regions of 
interest within a page; these we call windows: 

Definition 2: A window is a rectangular area inside a 
document whose size is specified by the user. It is 
defined by 

௫ܹ,௬ ൌ ሼ݀, א ݅ | ܦ א ሾݔ, ݔ  ݆ ݀݊ܽ ௫ሻݏ א ሾݕ, ݕ  ܵ௬ሻሽ 

where sx and sy are a user-defined width and height. 

The data inside the window is a ternary value just like 
the data in the document. While a document may contain 

many pages, no window is allowed to span two pages. 
For the rest of this paper, we use the term Wa 
interchangeably with the term Wx,y if the starting position 
of window Wa is (x,y), i.e., in Figure 6, Wa=W3,2. 

There are many ways to measure the similarity 
between given images. However, most techniques make 
assumptions about the data. For example, geometric 
hashing [33] assumes the figures have well-defined 
points of interest, such as intersections, end-points, areas 
of maximum curvature, etc. However, even if these 
assumptions are true, this leads to the non-trivial sub-
problem of locating the points of interest. This may be 
very difficult in our domain of interest. Other distance 
measures assume that the shapes are fully connected [1], 
or form closed contours [19]. However, as we shall see, 
neither assumption generally holds in our domain of 
interest.  SIFT and it’s variants (G-RIFT, SURF) make 
less assumptions, but even after tweaking their many 
parameters, they did not perform well on the problems in 
Section V.A(to be fair, they are not designed for this 
domain), so we omit them from further consideration in 
this work. 

Given the above, we need to use a distance measure 
which is robust to the inevitable noise/distortions we will 
encounter, and which is general enough to work without 
any explicit assumptions about the data. Furthermore, as 
we shall see later, our basic idea to speed up the 
discovery of repeated figures is to use a “hashing-like” 
idea from bioinformatics; thus, we need a distance 
measure that is amenable to hashing. 

The recently introduced GHT distance [2][35] is just 
such a measure. We will explain this in more detail in 
Section II.B and Section V.A. In the meantime, we use it 
to define the distance between any pair of windows as the 
following: 

Definition 3: The distance between window Wa and Wb is 
defined as dist(Wa,Wb). We use the GHT distance as a 
similarity distance between two windows. Thus, the 
distance is 

dist(Wa,Wb) = GHT(Wa,Wb). 

As we can see in Figure 5, our distance measure is 
offset-invariant. As we shall see, this simple fact allows 
us to greatly speed up our search algorithm (especially 
for texts with a lot of “white space”) by significantly 
reducing the number of distance comparisons needed. We 
will expand on this idea in Section IV.A. 

Figure 5. The distance measure we use is offset-invariant, so the 
distance between any pair of windows, left, center or right above, is 
exactly zero. This simple fact can be exploited to greatly reduce the 
search space of motif discovery. Since a pattern from another book that 
matches one of the above with a distance X must match all with distance 
X, we only need to include any one of the above in our search. 



Recall that our task can be reduced to finding the 
most similar pair of windows in the document. However, 
a pathological solution to this would be to have two 
windows with high overlap, as in the windows Wc and 
Wd, shown in Figure 6.  

We call a pair of windows a trivial match if its 
windows have a high degree of overlap.  

Definition 4: A pair of windows {Wa,Wb} of size 
sx×sy is a trivial match if its windows are overlapped 
more than α times the total area of a window (0 ≤ α< 
1), formally,  

(sx-|bx-ax|)*(sy-|by-ay|) ≥ α*sx*sy and (sx-|bx-ax|) ≥ 0 
where (ax,ay) and (bx,by) are the starting positions of 
windows Wa and Wb, respectively. If {Wa,Wb} is not a 
trivial match, we call it a non-trivial match. 

For the special case when α=0, no overlap between 
two windows of motifs is allowed; in this case, if 
windows Wa and Wb are share one pixels or more, 
{Wp,Wq} will be a trivial match by the definition. In 
Figure 6, if we set α=0.5, both {We,Wf} and {Wc,Wd} are 
trivial matches but {Wa,Wb} is a non-trivial match. 

D

Wa

=W3,2

Wb

=W20,3

Wc Wd We Wf

1

0

-1

Figure 6. An illustration of our notation. Here the document D consists 
of two pages, separated by null values. Intuitively we expect the “T” 
shape in window Wa to match the shape shown in Wb. However, note 
that the trivial matching pair of Wc and Wd (also pair We and Wf) are 
actually more similar, and need to be excluded to prevent pathological 
results. 

Among all possible pairs of windows, we want to find 
the pair that has the smallest distance between each other 
and is a non-trivial match. We call this pair the motif 
window: 

Definition 5: A motif window (or just motif) is a non-
trivial pair of windows {Wa,Wb} such that the distance 
between windows Wa and Wb is the smallest of all 
other possible pairs.  

motif = {{Wa,Wb} | minWa,Wb  dist(Wa,Wb)} 

The definitions above assume that we are looking for 
exactly one near-duplicated figure. However, we can 
easily generalize this to allow the discovery of multiple 
motifs. In order to do so we must eliminate some 
pathological solutions, as shown in Figure 7. 

To avoid redundant solutions in discovering multiple 
motifs, we will explicitly exclude insignificant motifs 
from our solution. We define an insignificant motif as the 
following: 

Figure 7. An illustration of a pathological solution to finding the top two 
motif pairs between two century-old texts. top) The desirable solution 
finds the crescent and label (rotated “E”). bottom) A redundant and 
undesirable  solution that we must explicitly exclude is finding one 
pattern (the label) twice.    

Definition 6: A motif {Wa,Wb} is insignificant if 
another motif {Wc,Wd} exists such that 

i. dist(Wa,Wb) ≥ dist(Wc,Wd)  
ii. {Wa,Wc} and/or {Wb,Wd} are trivial matches. 

The motif windows are insignificant if at least one of 
their windows shares a large part with other motifs. 
However, different motifs can share small parts with each 
other. Next, we define a top-k motif window as the 
following: 

Definition 7: A top-k motif window is the set of k 
most similar pairs of windows, none of which is 
insignificant. 

In Figure 7.bottom, only one true motif window is 
discovered, and the other one is insignificant. 

B. Generalized Hough Transform 

The Hough Transform [16] was introduced by Hough 
as a tool for finding well-defined geometric shapes (lines, 
curves, rectangles, etc.) in images [12]. The idea was 
generalized by many others, including Ballard, who 
introduced the Generalized Hough Transform to detect 
arbitrary shapes in images [2]. Computing the GHT 
distance between pairs of windows is relatively 
expensive. In particular, the time complexity for each 
GHT calculation is O(nb

2), where nb is the number of 
black pixels in the window. 

However, a recent paper by Zhu et al. [35] shows 
some computational tricks to reduce the amortized time 
for a single comparison, when a higher level algorithm 
requires multiple comparisons (i.e. clustering or query-
by-content). In this work we use the ideas presented by 
Zhu, but as we shall see, they alone are not sufficient to 
provide the scalability we require in this domain.  

There are two reasons why we chose to use the GHT 
distance for the problem at hand. Firstly, as shown by 
Zhu et al. and confirmed by our experiments, the measure 
is very robust and accurate [35]. Secondly, as we shall 
see, the method lends itself to being adapted to the 
random projection framework, which is used to solve the 
motif discovery problem in bioinformatics [31]. 



III. EXACT ALGORITHM TO FIND MOTIFS 

Given a document D and (user defined) window size 
s, we want to find the top-k motifs in a given document. 
For simplicity, in the rest of this paper we will explain 
only how to find the top-1 motif because the extension to 
top-k is trivial. 

A. Brute Force Algorithm 

We can easily find the top-1 window motif by 
comparing the distances from all pairs of windows, as 
shown in Table I.  

This simple algorithm uses nested loops (lines 3 and 
4) to test all possible pairings of motif windows, checking 
whether or not two particular windows are trivial (cf. 
Definition 4), recording the one with the smallest 
distance. Unfortunately, this algorithm has an obvious 
flaw which makes it untenable for real problems: it will 
simply take a great deal of time even for a small 
document. 

TABLE I.   
BRUTE FORCE ALGORITHM 

Algorithm: Brute force algorithm to find the top-1 window motif 
Input:  D       : document  
 sx sy    : window size                      
Output: motif  : window motif 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

W = set of all windows of size sx×sy in D  
bsf = ∞ 
for a = 1 to |W| 
  for b = a+1 to |W| 
   if(~IsTrivial(Wa,Wb))&&(dist(Wa,Wb)<bsf) 
    bsf = dist(Wa,Wb) 
    motif = (Wa,Wb) 
   end 
  end 
end 

Assume that the document is size n×n and the user-
defined window is size s×s. The brute force algorithm 
must consider every pair of windows, requiring it to 
compute GHT distances O(n4) times. Each GHT 
calculation takes time O(nb

2), and nb, the number of black 
pixels in a window, can be as large as s2; it is usually 
larger than s. Hence, the total running time for the brute 
force is O(s2n4). 

To give concrete numbers, suppose the original 
document is a B/W image of size 1 megabyte, or 
1000x1000 pixel2. The set of all windows, W, is 
approximately 106 (line 1). To find a motif using the 
brute force algorithm, we need to compute the GHT 
distances about 5×1011 times (line 3-4). This would take 
approximately 108 seconds, or 3 years.  Because the brute 
force algorithm cannot find motifs even in a small 
document in an acceptable amount of time, we will 
introduce a fast approximate algorithm for this task. 

IV. OUR ALGORITHM 

In this section, we introduce a sub-linear time motif 
discovery algorithm. We begin by giving the intuition 
behind three ideas that we will exploit to make our 
algorithm scalable. Later we will show a concrete 
algorithm that exploits these ideas.  

A. Intuitions behind our Algorihm 

1)  Downsampling helps scalability  

Our first observation was originally made to help 
improve scalability, but as a happy side effect, it also 
greatly improves accuracy. Figure 8 shows the effect of 
downsampling on our data of interest.  

A B DC

Figure 8. A) Two figures from table 16 of a 1907 text on Native 
American rock art [20] (one image recolored red for clarity). B) No 
matter how we shift these two figures, no more than 16% of their pixels 
overlap. C) Downsampled versions of the figures share 87.2% of their 
pixels as in (D).  

Because downsampling will greatly decrease the 
number of windows that must be examined, it will clearly 
improve efficiency. It is natural to ask if this reduction in 
resolution will reduce the accuracy. The surprising 
answer is that the opposite is true; downsampling (except 
when taken to the extreme) actually improves accuracy 
by eliminating spurious precision and reducing the shape 
to its bare minimum. We note that we are not claiming 
this observation as an original contribution; Zhu et al. 
pointed this out and demonstrated it with detailed 
experiments [35]. However, the next two ideas are 
original and unique to our domain.  

2) Random projection further reveals similarities  

While the downsampling idea introduced in the last 
section reduces both the time for a single distance 
calculation and the number of distance calculations that 
must be performed, the number of distance calculations 
required by the brute force algorithm is still on the order 
of O(n4). We have just drastically reduced the value of 
“n”. In order to make significant progress on this 
problem, we need a much faster way to identify 
(potentially) very similar shapes. Figure 9 shows the 
intuition as to how we might achieve this. 

Assume we have a pair of windows {Wa,Wb} of size 
17×14, containing two similar, but not identical figures, 
whose distance is equal to nineteen (i.e., dist(Wa,Wb)=19). 
For example, in Figure 9 we have two anthropomorphic 
examples of rock art with this property. Suppose that we 
randomly choose a single location, x=randint(1:17) 
and y=randint(1:14), and set that pixel to white in 
both figures. What effect would this have on the 
distance? There are only two possibilities: 

i) The corresponding pixels in the two windows are 
already either white or both black. In either case, the 
distance does not change. ii) Exactly one of the 
corresponding pixels was black, and changing it to white 
must decrease the distance. 

From this analysis, we can see that “deleting” black 
pixels (randomly projecting windows to a lower 
dimensional space [31]) must decrease or hold steady the 
distance between two objects. This is important, because 



if we manage to decrease the distance to zero, we can 
find such zero distance pairs in only linear (in the number 
of windows) time using hashing. This idea is inspired 
from the well-known hashing technique, min-Hash [6]. 

A C

D
Mask template

B

Figure 9. A) If we randomly choose some locations (masks) on the 
underlying bitmap grid on which the two figures (B) shown in Figure 8 
lie, and then remove those pixels from the figures, then the distance 
between the edited figures (C) can only stay the same or decrease. 
Several random attempts at removing ¼ of the pixels in the two figures 
eventually produced two identical edited figures (D).  

In the example shown in Figure 9, ignoring one pixel 
is clearly not enough to make the two figures identical; 
we actually need to remove at least 19. Furthermore, we 
need to remove the correct set of 19. A simple 
combinatorial calculation will convince the reader that 
this is very unlikely to happen if we choose 19 pixels at 
random. The obvious solution, to ignore more than 19 
pixels, say 100, contains a problem. If we ignore too 
many pixels we will also allow two very different figures 
to hash together.  

To some extent, this is a problem we can live with. 
Even if two very different figures are projected onto a 
very low dimensional space where they hash together as a 
false positive, we can later check their distance in the 
original space. The only danger is that if we have too 
many false positives, then checking them all may not be 
much faster than a brute force search.  

At first blush the problem may seem insurmountable, 
because we have the extremely delicate task of making 
all similar things identical, without making (too many) 
different things identical. Fortunately, there is a solution 
to a nearly identical problem in DNA motif discovery in 
bioinformatics, which we can leverage off [31]. The idea 
(informally stated) is to be conservative in the number of 
pixels we remove, but to do multiple independent rounds 
of projection (hashing). This increases the number of true 
positives, while also reducing the number of false 
positives.   

3) Numerosity reduction improves scalability 

The final observation we will make has already been 
hinted at in Figure 5. Even after downsampling, there are 
many windows that must be explored in order to find a 
motif (or top-k motifs). The number of windows of size 
sx×sy in a document of size n×m is quadratic in terms of 
the document size, or more precisely, is (n-sx+1)(m-sy+1), 
which is O(n2) when n=m. Naturally, all of these 
windows have a great deal of redundancy with their 
neighbors, and many windows may be totally blank or 
contain only a handful of pixels. Based on this 
observation, we can reduce the number of windows in the 

document dramatically by filtering out all but one 
representative example of a set of redundant windows, 
and also filter out windows that do not have enough black 
pixels to form any meaningful shape. We call the 
remaining windows in the document after this process, 
potential windows: 

Definition 8: A potential window is a window whose 
number of black pixels is at least a threshold t and not 
less than other adjacent windows. Then, the set of 
potential windows P is defined as 
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Let sum(·) be the total number of black pixels in the 
particular window: sum(Wx,y) . In the case of a null 
value, we can set di,j to either 0 or 1.  

This idea can be visualized in Figure 10, where 
potential windows are centered on the peaks of a 3D 
heatmap.   

Figure 10. The summation of the number of black pixels in windows. 
Only windows corresponding to peaks above the threshold (the red line) 
need to be tested. The arrows show the center position of six potential 
windows. 

We simply set the parameter t to an average number 
of black pixels in a specific window size, and the results 
show that our algorithm works well on this default value.  
Ties can be resolved by selecting just one potential 
window, changing the definition from “≥” to “>”. 

We note that this step also has an analogue in 
bioinformatics algorithms [22]. Many motif discovery 
algorithms do a preprocessing step of removing regions 
of low complexity DNA (for example, a long run of a 
single amino acid) to both speed up search and eliminate 
pathological solutions. 

B. Motif Discovery 

We are finally in a position to explain our algorithm 
and how it exploits the three ideas from the last section. 
In essence, we downsample the original book, extract all 
potential windows and hash them with random 
projection. All pairs that collide are inspected in the 
original space to see if they are true motifs. Our 
algorithm is described in Table II. 



Our algorithm uses four more inputs than the brute 
force algorithm. The first is the downsampling scale, ds, 
and the other three parameters are used in random 
projection.  

In line 1, we downsample the original document D 
into the smaller version, DD, with the scale ds. While 
there are many algorithms for rescaling images, we 
simply downsample by majority voting the values inside 
ds×ds pixels in the original document to create a new pixel 
in the new document, DD. Hence, DD will be smaller 
than D by a factor of ds2.  

The next step is to locate all windows in the new 
document in line 2. Note that the total search space is 
reduced from O(n4) to O(n4/ds4). Further note that in our 
implementation, we do not set W explicitly. We still need 
to further reduce the search space, so in line 3 we apply 
the third idea from the last section. In order to locate the 
potential windows (cf. Definition 8), for all windows we 
calculate the total number of black pixels inside that 
window. We can do this in linear time with respect to the 
number of pixels in the document. We then locate all 
potential windows which are at the local maxima of the 
summation plot, as visualized in Figure 10. Now our 
search space is massively reduced; for example, in Figure 
10, there are less than 30 potential windows among 
22,000 original windows. 

TABLE II.  
OUR ALGORITHM 

Algorithm: DocMotif 

Input:  D     : document                            sx sy  : window size              
 ds     : downsampling scale           it     : number of iteration   
 hds   : hash downsampling scale   mask : masking ratio          
Output: motif  : window motif 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

DD = DownSamplingDoc(D,ds) 

W = set of all windows of size sx×sy in DD 

P = LocatePeaks(W) 

P = AlignCenter(P) 

HSig = Ø 

for i = 1 to it 

  hsig = HashSignature(P, hds, mask) 

  HSig = HSig  hsig 
end 

cand = CollidedWindow(HSig) 

best-so-far = ∞ 
for all pair of windows (wa,wb) in cand 

  if(IsTrivial(wa, wb)) 

     continue; 

  end 

  if(lb_dist(wa,wb) < best-so-far) 

     if(dist(wa,wb) < best-so-far) 

 best-so-far = dist(wa,wb) 

        motif = (wa,wb) 

     end 

  end 

end 

The number of peaks or potential windows is data 
dependent. It is possible that there are a lot of small peaks 
in the document. For example, as in Figure 10, there are 3 
potential windows on the right which are created from the 
same symbol. We solve this problem in line 4 with a 

simple solution. We align every potential window by 
moving its center of mass to the center of the window. As 
a result of this process, potential windows may slightly 
change their position, so if several windows are aligned 
to the same position, we pick only one window at the 
position.  

After all potential windows have been enumerated, 
we hash them using random projection (line 5-9). This 
idea is essentially the same as the one shown in Figure 9; 
we create a hash signature from each figure by randomly 
removing some pixels from them (line 7). Then, we find 
all pairs of windows that “collide”; that is, they share the 
same signature (line 10). To create the hash signature in 
line 7, we do two steps. First, we further downsample all 
potential windows to a smaller size. The parameter 
controlling this is called hds, or hash downsampling 
scale. Then, we randomly remove some pixels, the 
number of which is controlled by the parameter mask. We 
do this random projection it times to increase the 
probability that two similar items will collide at least 
once. Note that only one collision is required to ensure 
we discover the motif.  

In the last step, we create a set of all candidate pairs, 
cand (line 10). We can now calculate the true GHT 
distance of each pair, and the motif is a pair of windows 
that has the smallest distance, ignoring as always the 
trivial pairs (line 13). Lines 12 to 22 are essentially the 
brute force search (see Table I), but over a relatively tiny 
subset of the original possibilities. Because the GHT 
calculation is expensive, we avail of a recently published 
speed-up trick [35]. We calculate the GHT’s lower bound 
first (line 16). If the lower bound is bigger than the best-
so-far, we do not calculate the expensive GHT distance. 
Otherwise, we update the best-so-far using the GHT 
distance (line 18-19). 

There is one trivial but very useful modification we 
can make to the algorithm. We can input two books 
instead of one, and insist (by adding an extra test on line 
13) that the motif's two occurrences have one 
representative from each book. This is an idea hinted at in 
the first three figures in this work.  We may see this as a 
motif join between two texts.  

V. EXPERIMENTAL RESULTS 

We have designed all experiments such that they are 
reproducible, and as such, all data and code are freely 
available at [37].  

In this section we wish to empirically demonstrate the 
following:  that the GHT distance measure, operating on 
downsampled data, is appropriate for our domain; that 
our algorithm can find meaningful motifs in real data, and 
that this information is useful to domain experts; and that 
our algorithm is scalable enough to allow mining of large 
texts. Finally, we wish to show that although our 
algorithm has several parameters, these are easy to set, 
and their exact value is not critical to efficiency or 
effectiveness. 



A. Sanity Check for the GHT Measure 

While our experimental case studies (cf. Section V.B) 
offer compelling anecdotal evidence that our method 
finds truly similar figures, it would be useful to see 
objective tests. To our knowledge, there is no benchmark 
dataset to test on; however, we can show the suitability of 
our ideas for objective tests in very similar 
domains/problems.    

We would like the tests to demonstrate two things: 
that our choice of the GHT as a similarity measure in this 
domain is warranted, and that the extreme downsampling 
we perform to improve scalability does not hurt accuracy. 
We achieve these aims by testing on datasets of hand-
drawn figures. Two of the datasets are from a collection 
of old music scores (17th-19th centuries) [13][26], and 
thus are very representative of our domain of interest, and 
the third one is a modern architectural symbol dataset 
[21], in which various users hand copied symbols, and is 
thus also very similar to the task at hand. As Figure 11 
shows, these are non-trivial problems. In particular, the 
symbols in the first two datasets come from degraded 
texts, written by individuals who may have lived 
centuries apart and in different countries. Rather than 
fine-tune our method, we simply hard coded the 
downsampling to 20×20 for all datasets. 

Figure 11. Samples showing the interclass variability in the hand-drawn 
datasets.  left) Samples from the music datasets. right) Samples from the 
architectural dataset. 

Table III shows the one-nearest-neighbor leaving-one-
out accuracy.  

TABLE III.  
THE ACCURACY OF GHT ON 3 HAND-DRAWN SYMBOL PROBLEMS 

 # instances # classes Accuracy 

Clefs 2,128 3 99.58% 

Accidentals & Clefs 4,098 7 98.49% 

Architectural 7,414 50 99.29% 

While others have worked on these datasets, we did 
not directly compare our results to theirs. The published 
approaches on these datasets are so slow (an O(n3) 
warping method for the music symbols [13][26], and an 
O(n3) adjacency grammar method for the architectural 
symbols [21]), that in both cases the authors abandoned 
any attempt at a full leaving-one-out on the entire dataset, 
and instead created various smaller subsets (hand crafted 
and thus difficult to meaningfully compare to).  However, 
our accuracies are so close to perfect in every case that 
our claim is clearly demonstrated: the GHT on 
downsampled images is an effective distance measure for 
these kinds of images. 

B. Motifs between Two Manuscripts 

While there is undeniable utility in discovering motifs 
within a single text, the real power of motif discovery 

will undoubtedly come from the linking of two motifs 
between two or more apparently disparate texts. 

Taryn Rampley, a Ph.D. student in anthropology at 
the University of California-Riverside, is interested in 
correlating DNA studies of peoples from the Americas 
with studies of cultural artifacts [27]. In particular, she is 
looking for evidence of cultural transmission from North 
America to South America prior to contact with 
Europeans. While this evidence might be found through 
jewelry, textiles, weapons or language, this researcher is 
focusing on petroglyphs (rock art), of which there are 
several million documented examples in the Americas. 

This student gave us a classic reference text on 
Californian petroglyphs [29], which includes a 104 page 
petroglyph catalog, containing about 2,852 individual 
examples of petroglyphs. We scanned this text with an 
off-the-shelf scanner. Figure 12.left shows two 
representative pages. 

Thanks to the Google Book Project, the web is replete 
with possible texts with which to compare. One such text 
that caught our attention is a 1907 text by the German 
ethnologist and explorer Theodor Koch-Grünberg (1872–
1924) which discusses the origin and significance of rock 
art in South America [20]. This text contains 233 images 
of petroglyphs hand-traced by the author. Figure 12.right 
shows two representative pages.  

Figure 12. left) Two typical pages from Californian petroglyphs [29].  
right) Two typical pages from [20].  Note that the minor artifacts are 
from the original Google scanning.  

We ran our motif join algorithm on these two texts; 
Figure 13 shows a selection of the top fifty results. 

 

Figure 13. Five random motif pairs from the top fifty pairs created by 
joining the two texts [20] and [29]. Note that these results suggest that 
our algorithm is robust to line thickness, solid vs. hollow shapes, and 
various other distortions. 

While the figure pairs are clearly somewhat similar, 
the anthropologist does not feel that this provides 
evidence of cultural transmission. If we repeat the 
experiment by comparing the reference text to 
petroglyphs from Arizona or Utah, the joins are much 
more similar. Currently, these conclusions are subjective 
and tentative; in ongoing work we are working with 
anthropologists to produce a principled theoretical 
framework for drawing such conclusions. While we defer 
detailed scalability results to the next section, we note 
that this join took approximately one minute. 



motif between two books

motif inside one book

Before moving on, it is worth re-examining Figure 13 
to note the invariances our algorithm has achieved. For 
example, in the Figure 13.middle our algorithm 
discovered a pair of anthropomorphic figures in spite of 
the fact that one has a solid head and antenna.  To 
appreciate why we can achieve such invariances we invite 
the reader to review Figure 8 and Figure 9, whose 
examples we drew from one of these texts [20].   

Such robustness is critical if we are to investigate 
hand drawn texts in addition to the printed texts we 
consider next. As part of another project on mining 
cultural artifacts we are also interested in mining the vast 
literature on genealogy and heraldry that dates back to the 
12th century [8][9]. Figure 14 shows a typical result in 
this domain.   

In order to make a point about some invariances our 
distance measure achieved in this domain, Figure 15 
shows a zoom-in of the two pairs of discovered motifs 
shown in Figure 14. Note that in both cases the two 
members of each motif differ slightly in scale. This is 
presumably due to differences in the scanning process, 
since it is likely that the images were produced by the 
intaglio process, and printed from the same plate. In any 
case, our method is robust to such minor scale changes. 

Figure 14. The top two inter-book motifs discovered when linking a 
1921 text, British Heraldry [8] (left), with a 1909 text, English Heraldic 
Book-Stamps, Figured and Described [9] (center), and (right). 

Note also that the figures are not identical; for 
example, the helmet in the later text has additional 
shading on the right side of the dome and under the chin. 
Again, our method is robust to this issue. 

Figure 15. A zoom-in of the motifs discovered in Figure 14. Note that 
the two helmets differ in size by about 11%, and our algorithm was 
invarient to this difference. 

However, the most interesting point about this 
example is the (relative) invariance to the user-specified 
size parameter. Note that as shown in Figure 15, we set a 
window size and aspect ratio that happens to be perfect to 
enclose the crown. To enclose the helmet, we really need 
a window size that is about twice as large and with a 

more vertical aspect ratio. Nevertheless, in spite of a 
suboptimal window size we still found the helmet motif. 
This is not a one-off fortuitous occurrence, but generally 
true (see additional examples at [37]). So long as the 
user-supplied size is within a factor of two or so of the 
motif size, we will robustly find it. If the uncertainty in 
size is greater than a factor of two, our algorithm is 
efficient enough to allow range-doubling search.  

Because our algorithm can discover motifs between 
different books, it is of utility in locating similar patterns 
in different books, and combining the information 
between those books such as shape, texture, color, etc., 
and filling in missing details.  

The following example demonstrates that motifs can 
help us to flesh out some missing data. In 1863, A 
Manual of Heraldry, Historical and Popular [7] showed 
the heraldic shield of King George III of England after 
year 1801 and his successors, George IV and William IV, 
as in Figure 16.left. However, later in 1913, Leopards of 
England explained that King George IV and King William 
had changed the arms a little as shown in Figure 
16.middle, “Fourteen years later the Congress of Vienna 
erected the electorate of Hanover into a kingdom, 
whereupon the elector’s hat was changed into a royal 
crown, … until the death of the last English king of the 
house of Brunswick in 1837”[11].  

 

Figure 16. (left) Arms of King George III and his successors from A 
Manual of Heraldry, Historical and Popular, 1863 [7]. Two similar 
arms are explained in Leopards of England, 1913 [11]. (middle) Arm of 
King George IV and his successor’s King William IV. (right) Arms of 
King George III after the constitutional change . 

Thus by finding motifs within one text [7], and 
between two texts [7] and [11], we can automatically 
interpolate the missing color information in an 
monochromic figure.   

In the next section, we show that the efficiency and 
accuracy of our algorithm are largely invariant to 
parameter choice. 

C. Scalability and Noise Tolerance 

Testing the scalability of our approach on real data 
provides us with significant challenges, since the running 
time of our algorithm depends on the data. For example, 
suppose a book has a perfect motif on pages 1 and 51, but 
otherwise there are no significant repeated patterns. The 
time to search a subset consisting of the first 50 pages 
would be much greater than the time taken to search the 



first 100 pages, since the latter would encounter a high 
quality best-so-far early on. Given this, we test the 
scalability on an artificial book over which we have 
perfect control. We made every effort to make a realistic 
book, but when in doubt we made choices designed to 
strain our algorithm. 

We generated an artificial book using the idea of a 14-
segment display that be used to create any English 
alphabetical character or digit. Figure 17.left shows some 
samples. In our artificial book, each page contains a 
random selection of 100 characters and the size of each 
page is 1330x1220 pixels, as shown in Figure 17.middle. 
While it is very unlikely that any random character would 
be created twice, such an occurrence would greatly favor 
our algorithm. We therefore further distort the book by 
two methods: adding a random polynomial warping 
(modeling a distortion caused by non-contact scanning) 
to the pages and adding some Gaussian noise, as shown 
in Figure 17.right. 

In order to set the parameters for our experiments, we 
did the following: we created a two-page “book” and 
spent less than five minutes “playing” with it to find 
reasonable parameter values. Once we had found these 
values, we fixed them for all data sizes up to 2,048 pages.  

Figure 17. left) The 14-segment template used to create characters. We 
can turn on/off each segment independently to generate a vast alphabet. 
middle) An example of a page which is generated from the process. 
right) A page of the book after adding polynomial distortion (top half), 
and Gaussian noise with mean 0 and variance 0.10 (bottom half). 

As we can see in Figure 18, our algorithm can find the 
top motif in a 128-page book in a minute and in a 2,048-
page book in half an hour. Note that these times are close 
to the time taken to scan (at least valuable) books of this 
size, so they are not unreasonable.  
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Figure 18. Time to discover motifs in books of increasing size. Our 
algorithm can find a motif in 512 pages in 5.5 minutes and 2048 pages 
in 33 minutes. (inset) As a sanity check we confirmed that the 
discovered motifs are plausible, as here (noise removed for clarity). 

Note that in this figure and some figures to follow, 
some lines are difficult to tell apart; however, this is the 
point of these experiments: to show that our algorithm is 
not sensitive to distortions/noise/parameter choices.  

We also test the noise tolerance of our algorithm by 
generating an artificial book with Gaussian noise added. 
The mean of the Gaussian noise is set to 0 and its 
variance is varied from 0 to 0.20. The results in Figure 19 
show that our algorithm can tolerate significant noise 
(var=0.15).  

When the book contains too much noise (var=0.20), 
the number of potential windows will increase because it 
is difficult to align all potential windows from a figure 
into the same position. Hence, the running time increases. 
However, this case corresponds to a very heavily 
degraded image.  
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Figure 19. Effect of Gaussian noise. Our algorithm can handle 
significant amounts of noise. An example of a page containing noise at 
var=0.10 is shown in Figure 17.right. 

To concretely ground the amount of speed-up our 
algorithm can achieve we did the following experiment. 
On a 512-page book, we compared the running times of: 

1. Exact motif search over the entire document by 
applying motif discovery technique in [22] 

2. Exact motif search over just the potential 
windows  

3. Our proposed algorithm, DocMotif. 

The results are shown in Figure 20. We can see that 
the running time of heuristic search from [22], which is 
much faster than brute force search, rapidly becomes 
untenable, taking, for example, more than  a day for just 8 
pages and (an estimated) six months to finish all 512 
pages. Our simple trick of only searching over potential 
windows reduces the search time to just 6.9 hours for the 
full 512 pages; however, our proposed algorithms take a 
mere 342.4 seconds. 
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Figure 20. The total execution time of three search algorithms: an exact 
motif search, an exact motif search on just the potential windows, and 
our algorithm DocMotif. 

D. Robustness of Parameters 

We have an obligation to explain how the choice of 
parameters affects the speed of motif discovery and the 
quality of motifs. As we shall see, our algorithm is not 
particularly sensitive to parameter choice. Recall that in 
the previous sections we have set the parameters based on 
a few minutes’ experience with a two-page sample. Our 
simple test for parameter sensitivity is to hold three 
parameters firm, and adjust the other parameters to higher 



and lower values, to see what effect this has. Figure 21 
tells us that for the most part, the algorithm’s 
performance does not rely critically on parameter 
choices.  Of course, this dramatic speed-up would be 
worthless if the faster algorithms produced inferior 
results. However, as we shall show empirically in Section 
V.B, the results of all algorithms are virtually identical. 

In the random projection process, the length of the 
hash signature is affected by two parameters, which are 
the hash downsampling scale hds and masking ratio 
mask. When the signature is shorter, the probability of 
collisions increases (including false positives that must be 
checked and dismissed). Thus, when we remove more 
pixels from a window by increasing mask, the running 
time will increase, as shown in Figure 21.A. As we can 
easily see in Figure 9, if we continuously remove pixels, 
eventually all windows will collide to the same shape 
(with pure white or no content left).  

Downsampling

DS=3
DS=4

DS=5

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

E
xe
cu
tio
n 
T
im
e 
(s
ec
)

D

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

E
xe
cu
tio
n 
T
im
e 
(s
ec
)

HDS = 3

HDS = 2

HDS = 1

Hash Downsampling
B

Number of Pages

10 iterations
9 iterations

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

E
xe
cu
tio
n 
T
im
e 
(s
ec
)

Number of Iterations
11 iterations

C

Masking Ratio

20%
30%

40%

50%

60%

0

100

200

300

400

500

600

E
xe
cu
tio
n 
T
im
e 
(s
ec
)

1 2 4 8 16 32 64 128 256 512

A

 
Figure 21. The effect of parameters on our algorithm. We test on 
artificial books with polynomial distortion and each result is averaged 
over ten runs. The bold/red line represents the parameters learned from 
just the first two pages.  

Similar to mask which has a linear effect, hds has a 
quadratic effect on the length of the hash signature, so if 
we change it, the running time may change significantly 
as shown in Figure 21.B. Recall that hds=2, meaning that 
we condense 4 pixels to just one. The number of 
iterations has very little effect (Figure 21.C), which is 
also true for the bioinformatics algorithm that inspired us 
[31].   

The downsampling scale ds parameter (cf. Figure 8) 
can reduce the search space and increases the quality of 
the motifs by allowing a greater invariance to noise. 
Figure 21.D shows that if we fix all other parameters and 
vary this parameter, the total running time will increase 
as ds increases. When ds increases, the downsampled 
document, DD (cf. Table II), contains fewer pixels and 
also less information to represent any figure; so after 
random projection there will be more spurious collisions, 

increasing the number of false positives that must be 
checked and thus increasing the running time. 

As with any approximate algorithm, the quality of the 
result is important. Hence, we calculate the quality of 
top-20 motifs by using their total distance. Figure 22 
shows the average distance for different parameters 
values, compared to the exact search algorithm. 

Here the quality of the top twenty motifs is simply the 
sum of all twenty distances of each motif pair (i.e., 
Definition 3). As Figure 22 shows, the quality of 
DocMotif is very good under any parameter setting, even 
for small books, but as the size of the book increases, the 
results are essentially indistinguishable from the exact 
search, which takes about 67,500 times longer.    
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Figure 22. The average distance from top-20 motifs from our algorithm 
and the exact search algorithm. The bold/red line shows the default 
parameters. This shows that the quality of motifs is not sensitive to 
different parameter settings and very close to the result from the exact 
search algorithm. 

E. Data Mining Palm Leaf Manuscripts  

We conclude by noting that our algorithm is currently 
being evaluated for mining massive (four million leafs) 
archives of palm leaf manuscripts such as the one shown 
in Figure 23, for medical knowledge.  

Figure 23.  An example of a palm leaf manuscript. 

Figure 24 shows six motifs discovered from a 52-page 
palm leaf manuscript. In addition to discover similar 
figures from manuscripts, these examples demonstrate that 
our algorithm also work well on discovering motifs in 
handwritten documents. Note that we did not do much on 
image processing such as text line detection or text 
segmentation, except image binarization. However, the 
high quality motifs in a handwritten document are 
achieved as shown in Figure 24.  



 

Figure 24.  Six example motifs from a palm leaf manuscript. The 
window size is set to 30×100 pixel2. 

Because it is an interesting and visual example, we 
present this example as a one-minute long YouTube 
video [36]. The video demonstrates the speed, robustness 
and accuracy of our algorithm, even in the face of 
complex and degraded texts.  

VI. THEORETICAL ANALYSIS 

In this section we briefly introduce some results that 
make much of the discussion of parameter setting in the 
previous section moot. In essence, we show that, given 
some very mild assumptions, we can simply derive the 
best parameters to use, given just the user-required 
confidence in finding the true motif. Concretely, if an end-
user wishes to find the true best motif in a text, with a 
confidence conf (conf is the probability that the returned 
motif is the one the brute force search would have 
returned), she can use the following results to find the 
appropriate parameters to use.  

In this analysis, we assume that there is only one motif 
in the document with distance d and mean and standard 
deviation distribution of the distance between each pair of 
windows µ and σ, respectively. The window size is 
N=sx×sy. Note that if there is more than one motif in the 
given dataset, we still get the same result because the 
content (or location of black pixels) in each non-related 
window are independent. 

Theorem: If two windows of the motif collide with 
confidence at least conf, the probability that any pair of 
windows will collide at most:  ݅ݐ כ ௨ିଵ + 2݇ݏܽ݉ כ ݐ݅ כ ఓାଵ∑ୀଶௗ݇ݏଶ݉ܽߪ 1/ሺ݉ܽ݇ݏ݅ଷሻ 

where the masking ratio mask can be defined by: 

mask ≥  ଵே ቂ൫1 െ  ሺ1 െ ሻଵ/௧൯ଵ/ௗ݂݊ܿ כ ሺܰ െ ݀  1ሻ  ݀ െ 1ቃ 
The detail of mathematical proof is provided in 

Appendix A. We can use these results to find the optimal 
set of parameters in a four dimensional space. To give the 
visual intuition of this in one dimensional space, we can 
hold 3 parameters fixed at reasonable values, and use the 
above theorems to plot the number of false positives 
created (hence, the time taken) vs. the value of the free 
parameter. In Figure 25.top we allow the masking ratio to 
vary, and in Figure 25.bottom we allow the number of 
iterations to vary.  

These results bode very well for our algorithm. In the 
first case, they tell us that if the masking ratio is anywhere 
from about 60% to 90%, our algorithm will produce very 
few false positives that need to be eliminated, thus giving 
our algorithm essentially sub-linear time performance.   
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Figure 25. The effects of masking ratio (top) and the number of 
iterations (bottom) parameters on the spurious collision ratio, Given 
there is least one motif with a distance d in the data. The figures for 
other values of d are at [37]. Here we fixed µ=100 and σ=10. 

Note that in the latter case, the minimum value is at 4. 
After that, the cost very slowly rises, because we have 
found (with very high probability) the true motif, and the 
additional iterations have a small overhead while 
contributing nothing to the speedup. 

We have tested these theoretical results with 
experiments, and found that our theoretical model is 
accurate, but slightly conservative. In other words, setting 
the parameters is even easier than predicted here. 

VII. CONCLUSIONS 

We have said little about related work thus far 
because there is little that does exactly what we propose. 
Xi et al. do consider “Finding Motifs in a Database of 
Shapes” [34]. However, they make two critical 
assumptions that are not true in our case (or in general): 
that the individual shapes can be perfectly extracted, and 
that all shapes can be represented by a closed contour. Of 
course, our work does borrow heavily from the huge 
literature on motif discovery in bioinformatics; see [31] 
and the references thereof. Likewise, we have exploited 
both the classic ideas of the GHT [2], and the recent 
extensions by [35]. There is an active community 
working on computerized historical document analyses 
[14][17][24]: however, while great many papers address 
query-by-content, including [13][21][26] the task of motif 
discovery in this domain has not been addressed thus far. 

We have shown the first general technique for the 
unsupervised discovery of repeated patterns both within 
and between texts. We have demonstrated that our 
algorithm is scalable, it can produce meaningful results 
that are useful to domain experts, and its parameters are 
easy to set. In future work we plan to integrate our ideas 
with (OCRed) text mining algorithms, and leverage off 
very recent theoretical results in bioinformatics to remove 
the need to set any parameters in our algorithm.  

APPENDIX A:   MATHEMATICAL ANALYSIS 

According to our algorithm explained in Section IV, 
there are three main steps make our algorithm ultra fast by 
reducing the number expensive real distance calculations. 
Firstly, we locate the potential windows among all 
windows inside the books. With a good preprocessing, 
potential windows are not hard to locate as we describe in 



Section IV.A, and the number of potential windows are, 
expectedly, in the same order of magnitude as the number 
of figures inside the books which is depended on window 
size. Secondly, we apply our hashing technique and then 
calculate the distances between every window pairs which 
share same signatures. While a motif collides, some of 
other pairs may also collide by coincidence; we call this 
kind of windows, non-motif. It is non-trivial to calculate 
the expected number of false collisions, which is at the 
heart of this section. Thirdly, instead of calculating all 
expansive real distances, we apply the lower bound first 
introduced by Zhu et al. [35] to reduce the number of real 
distance calculations.  

In this section, we will guarantee the maximum 
number of false collisions occurred in our random 
projection process.  

 

Assumptions: 

In order to give the number of false collision, our 
assumptions are: 

1. In each image, black pixels are appeared randomly 
and uniformly. 

2. The motif is the pair of windows which has the 
smallest distance. Thus, in this proof, all other pairs are 
considered as non-motifs and can only increase the 
number of false collisions.  

Note that in real situation, there are many motifs or 
similar figures, and the number of false collision will be 
smaller than the one shown in this section. 

3. We know in advance the mean µ and standard 
deviation σ of the distribution of the distances of all 
window pairs. 

Note that we do not assume that all windows have the 
same number of black pixels or, even, the distance 
distribution is Gaussian.  

Notations: 

For simplicity, we use some new nicknames for some 
parameters introduced in Section IV. 

N: user-defined size of image. (N=sx*sy) 
s : masking ratio (0 ≤ s ≤ 1) or mask in Table . 
t : number of iteration or it in Table . 
µ: mean of distance distribution from all window pairs. 
σ : standard derivation of the distance distribution. 
conf : user-defined confidence which is the probability 

that at least one iteration the motif will appear in the 
same bucket. 

Lemma1: Given windows Wa and Wb, if d=dist(Wa,Wb), 
the probability that Wa and Wb will collide in 1 iteration of 
random projection is: ݏௗ  P[Wa and Wb collide in 1 iteration]   ቀ௦ேିௗାଵேିௗାଵ ቁௗ

 

Proof:  

Because the distance between Wa and Wb is d, if the 
removed pixels cover all of these d pixels, Wa and Wb will 
have the same signature, the remaining pixels. In our 
hashing process, we randomly remove sN pixels from N-
pixel windows. 

Then, the probability of distance d will collide is : 

Pd = P[Wa and Wb collide in 1 iteration]    

=  P[Wa and Wb has same hash signature]   

=  
# ୭ ୵ୟ୷ୱ ୲୦ୟ୲ ୟ୪୪ ௗ ୮୧୶ୣ୪ୱ ୟ୰ୣ ୰ୣ୫୭୴ୣୢ ୵୦ୣ୬ ୵ୣ ୰ୣ୫୭୴ୣ ௦ே ୮୧୶ୣ୪ୱ# ୭ ୟ୪୪ ୮୭ୱୱ୧ୠ୪ୣ ୵ୟ୷ୱ ୲୭ ୰ୣ୫୭୴ୣ ௦ே ୮୧୶ୣ୪ୱ  

=  
ቀ ேିௗ௦ேିௗቁቀ ே௦ேቁ    =   

ሺேିௗሻ!ሺ௦ேିௗሻ! ሺேି௦ேሻ!  ሺ௦ேሻ! ሺேି௦ேሻ!ே!       

=  
௦ேሺ௦ேିଵሻሺ௦ேିଶሻ.…ሺ௦ேିௗାଵሻே ሺேିଵሻ ሺேିଶሻ … ሺேିௗାଵሻ    

Because of 1 ≥ s ≥ 0, then  

 
௦ேே    ௦ேିଵேିଵ    ௦ேିଶேିଶ  ڮ   ௦ேିௗାଵேିௗାଵ  

Note that P0 = 
௦ேே  = s  and   ݀  1, Pd = Pd-1* ቀ௦ேିௗାଵேିௗାଵ ቁ. 

Then, Pd-1 > Pd. Hence, Pd is monotonic decreasing. 
ௗݏ  ൌ ቀ௦ேே ቁௗ

>  
௦ேሺ௦ேିଵሻሺ௦ேିଶሻ.…ሺ௦ேିௗାଵሻே ሺேିଵሻ ሺேିଶሻ … ሺேିௗାଵሻ   ቀ௦ேିௗାଵேିௗାଵ ቁௗ      

Therefore, ݏௗ  P[Wa and Wb collide]   ቀ௦ேିௗାଵேିௗାଵ ቁௗ
 □       

 
Lemma2:  For given windows Wa and Wb, if 
d=dist(Wa,Wb), the probability that they will collide in t 
iteration is: 

P[Wa and Wb collide in t iterations]  1 െ ൬ 1 െ ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧
     

Proof: Let p=P[Wa and Wb collide in 1 iteration].   

From Lemma 1,  p   ቀ௦ேିௗାଵேିௗାଵ ቁௗ
.       

Then, P[Wa and Wb collide in t iterations]=1- (1- p)t.   □ 

 

Corollary1: If the motif whose distance is d collides with 
probability at least user-defined confidence, conf, and the 
value of the number of iteration t is given, then, the 
masking ratio s which satisfy that the motif will be 
collide with confidence conf is: 

s ≥  
ଵே ቂ൫1 െ ሺ1 െ ሻଵ/௧൯ଵ/ௗ݂݊ܿ כ ሺܰ െ ݀  1ሻ  ݀ െ 1ቃ 

Proof:  
By Lemma2, P[the motif collides in t iterations]  

≥ 1 െ ൬ 1 െ ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧
≥ conf  □ 

 

Corollary2: If the motif whose distance is d collides with 
probability at least user-defined confidence, conf, and the 
value of the masking ratio s is given, then, the number of 
iterations t which satisfy that the motif will be collide 
with confidence conf is: 

t ≥  ݈݃ ሺ1 െ ቀ1 ݈݃ / ሻ݂݊ܿ െ ሺ௦ேିௗାଵேିௗାଵ ሻௗቁ 

Proof:  
By Lemma2, P[the motif collides in t iterations]  

≥ 1 െ ൬ 1 െ ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧
≥ conf     □ 

 
Now we can guarantee the minimum probability that 

the motif will collide (share same signature) in at least one 
iteration by Corollary1. For the rest of this section, we 
assume that the user want to find the motif with 



probability at least conf, i.e., 99%. Thus, we will find the 
upper bound of the probability that other pairs of 
windows, non-motifs, will collide after removing some 
black pixels. Contrary to the motif, increasing number of 
iterations can increase the number of non-motif collisions. 

Chebyshev’s Inequality: 

Given a distribution X with mean µ and standard 

deviation σ and k ≥0, then,   P[|x - µ| ≥ kσ] ≤ 
ଵమ 

Then,  
ଵమ ≥ P[|x - µ| ≥ kσ] ≥ P[µ - x ≥ kσ] = P[µ - kσ ≥ x] 

Substitute variable by  ݇ ൌ ఓିௗఙ ; hence,  P[x ≤ d] ≤ 
ఙమሺఓିௗሻమ 

Lemma3: In one iteration, any pair of windows will 
collide at most 2ߪଶݏఓିଵ ∑ 1/ሺݏ݅ଷሻఓିଵୀଵ   ݏ௨ିଵ. 
Proof:  
For any given windows Wc and Wd,  

by Lemma1, we know that 
 P[Wc and Wd  collide | dist(Wc ,Wd)=d] = Pd < sd 

P[any pair of windows collides in 1 iteration]  

 ஶP[dist(Wc ,Wd)=x]*P[Wc,Wd collide | dist(Wc ,Wd)=x]dx =

= ∑ௗୀஶ ௗௗାଵ
P[dist(Wc ,Wd)=x]*P[Wc ,Wd collide | 

dist(im1,im2)=x]dx 

From the definition Pd  in Lemma1,  ൌ ∑ௗୀஶ ௗௗାଵ
P[dist(Wc ,Wd)=x]*Px dx 

Because Pd is monotonic decreasing,   ∑ௗୀஶ ௗௗାଵ
P[dist(Wc ,Wd)=x]*Pd dx ൌ ∑ௗୀஶ ௗܲௗௗାଵ

P[dist(Wc ,Wd)=x]dx 

From Lemma1,  ∑ௗୀஶ ௗௗାଵௗݏ
P[dist(Wc ,Wd)=x]dx  ∑ௗୀஶ ௗP[d ≤ dist(Wc ,Wd) < d+1]    ൌݏ ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]  

    + ∑ௗୀ௨ିଵஶ ௗP[d ≤ dist(Wc ,Wd) < d+1]          ݏ ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]  

௨ିଵ∑ௗୀ௨ିଵஶݏ +     P[d ≤ dist(Wc ,Wd) < d+1]           ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]  

௨ିଵሺ1ݏ +     െP[µ-1 ≤ dist(Wc ,Wd)])           ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1] + ݏ௨ିଵ 

The maximum is obtained when all Chebyshev’s 
inequalities are tight.  

When the inequalities are tight, we have 

P[d ≤ dist(im1,im2) ≤ d+1]   

= P[dist(im1,im2) ≤ d+1] - P[dist(im1,im2) ≤ d]  

= ఙమሺఓିௗିଵሻమ െ ఙమሺఓିௗሻమ    

P[any pair of windows collides in 1 iteration]   ∑ௗୀஶ     ௗP[d ≤ dist(Wc ,Wd) < d+1]ݏ

ൌ ∑ௗୀఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1]  

    + ∑ௗୀ௨ିଵஶ ௗP[d ≤ dist(Wc ,Wd) < d+1]    ൌݏ ∑ௗୀஶ ௗݏ ቀ ఙమሺఓିௗିଵሻమ െ ఙమሺఓିௗሻమቁ + ݏ௨ିଵ 

Substitute variable by d=µ-x ൌ ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଵሺ௫ିଵሻమ െ ଵ௫మቁ + ݏ௨ିଵ ൌ ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଶ௫ିଵሺ௫ିଵሻమ௫మቁ + ݏ௨ିଵ  ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଶ௫ሺ௫ିଵሻమ௫మቁ + ݏ௨ିଵ  ∑ௗୀஶ ଶߪఓି௫ݏ ቀ ଶሺ௫ିଵሻయቁ + ݏ௨ିଵ 

Substitute variable by x=i+1 

= ∑ௗୀஶ ଶߪఓିାଵݏ ቀ ଶయቁ + ݏ௨ିଵ 

ఓାଵ∑ௗୀஶݏଶߪ2 = 1/ሺݏ݅ଷሻ + ݏ௨ିଵ □ 

Corollary3:  In t iterations, any pair of windows will 
collide at most 1-(1-Q)t where Q = 2ߪଶݏఓାଵ∑ௗୀஶ 1/ሺݏ݅ଷሻ 
 .௨ିଵݏ +
Proof:  Obvious by Lemma3.  □ 

Theorem1: In t iterations, any pair of windows will 
collide at most  ݏݐ௨ିଵ   ఓାଵ∑ௗୀஶݏଶߪݐ2 1/ሺݏ݅ଷሻ  
Proof: 1 െ ሺ1 െ ܳሻ௧ ൌ ܳݐ െ ቀ2ݐቁ ܳଶ  െ ቀ3ݐቁ ܳଷ െ      .ܳݐ ≥ (ڮ

Then, follow by Corollary 3. □ 
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