
R. Alhajj et al. (Eds.): ADMA 2007, LNAI 4632, pp. 605–615, 2007.
© Springer-Verlag Berlin Heidelberg 2007

E-Stream: Evolution-Based Technique for Stream
Clustering

Komkrit Udommanetanakit, Thanawin Rakthanmanon, and Kitsana Waiyamai

Department of Computer Engineering, Faculty of Engineering
Kasetsart University, Bangkok 10900, Thailand

{fengtwr, fengknw}@ku.ac.th

Abstract. Data streams have recently attracted attention for their applicability
to numerous domains including credit fraud detection, network intrusion
detection, and click streams. Stream clustering is a technique that performs
cluster analysis of data streams that is able to monitor the results in real time. A
data stream is continuously generated sequences of data for which the
characteristics of the data evolve over time. A good stream clustering algorithm
should recognize such evolution and yield a cluster model that conforms to the
current data. In this paper, we propose a new technique for stream clustering
which supports five evolutions that are appearance, disappearance, self-
evolution, merge and split.

1 Introduction

Stream clustering is a technique that performs cluster analysis of data streams that is
able to produce results in real time. The ability to process data in a single pass and
summarize it, while using limited memory, is crucial to stream clustering.

Several efficient stream clustering techniques have been presented recently, such as
STREAM [9], CluStream [2], and HPStream [1]. STREAM is a k-median based
algorithm that can achieve a constant factor approximation. CluStream divides the
clustering process into an online and offline process. Data summarization is
performed online, while clustering of the summarized data is performed offline.
Experiments show that CluStream yields better cluster quality than STREAM.
HPStream is the most recent stream clustering technique, which utilizes a fading
concept, data representation, and dimension projection. HPStream achieves better
clustering quality than the above algorithms.

Since the characteristics of the data evolve over time, various types of evolution
should be defined and supported by the algorithm. Almost of existing algorithms
support few types of evolution. The objective of the research reported here is to
improve existing stream clustering algorithms by supporting 5 evolutions with a new
suitable cluster representation and a distance function. Experimental results show that
this technique yields better cluster quality than HPStream.

The remaining of the paper is organized as follows. Section 2 introduces basic
concepts and definitions. Section 3 presents our stream clustering algorithm called
E-Stream. Section 4 compares the performance of E-Stream and HPStream with
respect to the synthetic dataset. Conclusions are discussed in Section 5.

606 K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai

2 Basic Concepts and Definitions

In this section, we introduce some basic concepts and definitions that will be used
subsequently.

The data stream consists of a set of multidimensional records X1…Xk… arriving at
time stamps T1…Tk…. Each data point Xi is a multidimensional record containing d
dimensions, denote by Xi = (xi

1…xi
d).

An isolated data point is a data point that is not a member of any clusters. Isolated
data points remain in the system for cluster appearance computations.

An inactive cluster is a cluster that has a low weight. It can become an active cluster
if its weight is increased.

An active Cluster is a cluster that can assemble incoming data if there is sufficient
similarity score.

A cluster is a collection of data that has been memorized for processing in the
system. It can be an isolated data point, an inactive cluster, or an active cluster.

Fading decreases weight of data over time. In a data stream that has evolving data;
older data should have lesser weight. We decrease weight of every cluster over time
to achieve a fast adaptive cluster model. Let λ be the decay rate and t be elapsed time,
the fading function is

ttf λ−= 2)((1)

Weight of a cluster is the number of data elements in a cluster. Weight is determined
according to the fading function. Initially, each data element has a weight of 1. A
cluster can be increased its weight by assembling incoming data points or merging
with other clusters.

2.1 Fading Cluster Structure with Histogram: FCH

Each cluster is represented as a Fading Cluster Structure (FCS) [1] utilizing a α-bin
histogram for each feature of the dataset. We called our cluster representation Fading
Cluster Structure with Histogram (FCH). Let Ti be the time when data point xi is
retrieved, and suppose t be the current time then f(t-Ti) is the fading weight of data
point xi.

FC1(t) is a vector of weighted sumation of data feature values at time t. The jth
dimension is

() () ()j
i

N

i
i

j xTtftFC ∑
=

⋅−=
1

1 (2)

FC2(t) is the weighted sum of squares of each data feature at time t. The jth
dimension is,

() () ()2

1

2 j
i

N

i
i

j xTtftFC ∑
=

⋅−= (3)

 E-Stream: Evolution-Based Technique for Stream Clustering 607

W(t) is a sum of all weights of data points in the cluster at time t,

() ()∑
=

−=
N

i
iTtftW

1

 (4)

H(t) is a α-bin histogram of data values. For the jth feature at time t, the elements of
Hj are

() () () ()j
il

j
i

N

i
i

j
l yxTtftH ⋅⋅−= ∑

=1

 (5)

Where

⎩
⎨
⎧ +⋅+≤≤+⋅

=
otherwise

leftblxleftblif
y i

il 0

)1(1 (6)

)min(j
ixleft = (7)

)max(j
ixright = (8)

α
rightleft

b
+= (9)

left is a minimum value, right is a maximum value in this cluster, b is a size of each
bin, and yil is a weigth of xi in the lth bin.

2.2 Histogram Management

We utilize a histogram of cluster data values to identify cluster splits. A α-bin
histogram summarizes the distribution of cluster data for each dimension of each
cluster. The range of each bin is calculated as the difference between the maximum
and minimum feature values divided by α. When the maximum or minimum value
changes, we calculate a new range and update the values in each range from the
intersection between the new and old ranges. Each cluster has a histogram of feature
values, but the histogram is utilized only for the split of active clusters. Only an active
cluster can assemble an incoming data point.

Cluster split is based on the distribution of feature values as summarized by the
cluster histogram [1]. If a statistically significant valley is found between two peaks in
histogram values along any dimensions, the cluster is split. If more than one split
valley occurs in the histogram values, the value with the minimum height relative to
the surrounding peaks is chosen. When a cluster is split, the histogram in that
dimension is split and the other dimensions are weighted from the split dimension.
FC1, FC2 and W are recalculated from the new cluster histograms.

2.3 Distance Functions

Cluster-Point distance is a distance from a data point to the center of a cluster,
ormalized by the standard deviation (radius) of the cluster data in each dimension.

608 K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai

Split histogram 1st split histogram 2nd split histogram
Split
Dimension

Other
Dimension

Fig. 1. Histogram management in a split dimensionop and other dimension

This function is used to find the closest active cluster for an incoming data point. A
cluster with a larger radius yields a lower distance. Let C be an active cluster and x be
a data point, the Cluster-Point distance is

() ∑
=

−
⋅=

d

j
j

C

jj
C

radius

xcenter

d
xCdist

1

1
, (10)

Cluster-Cluster distance is a difference between centers of two clusters. It is used to
find the closest pair of cluster. If Ca and Cb are two clusters, the cluster-cluster distance is

() ∑
=

−=
d

j

j
C

j
Cba ba

centercenter
d

CCdist
1

1
, (11)

3 The Algorithm

In this section, we first describe our idea. Then, we present the E-Stream algorithm
composing of a set of sub-algorithms.

3.1 Our Idea

The behavior of data in a data stream can evolve over time. We can classify this
evolution into five categories: appearance, disappearance, self evolution, merge, and
split. A clustering model can start from empty. In the beginning, incoming data are
considered as isolated clusters. A cluster is formed when a sufficiently dense region
appears. The cluster assembles similar data and increases its existence. When a set of
clusters has been identified, incoming data must be assigned to a cluster based on
similarity score, or the datum may be classified as an isolated. In every change of a
cluster we check if any of the following evolutions occur and handle it.

Appearance: A new cluster can appear if there is a sufficiently dense group of data
points in one area. Initially, such elements appear as a group of outliers, but (as more
data appears in a neighborhood) they are recognized as a cluster.

Disappearance: Existing clusters can disappear because the existence of data is
diminished over time. Clusters that contain only old data are faded and eventually
disappear because they do not represent the presence of data.

 E-Stream: Evolution-Based Technique for Stream Clustering 609

Self-evolution: Data can change their behaviors, which cause size or position of a
cluster to evolve. Evolution can be done faster if the data can fade.

Merge: A pair of clusters can be merged if their characteristics are very similar.
Merged clusters must cover the behavior of the pair.

Split: A cluster can be split into two smaller clusters if the behavior inside the cluster
is obviously separated.

3.2 E-Stream Algorithm

This section describes E-Stream in details. Following is the list of notations used in
our pseudo-code.

• |FCH| = current number of clusters
• FCHi.W = weight of the ith cluster
• FCHi.sd = standard deviation of the ith cluster
• S = set of pair of the split cluster

E-Stream is the main algorithm. In line 1, the algorithm starts by retrieving a new data
point. In line 2, it fades all clusters and deletes those having insufficient weight. Line 3
performs a histogram analysis and cluster split. Then line 4 checks for overlap clusters and
merges them. Line 5 checks the number of clusters and merges the closest pairs if the
cluster count exceeds the limit. Line 6 checks all clusters whether their status are active.
Lines 7-10 find the closest cluster to the incoming data point. If the distance is less than
radius_factor then the point is assigned to the cluster, otherwise it is an isolated data point.
The flow of control then returns to the top of the algorithm and waits for a new data point.

Algorithm E-Stream
1 retrieve new data Xi
2 FadingAll
3 CheckSplit
4 MergeOverlapCluster
5 LimitMaximumCluster
6 FlagActiveCluster
7 (minDistance, index) ← FindClosestCluster
8 if minDistance < radius_factor
9 add xi to FCHindex

10 else
11 create new FCH from Xi

12 waiting for new data

Fig. 2. E-Stream, stream clustering algorithm

FadingAll. The algorithm performs fading of all clusters and deletes the clusters
whose weight is less than remove_threshold.

CheckSplit is used to verify the splitting criteria in each cluster using the histogram.
If a splitting point is found in any cluster then it is split. And store the index pairs of
split cluster in S.

610 K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai

CheckMerge is an algorithm for merging pairs of similar clusters. This algorithm
checks every pair of clusters and computes the cluster-cluster distance. If the distance
is less than merge_threshold and the merged pair is not in S then merge the pair.

LimitMaximumCluster is used to limit the number of clusters. This algorithm
checks whether the number of clusters is not greater than maximum_cluster (an input
parameter); if it exceeds then the closest pair of clusters is merged until the number of
remaining clusters is less than or equal to the threshold.

FlagActiveCluster is used to check the current active cluster. If the weight of any
cluster is greater or equal to active_threshold then it is flagged as an active cluster.
Otherwise, the flag is cleared.

FindClosestCluster is used to find the distance and index of the closest active cluster
for an incoming data point.

Algorithm FadingAll
for i ← 1 to |FCH|
 fading FCHi
 if FCHi.W < fade_threshold
 delete FCHi

Algorithm CheckSplit
for i ← 1 to |FCH|
 for j ← 1 to d
 if FCHij have split point
 split FCHi

 S ← S U {(i, |FCH|)}

Fig. 3. FadingAll and CheckSplit algorithms

Algorithm MergeOverlapCluster
for i ← 1 to |FCH|
 for j ← i + 1 to |FCH|
 overlap[i,j] ← dist(FCHi,FCHj)
 m ← merge_threshold
 if overlap[i,j] > m*(FCHi.sd+FCHj.sd)
 if (i, j) not in S
 merge(FCHi, FCHj)

Algorithm LimitMaximumCluster
while |FCH| > maximum_cluster
 for i ← 1 to |FCH|
 for j ← i + 1 to |FCH|
 dist[i,j] ← dist(FCHi, FCHj)
 (first, second) ← argmin(i,j)(dist[i,j])
 merge(FCHfirst, FCHsecond)

Fig. 4. MergeOverlapCluster and LimitMaximumCluster algorithms

Algorithm FlagActiveCluster
for i ← 1 to |FCH|
 if FCHi.W>= active_threshold
 flag FCHi as active cluster
 else
 remove flag from FCHi

Algorithm FindClosestCluster
for i ← 1 to |FCH|
 if FCHi is active cluster
 dist[i] ←dist(FCHi, xi)
(minDistance, i) ← min(dist[i])
return (minDistance, i)

Fig. 5. FlagActiveCluster and FindClosestClusterAlgorithms

 E-Stream: Evolution-Based Technique for Stream Clustering 611

4 Experimental Results

We tested the algorithm using a synthetic dataset consisting of two dimensions and
8,000 data points. This data changes the behavior of clusters over time. We can
segment it into 8 intervals as follows

1. Initially, there are 4 clusters in a steady state. Data point from 1 to 1600.
2. The 5th cluster appears at position (15, 6). Data point from 1601 to 2600.
3. The 1st cluster disappears. Data point from 2601 to 3400.
4. The 4th cluster swells. Data point from 3401 to 4200
5. The 2nd and 5th cluster get closer. Data point from 4201 to 5000.
6. The 2nd and 5th are merged into a bigger cluster. Data point from 5001 to 5600.
7. A 6th cluster is split from the 3rd cluster. Data point from 5601 – 6400.
8. Every cluster is in a steady state again. Data point from 6401 – 8000.

Fig. 6. The 8-Step evolution of the Synthetic Dataset

4.1 Efficiency Test

In this experiment, we set the parameters as in table 1. E-Stream allows the number of
clusters to vary dynamically with the constraint of the maximum number of clusters,
but requires a limit on the number of clusters. HPStream requires a fixed number of
clusters. Since the synthetic dataset has at most 5 clusters in each interval, we used 5
as the cluster (group) count in HPStream, and 10 as the cluster limit in E-Stream.
HPStream requires initial data for its initialization process before beginning stream
clustering. We, therefore, set it to 100 points.

612 K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai

Table 1. Parameters of each algorithm

algorithm E-Stream algorithm HPStream
maximum_cluster 10
stream_speed 100
decay_rate 0.1
radius_factor 3
remove_threshold 0.1
merge_threshold 1.25
active_threshold 5

num_cluster 5
stream_speed 100
decay_rate 0.1
radius_factor 3

In the first interval, there are four clusters in a steady-state. Both algorithms yield
clusters with little distortion, but E-Stream has a great number of clusters. Because at
the beginning E-Stream does not have any active clusters, every incoming data point
is considered as an isolated data point. As more data is accumulated, a cluster will
appear. On the other hand, HPStream requires initial data (set to 100 points) for
offline clustering, so HPStream exhibits better initial clustering than E-Stream.

In the second interval, a new cluster appears. HPStream still yields a better quality
because it finds all clusters correctly, but E-Stream yields only little distortion.

In the third interval, an existing cluster disappears. E-Stream yields good clustering
while HPStream tries to create a new cluster from existing cluster even though their
do not have a significant difference, due to the fixed cluster-count constraint.

In the 4th interval, a cluster swells. In the 5th interval, two clusters are closer, an
evolution that is supported by both algorithms. But, HPStream still tries to find five
clusters.

In the 6th interval two close clusters are merged. Neither algorithms merge the two
clusters in this interval even though their current behaviors are undistinguished.

In the 7th interval, a cluster splits. E-Stream can support this evolution when it
receives enough data. But HPStream cannot detect this.

In the 8th interval there are four clusters in a steady state again. E-stream algorithm
detects the previous merged case and identifies all clusters correctly within this
interval. But HPStream still is confusing by the cluster behavior.

Fig. 7. Purity test between E-Stream and HPStream

Purity

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

200 1000 1800 2600 3400 4200 5000 5800 6600 7400

data stream (points)

p
u

ri
ty E-Stream

HPStream

 E-Stream: Evolution-Based Technique for Stream Clustering 613

In the purity test, E-Stream always has a purity greater than 0.9. But HPStream
exhibits a big drop in the seventh interval (cluster split), because the algorithm cannot
accommodate this evolution.

In the F-measure test, E-Stream yields an average value much better than
HPStream although, there are two intervals where E-Stream has a lower F-measure.
HPStream yields better results due to an initial offline process to find the initial
clusters. The second instance is the second interval (1601-2600), where E-Stream
merged two clusters incorrectly.

From the efficiency test, we can say that HPStream cannot support the evolution of
number of clusters because the algorithm constrains it. E-Stream can support all the evolu-
tions in Section 3, even though some evolutions such as merge require a lot of data to detect.

Fig. 8. F-Measure test between E-Stream and HPStream

4.2 Sensitivity with Number of Cluster (Input Parameters)

E-Stream Purity

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05

200 1400 2600 3800 5000 6200 7400

data stream (points)

p
u

ri
ty

k = 5
k = 10
k = 20
k = 40
k = 80

HPStream Purity

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

200 1400 2600 3800 5000 6200 7400
data stream (points)

p
u

ri
ty

k = 5
k = 10
k = 20
k = 40
k = 80

E-Stream F-measure

0

0.2

0.4

0.6

0.8

1

1.2

200 1400 2600 3800 5000 6200 7400

data stream (points)

f-
m

ea
su

re

k = 5
k = 10
k = 20
k = 40
k = 80

HPStream F-measure

0

0.2

0.4

0.6

0.8

1

1.2

200 1400 2600 3800 5000 6200 7400

data stream (points)

f-
m

ea
su

re

k = 5
k = 10
k = 20
k = 40
k = 80

Fig. 9. Sensitivity with number of cluster (input parameter)

F-Measure

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

200 1000 1800 2600 3400 4200 5000 5800 6600 7400

data stream (points)

f-
m

ea
su

re

E-Stream
HPStream

614 K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai

From the experiment, the Purity of both algorithms is not sensitive to this input
parameter. But in F-measure terms, HPStream has a tendency to drop if the input
number of clusters differs greatly from the actual number. E-Stream is not sensitive to
this parameter since the number of clusters is not fixed. As long as the maximum
number is not exceeded, E-Stream still yields good results.

4.3 Runtime with Number of Data

In this experiment we use a dataset consisting of 500,000 data points with two
dimensions and five clusters.

Runtime

0

20

40

60

80

100

120

140

160

180

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

#data (points)

ru
n

ti
m

e
(s

ec
s)

E-Stream
HPStream

Fig. 10. Runtime with number of data (points)

Both algorithms exhibit linear runtime in number of data points, which is a
constraint for stream clustering algorithms.

4.4 Runtime as a Function of Clusters and of Dimensions

To test the runtime as a function of the number of clusters, we use two dimensions,
100,000 data points, and vary the number of data clusters from 5 to 25 in increments
of 5 clusters.

For runtime with the number of dimensions test, we use 5 clusters, 100,000 data
points, and vary the number of dimensions from 2 to 20.

Runtime

0
50

100
150
200
250
300
350
400

5 10 15 20 25

#cluster

ru
n

ti
m

e
(s

ec
s)

E-Stream
HPStream

Runtime

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20

#dimension

ru
nt

im
e

(s
ec

s)

E-Stream
HPStream

Fig. 11. Runtime with number of clusters and number of dimensions

 E-Stream: Evolution-Based Technique for Stream Clustering 615

The results of both experiments are summarized in Figure 15. HPStream exhibits
linear runtime in both the number of clusters and the number of dimensions. E-Stream
exhibits linear runtime in the number of dimensions but polynomial runtime in the
number of clusters. This is due to the merging procedure, which requires O(k2) time in
the number of clusters.

5 Conclusions

This paper proposed a new stream clustering technique called E-Stream which can
support five cluster evolutions: appearance, disappearance, self-evolution, merge, and
split. These evolutions can normally occur in an evolving data stream. This technique
outperforms a well-known technique, HPStream. However, the runtime of the new
approach is polynomial with respect to the number clusters.

Acknowledgment. Thanks to J. E. Brucker and P. Vateekul for their reading and
comments of this paper.

References

1. Milenova, B.L., Campos, M.M.: Clustering Large Databases with Numeric and Nominial
Values Using Orthogonal Projections. In: Proceedings of the 29th VLDB Conference
(2003)

2. Aggarwal, C., Han, J., Wang, J., Yu, P.S.: A Framework for Projected Clustering of High
Dimensional Data Streams. In: Proceeding of the 30th VLDB conference (2004)

3. Aggarwal, C., Han, J., Wang, J., Yu, P.S.: A Framework for Clustering Evolving Data
Streams. In: Proceeding of the 29th VLDB conference (2003)

4. Barbara, D.: Requirements for Clustering Data Streams. In: SIGKDD Explorations (2002)
5. Gaber, M.M., Zaslavsky, A., Krishnaswmy, S.: Mining Data Streams: A Review. In:

SIGMOD Record, vol. 34(2) (June 2005)
6. Oh, S., Kang, J., Byun, Y., Park, G., Byun, S.: Intrusion Detection based on Clustering a

Data Stream. In: Proceedings of the 2005 Third ACIS International Conference on Software
Engineering Research, Management and Applications (2005)

7. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering Data
Streams: Theory and Practice. TKDE special issue on clustering 15 (2003)

8. Song, M., Wang, H.: Highly Efficient Incremental Estimation of Gaussian Mixture Models
for Online Data Stream Clustering. In: SPIE Conference on Intelligent Computing: Theory
And Application III (2005)

9. Zhang, T., Ramakhrisnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for
Very Large Databases. In: Proc. ACM SIGMOD Int. Conf. Management of Data (1996)

	E-Stream: Evolution-Based Technique for Stream Clustering
	Introduction
	Basic Concepts and Definitions
	Fading Cluster Structure with Histogram: FCH
	Histogram Management
	Distance Functions

	The Algorithm
	Our Idea
	E-Stream Algorithm

	Experimental Results
	Efficiency Test
	Sensitivity with Number of Cluster (Input Parameters)
	Runtime with Number of Data
	Runtime as a Function of Clusters and of Dimensions

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

