
R. Alhajj et al. (Eds.): ADMA 2007, LNAI 4632, pp. 605–615, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

E-Stream: Evolution-Based Technique for Stream 
Clustering 

Komkrit Udommanetanakit, Thanawin Rakthanmanon, and Kitsana Waiyamai 

Department of Computer Engineering, Faculty of Engineering 
Kasetsart University, Bangkok 10900, Thailand 

{fengtwr, fengknw}@ku.ac.th 

Abstract. Data streams have recently attracted attention for their applicability 
to numerous domains including credit fraud detection, network intrusion 
detection, and click streams. Stream clustering is a technique that performs 
cluster analysis of data streams that is able to monitor the results in real time. A 
data stream is continuously generated sequences of data for which the 
characteristics of the data evolve over time. A good stream clustering algorithm 
should recognize such evolution and yield a cluster model that conforms to the 
current data. In this paper, we propose a new technique for stream clustering 
which supports five evolutions that are appearance, disappearance, self-
evolution, merge and split. 

1   Introduction 

Stream clustering is a technique that performs cluster analysis of data streams that is 
able to produce results in real time. The ability to process data in a single pass and 
summarize it, while using limited memory, is crucial to stream clustering. 

Several efficient stream clustering techniques have been presented recently, such as 
STREAM [9], CluStream [2], and HPStream [1]. STREAM is a k-median based 
algorithm that can achieve a constant factor approximation. CluStream divides the 
clustering process into an online and offline process. Data summarization is 
performed online, while clustering of the summarized data is performed offline. 
Experiments show that CluStream yields better cluster quality than STREAM. 
HPStream is the most recent stream clustering technique, which utilizes a fading 
concept, data representation, and dimension projection. HPStream achieves better 
clustering quality than the above algorithms. 

Since the characteristics of the data evolve over time, various types of evolution 
should be defined and supported by the algorithm. Almost of existing algorithms 
support few types of evolution. The objective of the research reported here is to 
improve existing stream clustering algorithms by supporting 5 evolutions with a new 
suitable cluster representation and a distance function. Experimental results show that 
this technique yields better cluster quality than HPStream. 

The remaining of the paper is organized as follows. Section 2 introduces basic 
concepts and definitions. Section 3 presents our stream clustering algorithm called  
E-Stream. Section 4 compares the performance of E-Stream and HPStream with 
respect to the synthetic dataset. Conclusions are discussed in Section 5. 
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2   Basic Concepts and Definitions 

In this section, we introduce some basic concepts and definitions that will be used 
subsequently. 

The data stream consists of a set of multidimensional records X1…Xk… arriving at 
time stamps T1…Tk…. Each data point Xi is a multidimensional record containing d 
dimensions, denote by Xi = (xi

1…xi
d). 

An isolated data point is a data point that is not a member of any clusters. Isolated 
data points remain in the system for cluster appearance computations. 

An inactive cluster is a cluster that has a low weight. It can become an active cluster 
if its weight is increased. 

An active Cluster is a cluster that can assemble incoming data if there is sufficient 
similarity score. 

A cluster is a collection of data that has been memorized for processing in the 
system. It can be an isolated data point, an inactive cluster, or an active cluster. 

Fading decreases weight of data over time. In a data stream that has evolving data; 
older data should have lesser weight. We decrease weight of every cluster over time 
to achieve a fast adaptive cluster model. Let λ be the decay rate and t be elapsed time, 
the fading function is  

ttf λ−= 2)(  (1) 

Weight of a cluster is the number of data elements in a cluster. Weight is determined 
according to the fading function. Initially, each data element has a weight of 1.  A 
cluster can be increased its weight by assembling incoming data points or merging 
with other clusters. 

2.1   Fading Cluster Structure with Histogram: FCH 

Each cluster is represented as a Fading Cluster Structure (FCS) [1] utilizing a α-bin 
histogram for each feature of the dataset. We called our cluster representation Fading 
Cluster Structure with Histogram (FCH). Let Ti be the time when data point xi is 
retrieved, and suppose t be the current time then f(t-Ti) is the fading weight of data 
point xi. 

FC1(t) is a vector of weighted sumation of data feature values at time t.  The   jth 
dimension is 
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FC2(t) is the weighted sum of squares of  each data feature at time t. The jth 
dimension is,  

( ) ( ) ( )2

1

2 j
i

N

i
i

j xTtftFC ∑
=

⋅−=  (3) 



 E-Stream: Evolution-Based Technique for Stream Clustering 607 

W(t)  is a sum of all weights of data points in the cluster at time t,  
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H(t) is a α-bin histogram of data values. For the jth feature at time t, the elements of 
Hj are  
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left is a minimum value, right is a maximum value in this cluster, b is a size of each 
bin, and yil is a weigth of xi in the lth bin. 

2.2   Histogram Management 

We utilize a histogram of cluster data values to identify cluster splits. A α-bin 
histogram summarizes the distribution of cluster data for each dimension of each 
cluster. The range of each bin is calculated as the difference between the maximum 
and minimum feature values divided by α. When the maximum or minimum value 
changes, we calculate a new range and update the values in each range from the 
intersection between the new and old ranges. Each cluster has a histogram of feature 
values, but the histogram is utilized only for the split of active clusters. Only an active 
cluster can assemble an incoming data point. 

Cluster split is based on the distribution of feature values as summarized by the 
cluster histogram [1]. If a statistically significant valley is found between two peaks in 
histogram values along any dimensions, the cluster is split. If more than one split 
valley occurs in the histogram values, the value with the minimum height relative to 
the surrounding peaks is chosen. When a cluster is split, the histogram in that 
dimension is split and the other dimensions are weighted from the split dimension. 
FC1, FC2 and W are recalculated from the new cluster histograms. 

2.3   Distance Functions 

Cluster-Point distance is a distance from a data point to the center of a cluster, 
ormalized by the standard deviation (radius) of the cluster data in each dimension. 
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Fig. 1. Histogram management in a split dimensionop and other dimension 

This function is used to find the closest active cluster for an incoming data point. A 
cluster with a larger radius yields a lower distance. Let C be an active cluster and x be 
a data point, the Cluster-Point distance is 
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Cluster-Cluster distance is a difference between centers of two clusters. It is used to 
find the closest pair of cluster. If Ca and Cb are two clusters, the cluster-cluster distance is 
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3   The Algorithm 

In this section, we first describe our idea. Then, we present the E-Stream algorithm 
composing of a set of sub-algorithms. 

3.1   Our Idea 

The behavior of data in a data stream can evolve over time. We can classify this 
evolution into five categories: appearance, disappearance, self evolution, merge, and 
split. A clustering model can start from empty. In the beginning, incoming data are 
considered as isolated clusters. A cluster is formed when a sufficiently dense region 
appears. The cluster assembles similar data and increases its existence. When a set of 
clusters has been identified, incoming data must be assigned to a cluster based on 
similarity score, or the datum may be classified as an isolated. In every change of a 
cluster we check if any of the following evolutions occur and handle it. 

Appearance: A new cluster can appear if there is a sufficiently dense group of data 
points in one area. Initially, such elements appear as a group of outliers, but (as more 
data appears in a neighborhood) they are recognized as a cluster. 

Disappearance: Existing clusters can disappear because the existence of data is 
diminished over time. Clusters that contain only old data are faded and eventually 
disappear because they do not represent the presence of data. 
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Self-evolution: Data can change their behaviors, which cause size or position of a 
cluster to evolve. Evolution can be done faster if the data can fade. 

Merge: A pair of clusters can be merged if their characteristics are very similar. 
Merged clusters must cover the behavior of the pair. 

Split: A cluster can be split into two smaller clusters if the behavior inside the cluster 
is obviously separated. 

3.2   E-Stream Algorithm 

This section describes E-Stream in details. Following is the list of notations used in 
our pseudo-code. 

• |FCH| = current number of clusters 
• FCHi.W = weight of the ith cluster 
• FCHi.sd = standard deviation of the ith cluster 
• S = set of pair of the split cluster 

E-Stream is the main algorithm. In line 1, the algorithm starts by retrieving a new data 
point. In line 2, it fades all clusters and deletes those having insufficient weight. Line 3 
performs a histogram analysis and cluster split. Then line 4 checks for overlap clusters and 
merges them. Line 5 checks the number of clusters and merges the closest pairs if the 
cluster count exceeds the limit. Line 6 checks all clusters whether their status are active. 
Lines 7-10 find the closest cluster to the incoming data point.  If the distance is less than 
radius_factor then the point is assigned to the cluster, otherwise it is an isolated data point. 
The flow of control then returns to the top of the algorithm and waits for a new data point. 

Algorithm E-Stream 
1    retrieve new data Xi 
2        FadingAll 
3        CheckSplit 
4        MergeOverlapCluster 
5        LimitMaximumCluster 
6        FlagActiveCluster 
7        (minDistance, index) ← FindClosestCluster 
8        if minDistance < radius_factor 
9          add xi to FCHindex 

10      else 
11          create new FCH from Xi 

12  waiting for new data 

Fig. 2. E-Stream, stream clustering algorithm 

FadingAll. The algorithm performs fading of all clusters and deletes the clusters 
whose weight is less than remove_threshold. 

CheckSplit is used to verify the splitting criteria in each cluster using the histogram. 
If a splitting point is found in any cluster then it is split. And store the index pairs of 
split cluster in S. 
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CheckMerge is an algorithm for merging pairs of similar clusters. This algorithm 
checks every pair of clusters and computes the cluster-cluster distance. If the distance 
is less than merge_threshold and the merged pair is not in S then merge the pair. 

LimitMaximumCluster is used to limit the number of clusters. This algorithm 
checks whether the number of clusters is not greater than maximum_cluster (an input 
parameter); if it exceeds then the closest pair of clusters is merged until the number of 
remaining clusters is less than or equal to the threshold. 

FlagActiveCluster is used to check the current active cluster. If the weight of any 
cluster is greater or equal to active_threshold then it is flagged as an active cluster.  
Otherwise, the flag is cleared. 

FindClosestCluster is used to find the distance and index of the closest active cluster 
for an incoming data point. 

Algorithm FadingAll 
for i ← 1 to |FCH| 
    fading FCHi 
    if FCHi.W < fade_threshold 
        delete FCHi 

Algorithm CheckSplit 
for i ← 1 to |FCH| 
    for j ← 1 to d 
        if FCHij have split point 
            split FCHi 

            S ← S U {(i, |FCH|)} 

Fig. 3. FadingAll and CheckSplit algorithms 

Algorithm MergeOverlapCluster 
for i ← 1 to |FCH| 
    for j ← i + 1 to |FCH| 
        overlap[i,j] ← dist(FCHi,FCHj) 
        m ← merge_threshold 
        if overlap[i,j] > m*(FCHi.sd+FCHj.sd) 
            if (i, j) not in S 
                merge(FCHi, FCHj) 

Algorithm LimitMaximumCluster 
while |FCH| > maximum_cluster 
    for i ← 1 to |FCH| 
        for j ← i + 1 to |FCH| 
            dist[i,j] ← dist(FCHi, FCHj) 
    (first, second) ← argmin(i,j)(dist[i,j]) 
    merge(FCHfirst, FCHsecond) 

Fig. 4. MergeOverlapCluster and LimitMaximumCluster algorithms 

Algorithm FlagActiveCluster 
for i ← 1 to |FCH| 
    if FCHi.W>= active_threshold 
        flag FCHi as active cluster 
    else 
        remove flag from FCHi 

Algorithm FindClosestCluster 
for i ← 1 to |FCH| 
    if FCHi is active cluster  
        dist[i] ←dist(FCHi, xi) 
(minDistance, i) ← min(dist[i]) 
return (minDistance, i) 

Fig. 5. FlagActiveCluster and FindClosestClusterAlgorithms 
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4   Experimental Results 

We tested the algorithm using a synthetic dataset consisting of two dimensions and 
8,000 data points. This data changes the behavior of clusters over time. We can 
segment it into 8 intervals as follows 

1. Initially, there are 4 clusters in a steady state. Data point from 1 to 1600. 
2. The 5th cluster appears at position (15, 6). Data point from 1601 to 2600. 
3. The 1st cluster disappears. Data point from 2601 to 3400. 
4. The 4th cluster swells. Data point from 3401 to 4200 
5. The 2nd and 5th cluster get closer. Data point from 4201 to 5000. 
6. The 2nd and 5th are merged into a bigger cluster. Data point from 5001 to 5600. 
7. A 6th cluster is split from the 3rd cluster. Data point from 5601 – 6400. 
8. Every cluster is in a steady state again. Data point from 6401 – 8000. 

 

Fig. 6. The 8-Step evolution of the Synthetic Dataset 

4.1   Efficiency Test 

In this experiment, we set the parameters as in table 1. E-Stream allows the number of 
clusters to vary dynamically with the constraint of the maximum number of clusters, 
but requires a limit on the number of clusters. HPStream requires a fixed number of 
clusters. Since the synthetic dataset has at most 5 clusters in each interval, we used 5 
as the cluster (group) count in HPStream, and 10 as the cluster limit in E-Stream. 
HPStream requires initial data for its initialization process before beginning stream 
clustering. We, therefore, set it to 100 points. 
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Table 1. Parameters of each algorithm 

algorithm E-Stream algorithm HPStream 
maximum_cluster 10 
stream_speed 100 
decay_rate 0.1 
radius_factor 3 
remove_threshold 0.1 
merge_threshold 1.25 
active_threshold 5 

num_cluster 5 
stream_speed 100 
decay_rate 0.1 
radius_factor 3 
 

In the first interval, there are four clusters in a steady-state. Both algorithms yield 
clusters with little distortion, but E-Stream has a great number of clusters.  Because at 
the beginning E-Stream does not have any active clusters, every incoming data point 
is considered as an isolated data point. As more data is accumulated, a cluster will 
appear. On the other hand, HPStream requires initial data (set to 100 points) for 
offline clustering, so HPStream exhibits better initial clustering than E-Stream. 

In the second interval, a new cluster appears. HPStream still yields a better quality 
because it finds all clusters correctly, but E-Stream yields only little distortion. 

In the third interval, an existing cluster disappears. E-Stream yields good clustering 
while HPStream tries to create a new cluster from existing cluster even though their 
do not have a significant difference, due to the fixed cluster-count constraint. 

In the 4th interval, a cluster swells. In the 5th interval, two clusters are closer, an 
evolution that is supported by both algorithms. But, HPStream still tries to find five 
clusters. 

In the 6th interval two close clusters are merged. Neither algorithms merge the two 
clusters in this interval even though their current behaviors are undistinguished. 

In the 7th interval, a cluster splits. E-Stream can support this evolution when it 
receives enough data. But HPStream cannot detect this. 

In the 8th interval there are four clusters in a steady state again. E-stream algorithm 
detects the previous merged case and identifies all clusters correctly within this 
interval. But HPStream still is confusing by the cluster behavior. 

 

Fig. 7. Purity test between E-Stream and HPStream 
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In the purity test, E-Stream always has a purity greater than 0.9. But HPStream 
exhibits a big drop in the seventh interval (cluster split), because the algorithm cannot 
accommodate this evolution. 

In the F-measure test, E-Stream yields an average value much better than 
HPStream although, there are two intervals where E-Stream has a lower F-measure. 
HPStream yields better results due to an initial offline process to find the initial 
clusters. The second instance is the second interval (1601-2600), where E-Stream 
merged two clusters incorrectly. 

From the efficiency test, we can say that HPStream cannot support the evolution of 
number of clusters because the algorithm constrains it. E-Stream can support all the evolu-
tions in Section 3, even though some evolutions such as merge require a lot of data to detect. 

 

Fig. 8. F-Measure test between E-Stream and HPStream 

4.2   Sensitivity with Number of Cluster (Input Parameters) 
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Fig. 9. Sensitivity with number of cluster (input parameter) 
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From the experiment, the Purity of both algorithms is not sensitive to this input 
parameter. But in F-measure terms, HPStream has a tendency to drop if the input 
number of clusters differs greatly from the actual number. E-Stream is not sensitive to 
this parameter since the number of clusters is not fixed. As long as the maximum 
number is not exceeded, E-Stream still yields good results. 

4.3   Runtime with Number of Data 

In this experiment we use a dataset consisting of 500,000 data points with two 
dimensions and five clusters. 
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Fig. 10. Runtime with number of data (points) 

Both algorithms exhibit linear runtime in number of data points, which is a 
constraint for stream clustering algorithms. 

4.4   Runtime as a Function of Clusters and of Dimensions 

To test the runtime as a function of the number of clusters, we use two dimensions, 
100,000 data points, and vary the number of data clusters from 5 to 25 in increments 
of 5 clusters. 

For runtime with the number of dimensions test, we use 5 clusters, 100,000 data 
points, and vary the number of dimensions from 2 to 20. 
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Fig. 11. Runtime with number of clusters and number of dimensions 



 E-Stream: Evolution-Based Technique for Stream Clustering 615 

The results of both experiments are summarized in Figure 15. HPStream exhibits 
linear runtime in both the number of clusters and the number of dimensions. E-Stream 
exhibits linear runtime in the number of dimensions but polynomial runtime in the 
number of clusters. This is due to the merging procedure, which requires O(k2) time in 
the number of clusters. 

5   Conclusions 

This paper proposed a new stream clustering technique called E-Stream which can 
support five cluster evolutions: appearance, disappearance, self-evolution, merge, and 
split. These evolutions can normally occur in an evolving data stream. This technique 
outperforms a well-known technique, HPStream. However, the runtime of the new 
approach is polynomial with respect to the number clusters. 

Acknowledgment. Thanks to J. E. Brucker and P. Vateekul for their reading and 
comments of this paper. 
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