
POLL: multiclass classification from binary classifiers through

random sampling

Nithi Bunrupunthunad Jittat Fakcharoenphol Thanawin Rakthanmanon

Department of Computer Engineering,

Kasetsart University.

Bangkok 10900, Thailand.

E-mail: nithi@thai.com, jtf@ku.ac.th, g4465014@ku.ac.th.

August 30, 2003

Abstract

We apply a sampling technique in combinatorial optimizations to the problem of multi-
class classification. Various methods have been used to construct a multiclass classifier from
a set of binary classifiers. Suppose that there are n classes. A simple majority vote (known
as max-win), while giving very reliable answers, need a quadratic number of comparisons.
Other methods, by cascading binary classifiers, reduce the number of comparison to O(n)
but suffer from the build-up of the failure probability. This implies that they do not scale
well with n. We show that by using random sampling, we need only O(n log n) comparisons
while retaining the good performance of the majority method.

1 Introduction

In many machine learning methods, a binary classifier is easy to construct, while, in most
applications, a multiclass classifier is needed. There are quite a few techniques invented to
remedy this problem [2, 4, 8, 14]. Notably, by making all-pair comparisons, a simple majority
vote [3] (denoted as MAX-WIN later on in the paper) gives a very reliable answer. It, however,
needs O(n2) applications of binary classifiers for the problem with n classes. The popular
Decision Directed Acyclic Graphs [11] reduces the number of comparison down to O(n) while
suffering from an exponentially large failure probability because it builds on a cascading path of
classifiers. By reducing the depth of the path to O(log n),1 a recent approach called Adaptive
Directed Acyclic Graphs [7] greatly improves the success probability while retaining a linear
run time. Specifically, it fails only with a polynomially large probability. These approaches do
not scale very well with the number of classes.
We apply a well known sampling technique in combinatorial optimizations to the problem

of multiclass classification. The technique has a successful application on many cut problems
mostly due to Karger [5, 6]. We show that by using random sampling, we need only O(n logn)
comparisons while retaining the good performance of the majority method.

1.1 The problem

Given an unknown data point d in the universe Ω, the multiclass classification problem is to
determine which of the n classes d belongs to. There are various method for solving this problem.

1If not specified otherwise, all logarithms in this paper are base 2.

1

In this paper we focus on methods which use one-against-one binary classifiers described as
follows. For each pair {i, j} ∈ [n]× [n], where i 6= j, we have a binary classifier Ai,j : Ω→ {i, j}
that answers whether d belongs to i or j. Normally, it is expected at if d belongs to the i-th
class, Ai,j(d) should return i. It is not clear what Aj,k(d) would return when d does not belong
in either j or k. For a pair {i, j} that a comparison is performed, we say that j is an opponent
of i and vice versa.
The algorithm MAX-WIN performs all

(

n
2

)

one-against-one classifications. For each i, it

picks all n− 1 possible opponents, runs binary classifiers, and keeps track of the score si that i
wins, i.e.,

si = |{(i, j) ∈ [n]× [n], i 6= j : Ai,j(d) = i}|.

It then outputs that d belongs to the highest score class.

1.2 Our results

Our basic result shows that if MAX-WIN gives a ”clear-cut” answer (to be defined formally
later). By having only O(n logn) comparisons we get the same answer with high probability
(i.e., with probability at least 1 − 1/nc for some c > 0). We note that this success probability
goes to 1 as n grows. This is in contradiction with the other approaches.
We further give an analysis of MAX-WIN. We show that, with a mild assumption, if each

binary classifier gives correct answers with constant probability greater than half, with over-
whelming probability MAX-WIN gives a ”clear-cut” answer, satisfying our assumption for the
first result. We also mention a more sophisticated analysis of MAX-WIN which is based on the
similarity measure of the query points and the classes.

1.3 A note on technique

Our algorithm is analogous to polling. Suppose that MAX-WIN gives a correct answer. By
sampling only l opponents for each i, on average we should get the same answer. One can see
this paper as an analysis of a sufficient sampling size.
It can also be seen as a sparsification technique as in Karger’s result, since this problem is

essentially to find the node with the highest in-degree.

1.4 Previous results

The problem stems from the classification using Support Vector Machines (SVMs) [14]. There
are two broad categories for constructing multiclass classifiers from binary classifiers. On the
one hand, one can train, for each class, a classifier which recognizes objects only from that
class while rejects objects from all other classes; this first category is called One-against-the-
rest [14]. While the One-against-the-rest gives a fast classification time, it is difficult to train
the classifiers. On the other hand, in One-against-one [3, 8], a set of binary classifiers which
distinguish objects between two different classes are trained. The problem with this approach
is the classification time; one needs a quadratic number of calls to binary classifiers.
Platt, Cristianini, and Shawe-Taylor [11] introduced a new learning architecture, called

Decision Directed Acyclic Graphs (DDAG), and reduced the number of calls down to linear.
However, Kijsirikul, Ussivakul, and Meknavin [7] observed that the structure of the elimination
in DDAG introduces a long path of cascading calls to binary classifiers. They proposed a new
structure called ADAG, whose number of cascading calls reduces to only logarithmic. For the
problem with n classes, they showed that when the probability that a binary classifier gives a

2

wrong answer is p, DDAG successes with probability

1

n

(

1− p

p
+ (1− p)n−1 −

(1− p)n

p

)

,

while their ADAG gives the correct answer with probability
(

2n− 2dlog2 ne

n

)

(1− p)dlog2ne +

(

2dlog2 ne − n

n

)

(1− p)dlog2ne−1

or (1 − p)Θ(log n). Their experiments show that ADAG performs better than DDAG as n in-
creases.
Phetkaew, Kijsirikul, and Rivepiboon [10] used the “internal” information on the correctness

of the binary classifiers to improve ADAG. In many cases, they can get even a higher accuracy
than MAX-WIN. Their idea is to avoid the noisy information from the other unrelated binary
classifiers by reordering. Their experiments, however, involved only problems with at most 26
classes.

1.5 Organization

In Section 2 we present our algorithm and its analysis. We discuss some heuristic that might help
increasing the success probability in Section 3. The simulation results are shown in Section 4.
Finally, we give the conclusion in Section 5.

2 The algorithm and its analysis

Our algorithm, POLL, is a slight modification of MAX-WIN. We maintain a score ŝi for each

class i. Instead of having
(

n
2

)

comparisons, for each i we performs only l comparisons, for a

parameter l. Thus, we use only nl comparisons. For each i, we repeat the following procedure
l times: pick j uniformly at random from {1, . . . , n} − {i}, if Ai,j(d) returns i, we increase the
score ŝi. Finally, the algorithm says that d belongs to the class i with the highest sample score
ŝi. For notational simplicity, we let n1 be n− 1.
In the subsections that follow, we analyze the POLL algorithm in two steps. First, we show

that if MAX-WIN gives the result such that s1 is much higher than s2, the second winner,
POLL gives the correct answer. In the second step, we show that under the model of Kijsirikul,
Ussivakul, and Meknavin, MAX-WIN is very likely to give such an answer.

2.1 A clear-cut case

Given a data point d, MAX-WIN computes si for each class i. (We use si for the analysis only.
Our algorithm does not need them.) For simplicity we reindex the classes so that s1 ≥ s2 ≥
· · · ≥ sn. We assume that MAX-WIN gives a correct answer, i.e., it reports that d belongs to
the 1st group.
We state rough bounds on the values of s1 and s2. From an averaging argument, s1 ≥ n1/2,

because there are n · n1/2 points to give, so at least one must have at least an average number.
Furthermore, we also have that s2 ≥ n1/2− 1 (again from the same argument); thus, s2 ≥ n1/4
when n1 > 2. These facts will be crucial when we want to bound the probability.
The score ŝi for each group i is a random variable. To compute it, we conduct l experiments,

and POLL gives the correct answer when ŝ1 > ŝj for all j > 1. Thus, we want to bound the
probability

Pr[ŝ1 ≤ ŝj for some j 6= 1].

3

We now look at the expectations. We have that E(ŝi) is sil/n1. The good thing is they always
give the right answer, i.e., E(ŝ1) > E(ŝi) for i 6= 1 when the real random variables might not
be so. However, if the gap between the expectation of ŝ1 and the other ŝi is large, we can hope
that the 1st class always win. This motivates our definition of a separation.
For a given data point, we define a separation to be s1/s2. We say that MAX-WIN gives

a clear-cut answer if the separation is at least some fixed constant α > 1. We say that the
instance is α-separated.
To prove that POLL gives the same answer we need a strong tail inequality. We use the

Chernoff bound [1] in the following forms (see also [9]).

Theorem 1 (Chernoff bound) Let X1, X2, . . . , Xl be independent 0-1 random variables such
that, for 1 ≤ i ≤ l,Pr[Xi = 1] = pi, where 1 < pi < 1. Then, for X =

∑l
i=1Xi, µ = E(X) =

∑l
i=1 pi, and and any 0 < δ ≤ 1,

Pr[X < (1− δ)µ] < e−µδ
2/2.

Also, for any δ > 0,

Pr[X > (1 + δ)µ] <

[

eδ

(1 + δ)(1+δ)

]µ

.

We first bound the failure probability Pr[ŝ1 ≤ ŝj] for j 6= 1. With out loss of generality, we
bound only Pr[ŝ1 < ŝ2] because Pr[ŝ1 < ŝj] ≤ Pr[ŝ1 < ŝ2]. We prove our main technical lemma.

Lemma 1 Suppose that the problem is α-separated. For any fix constant c > 0, there is a
constant c′ and c′′ such that if l ≥ c′ log n′ + c′′,

Pr[ŝ1 < ŝ2] < n−c1 .

Proof: Denoting E(ŝi) with µi, we have

Pr[ŝ1 < ŝ2] ≤ Pr[ŝ1 <
µ1 + µ2
2

] + Pr[ŝ2 >
µ1 + µ2
2

].

We rewrite it as
Pr[ŝ1 < (1− δ1)µ1] + Pr[ŝ2 > (1 + δ2)µ2].

where δ1 =
1
2 −

µ2

2µ1
≥ 1

2 −
1
2α and δ2 =

µ1

2µ2
− 1
2 ≥

α
2 −

1
2 for an α-separated case. We bound each

term separately. Specifically, we show that each event occurs with probability less than n−c1 /2.
We can use the Chernoff bound since ŝi is a sum of independent random trials.
We start with the first term. We have

Pr[ŝ1 < (1− δ1)µ1] < exp(−µ1δ
2
1/2)

= exp(−
ls1
n1
· (
1

2
−
1

2α
)2/2).

Thus, if l ≥ (log2 e) ·

(

2c

(

1
(1
2
− 1

2α
)2

)

n1
s1
log n1 + 1

)

, the above probability becomes less than

n−c1 /2. Note that s1/n1 > 1/2; thus, with some rewriting, it suffices to set l to be

(log2 e) ·

(

4c

(

2α

α− 1

)2

log n1 + 1

)

.

4

Now we deal with the second term. Let γ denote the term
(

eδ2

(1+δ2)(1+δ2)

)

. From the Chernoff

bound, we have

Pr[ŝ2 > (1 + δ2)µ2] <

[

eδ2

(1 + δ2)(1+δ2)

]µ2

= γµ2 = γ(ls2/n1).

It can be shown that γ is a constant less than 1 when δ2 > 0. Thus, if

l > (log2 γ) · (c(n1/s2) log n1 + 1),

the failure probability in the second term becomes less than n−c1 /2. Since we know that s2 ≥
n1/4, if we set l to be at least (log2 γ) · (4c log n1 + 1), the above condition holds.

To see the dependence on α, we rewrite log γ as δ2 log e− (1+δ2) log(1+δ2) =
(

α−1
2

)

log e−
(

1+α
2

)

log
(

1+α
2

)

. From the range of α we get that log γ ≤ 1
2 log e.

For the possible values of α, one can show that 12 <
(

2α
α−1

)2
. Therefore, the lemma holds if

we let

c′ = 4c log e ·

(

2α

α− 1

)2

and c′′ = 2 > log e. We note that, asymptotically, c′ = O
(

1
(α−1)2

)

.

The following theorem follows from the application of the union bound.

Theorem 2 For any constant c, if the instance is α-separated, by setting l = O((1
α−1)

2c logn),

algorithm POLL gives the correct answer with probability at least 1− 1
nc .

Proof: We apply lemma 1, i.e., we set

l = (4(c+ 1) log e ·

(

2α

α− 1

)2

) log n+ 2,

and get that any fixed j 6= 1,

Pr[ŝ1 ≤ ŝj] <
1

nc+1
.

Using union bound, we have

Pr[ŝ1 ≤ ŝj for some j 6= 1] ≤
n
∑

j=2

Pr[ŝ1 ≤ sj]

< n ·
1

nc+1
=
1

nc
,

as required.

The theorem gives an upperbound on the parameter l, the sample size. For example, if the
instance is 1.8-separated (when the parameter p as defined in Section 2.2 is 0.9), we need at
most 234 log n+2 samples. This is an over-estimate, as the simulation shows that we need only
5 log n in this case (see Section 4). If a better upperbound on the failure probability is derived,
a better constant can be proven.

5

2.2 MAX-WIN wins with high probability

In this section, we show that under the same assumption as in [7], we are very likely to be in the
“clear-cut” case, i.e., MAX-WIN gives the correct answer with a good separation. We assume
that each binary classifier Ai,j can distinguish an input in class i and class j with probability
at least p > 1/2. When an input is in class k 6∈ {i, j}, it reports that the input belongs to i or
j each with probability 1/2.
We randomly generate the MAX-WIN score si from this model; thus, each si becomes a

random variable, with expectation E(si) = n1/2 if i 6= 1 and E(s1) = pn1. The following
theorem can be proved using the same technique as in lemma 1.

Theorem 3 For any small ε > 0, the probability that s1 ≥ (1 − ε)pn1 and for all j 6= 1,

sj ≤ (1 + ε)n1/2 is at least 1− e−Ω(n). Thus, the random instance from this model is ((1−ε)p(1+ε)2)-
separated with high probability probability.

We note that in this case, the failure probability drops exponentially with n because the
sample size is Ω(n).

2.3 A more sophisticated analysis of MAX-WIN

One would be interested to analyze MAX-WIN further. We mention briefly one way of doing
so. The assumption that a binary classifier Ai,j gives random outputs when the input are not
in classes i or j seems to be unrealistic. We can define the similarity measure ri of the input
for each class i such that (1) for all 1 ≤ i ≤ n, 0 ≤ ri ≤ 1, (2)

∑

i ri = 1, and (3) r1 > ri for
all i 6= 1. With this similarity measure, if ri > 0 or rj > 0, we can say that Ai,j outputs i with
probability ri

ri+rj
and outputs j with probability

rj
ri+rj

. When both of them is zero, Ai,j outputs

randomly between i and j. With this detailed analysis, the result resembling that in Section 2.2
can now be derived. We omit the result in this version of the paper.

3 The TOP-k heuristic

In this section, we describe a few heuristics that improve the success probability. This can be
done while keeping the number of binary comparisons to still O(n logn). The idea is to pick k
top score classes, and investigate them further.
Using this idea, we fail to pick the correct answer only when it is of lower rank. Clearly,

this happens with smaller probability than the case that the correct answer wins. Now, when
we have only k candidate classes, quite a few approaches are possible.
One can run MAX-WIN among them, resulting in an additive O(k2) comparisons. This, at

first sight, seems to be a good idea. However, when some class in this set might have a very
high score among the k candidates, but it scores very badly outside. We do not expect this,
but it seems that another approach looks more promising. I.e., in O(nk) comparisons, one can
recompute the original MAX-WIN scores for these classes. The simulation shows that the latter
is indeed better.
These heuristics, however, do not help much when the success probability is very close to

1. However, in other cases, it usually increases the success probability by 2-10%. We omit the
analysis and the simulation results from this version of the paper.

6

p
=
0
.
9

0

0
.
2

0
.
4

0
.
6

0
.
8

1

16
 32
 48
 64
 80
 96
 112
 128

number of classes

su
cc

es
s

pr
ob

ab
ili

tie
s
 MAX
-
WIN

POLL
-
5
log n

POLL
-
3
log n

POLL
-
1
log n

ADAC

DDAC

p
=
0
.
7

0

0
.
2

0
.
4

0
.
6

0
.
8

1

16
 32
 48
 64
 80
 96
 112
 128

number of classes

su
cc

es
s

pr
ob

ab
ili

tie
s
 MAX
-
WIN

POLL
-
5
log n

POLL
-
3
log n

POLL
-
1
log n

ADAC

DDAC

Figure 1: Small cases. The success probabilities of MAX-WIN, POLL, ADAG, and DDAG,
when (a) p = 0.9 and (b) p = 0.7. POLL run with different parameters l: log n, 3 logn, and
5 log n.

p
=
0
.
9

0

0
.
2

0
.
4

0
.
6

0
.
8

1

16
 32
 64
 128
 256
 512

number of classes

su
cc

es
s

pr
ob

ab
ili

tie
s
 MAX
-
WIN

POLL
-
5
log n

POLL
-
3
log n

POLL
-
1
log n

ADAC

DDAC

p
=
0
.
7

0

0
.
2

0
.
4

0
.
6

0
.
8

1

16
 32
 64
 128
 256
 512

number of classes

su
cc

es
s

pr
ob

ab
ili

tie
s
 MAX
-
WIN

POLL
-
5
log n

POLL
-
3
log n

POLL
-
1
log n

ADAC

DDAC

Figure 2: Large cases. The success probabilities of MAX-WIN, POLL, ADAG, and DDAG,
when (a) p = 0.9 and (b) p = 0.7. POLL run with different parameters l: log n, 3 logn, and
5 log n.

4 Simulation results

We compared the performance, in terms of success probabilities, of 4 algorithms: MAX-WIN,
POLL, ADAG, and DDAG, in various cases. For each parameter, we ran 10000 rounds of the
experiments.
For each round, a random MAX-WIN scores are generated according to the model in Sec-

tion 2.2. We simulated them in two different correctness parameter p, i.e., when p = 0.9 and
when p = 0.7.
We present the result in two cases. The first case we consider is when n grows linearly from

16 to 128 (Figure 1). The other case is when n grow exponentially from 16 to 512 (Figure 2).
In general, the simulation shows that POLL, with larger sample size l, has a performance

close to MAX-WIN. While in the other two faster approach, i.e., DDAG and ADAG, their
performance drops as n grows (as proven in [7]). The running time of POLL is definitely slower
than DDAG and ADAG by a factor of l = O(logn).
We now discuss some interesting cases. When the success probability of each binary classifier

7

is low (e.g., in the case that p = 0.7), we note that even MAX-WIN suffers from the randomness.
Furthermore, the constant that we use is obviously too small for that separation, as can be seen
in Figure 2(b).

5 Conclusions

We show that a sampling technique, which is widely used in combinatorial optimization, can be
also used in classification problem. It improves polynomially over the previous algorithm while
retaining the correctness. This technique, we hope, might be able to find other applications in
other AI problems as well.
Our result seems to be only of theoretical interest since the problem with huge number of

classes is very unlikely. However, if one consider problems in biology [12, 13], which has more
than a hundred classes, this result might be of practical use.

6 Acknowledgment

Boonserm Kijsirikul’s fascinating lecture at our department introduced us to the problem. We
also thank him for various help on this paper.

References

[1] H. Chernoff. A measure of asymptotic efficiency for test of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics, 23:493–509, 1952.

[2] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

[3] J. H. Friedman. Another approach to polychotomous classification. Technical report,
Department of Statistics, Stanford University, 1996.

[4] T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant analysis by optimal scoring.
J. Amer. Statist. Assoc., 89:1255–1270, 1994.

[5] David R. Karger. Random sampling in cut, flow, and network design problems. In Proceed-
ings of the twenty-sixth annual ACM symposium on Theory of computing, pages 648–657.
ACM Press, 1994.

[6] David R. Karger and Clifford Stein. A new approach to the minimum cut problem. Journal
of the ACM, 43(4):601–640, 1996.

[7] Boonserm Kijsirikul, Nitiwut Ussivakul, and Surapan Meknavin. Adaptive directed acyclic
graphs for multiclass classification. In PRICAI 2002, pages 158–168, 2002.

[8] S. Kneer, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: A stepwise proce-
dure for building and training a neural network. In Fogelman-Soulie and Herault, editors,
Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series. Springer,
1990.

[9] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

8

[10] Thimaporn Phetkaew, Boonserm Kijsirikul, and Wanchai Rivepiboon. Reordering adaptive
directed acyclic graphs for multiclass support vector machines. In Proceedings of the Third
International Conference on Intelligent Technologies (InTech 2002), 2002.

[11] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classi-
fication. In Advance in Neural Information Processing System, volume 12. MIT Press,
2000.

[12] N. Rattanakronkul and K. Waiyamai. Combining association rule discovery and data
classification for protein structural class prediction. In Proceedings of the International
Conference On Bio-informatics 2002 (INCOP’2002), 2002.

[13] N. Rattanakronkul and K. Waiyamai. Predicting protein structural class from closed pro-
tein sequences. In Springer-verlag Lectures Notes in Artificial Intelligence, 2003.

[14] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

9

