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Let S be an n-character string terminated with an unique smallest sentinel, its suffix
array SA(S) is an array of pointers for all the suffixes in .S sorted in the lexicograph-
ically ascending order. Specially, the Burrows-Wheeler transform for building efficient
compression solutions can be quickly computed by fast suffix sorting based on suffix
array construction algorithms (SACAs). The existing well-known practical linear SACAs
are those two contemporarily reported in 2003 by Kirkkédinen and Sanders (KS) [1], and
Ko and Aluru (KA) [2]. We recently proposed a novel fast and space efficient linear
SACA, whose core is the concept of Critical Substring introduced by us as following:
Sli..i +d + 1] is said to be the d-critical substring for the d-critical character S[i| in
S; fori >n—d, Sli.i+d+1] = S[i.n — 2]{S[n — 1]}"7*2, where {S[n — 1]}"~2
denotes that S[n — 1] is repeated n — ¢ + 2 times. In addition, we have the following
definitions. (I) a character S[i] is said to be d-critical, where d > 2, iif (1) S[i] is a LMS
character; or else (2) S[¢i — d] is a d-critical character, S[i + 1] is not a LMS character
and no character in S[i — d + 1..i — 1] is d-critical. (II) a suffix suf(S,7) is said to be
type-S or type-L if suf(S,7) < suf(S,i+ 1) or suf(S,i) > suf(S,i+ 1), respectively;
the last suffix suf(S,n — 1) consisting of only the sentinel is defined as type-S. (IIl) a
character S[i] is said to be type-S or type-L if suf(S,1) is type-S or type-L, respectively.
(IV) Leftmost type-S (LMS) character: S[i] is said to be a LMS character if S[i] is
type-S and S[i — 1] is type-L, where i € (0,n — 1]. (V) Leftmost type-S (LMS) suffix:
suf(S,1) is said to be a LMS suffix if S[i] is a LMS character. By sampling the fixed-
size d-critical substrings to divide-and-conquer the problem, our new algorithm is very
simple, for which a fully-functioning sample implementation is embodied in only about
100 lines of C code. The experimental results on the Canterbury and Manzini-Ferragina
corpora show that our algorithm outperforms both the KS and KA algorithms: compared
with the KS, ours can be more than twice faster and use more than 50% fewer space;
compared with the KA, ours can be 9% faster and use 40% fewer space. To approach
the lightweight space extreme, we further improve our linear algorithm to use an extra
working space of only 0.25n + O(1) bytes to construct the suffix array for any size-n
string of a constant or integer alphabet, where the characters of an integer alphabet are
in [0..n — 1]. Besides using less space, our lightweight linear algorithm still runs more
than 1.5 times faster than the KS algorithm in the experiments.
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