Data Compression Conference

Fast and Space Efficient Linear Suffix Array Construction

Sen Zhang Ge Nong
Dept. of Math., Comp. Sci. and Stat. Computer Sci. Dept.
SUNY College at Oneonta Sun Yat-Sen University
NY 07104, U.S.A. Guangzhou 510275, P.R.C.
zhangs @oneonta.edu issng@mail.sysu.edu.cn

Let S be an n-character string terminated with an unique smallest sentinel, its suffix
array SA(S) is an array of pointers for all the suffixes in .S sorted in the lexicograph-
ically ascending order. Specially, the Burrows-Wheeler transform for building efficient
compression solutions can be quickly computed by fast suffix sorting based on suffix
array construction algorithms (SACAs). The existing well-known practical linear SACAs
are those two contemporarily reported in 2003 by Kirkkédinen and Sanders (KS) [1], and
Ko and Aluru (KA) [2]. We recently proposed a novel fast and space efficient linear
SACA, whose core is the concept of Critical Substring introduced by us as following:
Sli..i +d + 1] is said to be the d-critical substring for the d-critical character S[i| in
S; fori >n—d, Sli.i+d+1] = S[i.n — 2]{S[n — 1]}"7*2, where {S[n — 1]}"~2
denotes that S[n — 1] is repeated n — ¢ + 2 times. In addition, we have the following
definitions. (I) a character S[i] is said to be d-critical, where d > 2, iif (1) S[i] is a LMS
character; or else (2) S[¢i — d] is a d-critical character, S[i + 1] is not a LMS character
and no character in S[i — d + 1..i — 1] is d-critical. (II) a suffix suf(S,7) is said to be
type-S or type-L if suf(S,7) < suf(S,i+ 1) or suf(S,i) > suf(S,i+ 1), respectively;
the last suffix suf(S,n — 1) consisting of only the sentinel is defined as type-S. (IIl) a
character S[i] is said to be type-S or type-L if suf(S,1) is type-S or type-L, respectively.
(IV) Leftmost type-S (LMS) character: S[i] is said to be a LMS character if S[i] is
type-S and S[i — 1] is type-L, where i € (0,n — 1]. (V) Leftmost type-S (LMS) suffix:
suf(S,1) is said to be a LMS suffix if S[i] is a LMS character. By sampling the fixed-
size d-critical substrings to divide-and-conquer the problem, our new algorithm is very
simple, for which a fully-functioning sample implementation is embodied in only about
100 lines of C code. The experimental results on the Canterbury and Manzini-Ferragina
corpora show that our algorithm outperforms both the KS and KA algorithms: compared
with the KS, ours can be more than twice faster and use more than 50% fewer space;
compared with the KA, ours can be 9% faster and use 40% fewer space. To approach
the lightweight space extreme, we further improve our linear algorithm to use an extra
working space of only 0.25n + O(1) bytes to construct the suffix array for any size-n
string of a constant or integer alphabet, where the characters of an integer alphabet are
in [0..n — 1]. Besides using less space, our lightweight linear algorithm still runs more
than 1.5 times faster than the KS algorithm in the experiments.

REFERENCES

[1] J. Kérkkidinen and P. Sanders, “Simple linear work suffix array construction,” in 30th International Colloquium
on Automata, Languages and Programming (ICALP '03), 2003, pp. 943-955.

[2] P. Ko and S. Aluru, “Space efficient linear time construction of suffix arrays,” in Proceedings 14th Annual Symp.
Combinatorial Pattern Matching, LNCS 2676, Springer-Verlag, 2003, pp. 200-210.

1068-0314/08 $25.00 © 2008 IEEE 553 @COHE’IEpEuter
socle

DOI 10.1109/DCC.2008.61 ty

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 01,2010 at 01:53:59 EST from IEEE Xplore. Restrictions apply.

