
Fast and Space Efficient Linear Suffix Array Construction

Sen Zhang Ge Nong
Dept. of Math., Comp. Sci. and Stat. Computer Sci. Dept.

SUNY College at Oneonta Sun Yat-Sen University
NY 07104, U.S.A. Guangzhou 510275, P.R.C.

zhangs@oneonta.edu issng@mail.sysu.edu.cn

Let S be an n-character string terminated with an unique smallest sentinel, its suffix
array SA(S) is an array of pointers for all the suffixes in S sorted in the lexicograph-
ically ascending order. Specially, the Burrows-Wheeler transform for building efficient
compression solutions can be quickly computed by fast suffix sorting based on suffix
array construction algorithms (SACAs). The existing well-known practical linear SACAs
are those two contemporarily reported in 2003 by Kärkkäinen and Sanders (KS) [1], and
Ko and Aluru (KA) [2]. We recently proposed a novel fast and space efficient linear
SACA, whose core is the concept of Critical Substring introduced by us as following:
S[i..i + d + 1] is said to be the d-critical substring for the d-critical character S[i] in
S; for i ≥ n − d, S[i..i + d + 1] = S[i..n − 2]{S[n − 1]}n−i+2, where {S[n − 1]}n−i+2

denotes that S[n − 1] is repeated n − i + 2 times. In addition, we have the following
definitions. (I) a character S[i] is said to be d-critical, where d ≥ 2, iif (1) S[i] is a LMS
character; or else (2) S[i − d] is a d-critical character, S[i + 1] is not a LMS character
and no character in S[i − d + 1..i − 1] is d-critical. (II) a suffix suf(S, i) is said to be
type-S or type-L if suf(S, i) < suf(S, i + 1) or suf(S, i) > suf(S, i + 1), respectively;
the last suffix suf(S, n − 1) consisting of only the sentinel is defined as type-S. (III) a
character S[i] is said to be type-S or type-L if suf(S, i) is type-S or type-L, respectively.
(IV) Leftmost type-S (LMS) character: S[i] is said to be a LMS character if S[i] is
type-S and S[i − 1] is type-L, where i ∈ (0, n − 1]. (V) Leftmost type-S (LMS) suffix:
suf(S, i) is said to be a LMS suffix if S[i] is a LMS character. By sampling the fixed-
size d-critical substrings to divide-and-conquer the problem, our new algorithm is very
simple, for which a fully-functioning sample implementation is embodied in only about
100 lines of C code. The experimental results on the Canterbury and Manzini-Ferragina
corpora show that our algorithm outperforms both the KS and KA algorithms: compared
with the KS, ours can be more than twice faster and use more than 50% fewer space;
compared with the KA, ours can be 9% faster and use 40% fewer space. To approach
the lightweight space extreme, we further improve our linear algorithm to use an extra
working space of only 0.25n + O(1) bytes to construct the suffix array for any size-n
string of a constant or integer alphabet, where the characters of an integer alphabet are
in [0..n − 1]. Besides using less space, our lightweight linear algorithm still runs more
than 1.5 times faster than the KS algorithm in the experiments.

REFERENCES

[1] J. Kärkkäinen and P. Sanders, “Simple linear work suffix array construction,” in 30th International Colloquium
on Automata, Languages and Programming (ICALP ’03), 2003, pp. 943–955.

[2] P. Ko and S. Aluru, “Space efficient linear time construction of suffix arrays,” in Proceedings 14th Annual Symp.
Combinatorial Pattern Matching, LNCS 2676, Springer-Verlag, 2003, pp. 200–210.

Data Compression Conference

1068-0314/08 $25.00 © 2008 IEEE
DOI 10.1109/DCC.2008.61

553

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 01,2010 at 01:53:59 EST from IEEE Xplore. Restrictions apply.

