
Linear Work Suffix Array Construction

JUHA KÄRKKÄINEN

University of Helsinki, Helsinki, Finland

PETER SANDERS

University of Karlsruhe, Karlsruhe, Germany

AND

STEFAN BURKHARDT

Google, Inc., Zurich, Switzerland

Abstract. Suffix trees and suffix arrays are widely used and largely interchangeable index structures
on strings and sequences. Practitioners prefer suffix arrays due to their simplicity and space efficiency
while theoreticians use suffix trees due to linear-time construction algorithms and more explicit struc-
ture. We narrow this gap between theory and practice with a simple linear-time construction algorithm
for suffix arrays. The simplicity is demonstrated with a C++ implementation of 50 effective lines of
code. The algorithm is called DC3, which stems from the central underlying concept of difference
cover. This view leads to a generalized algorithm, DC, that allows a space-efficient implementation
and, moreover, supports the choice of a space–time tradeoff. For any v ∈ [1,

√
n], it runs in O(vn)

time using O(n/
√

v) space in addition to the input string and the suffix array. We also present variants
of the algorithm for several parallel and hierarchical memory models of computation. The algorithms
for BSP and EREW-PRAM models are asymptotically faster than all previous suffix tree or array
construction algorithms.

Categories and Subject Descriptors: E.1 [Data Structures]: Arrays; F.1.2 [Computation by Abstract
Devices]: Modes of Computation—Parallelism and concurrency; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—Sorting and searching; H.3.1
[Information Storage and Retrieval]: Content Analysis and Indexing—Indexing methods

A preliminary version of this article appeared in Proceedings of the 30th International Conference on
Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 2719. Springer-
Verlag, Berlin/Heidelberg, Germany, 2003, pp. 943–955.
J. Kärkkäinen’s work was supported by the Academy of Finland grant 201560.
Authors’ addresses: J. Kärkkäinen, Department of Computer Science, P.O. Box 68 (Gustaf
Hällströmin katu 2b) FI-00014 University of Helsinki, Helsinki, Finland, e-mail: juha.karkkainen@
cs.helsinki.fi; P. Sanders, Universität Karlsruhe, 76128 Karlsruhe, Germany, e-mail: sanders@ira.uka.
de; S. Burkhardt, Google, Inc., Freigutstr. 12, 8002 Zurich, Switzerland, e-mail: Burkhardt@Google.
com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0004-5411/06/1100-0918 $5.00

Journal of the ACM, Vol. 53, No. 6, November 2006, pp. 918–936.

Linear Work Suffix Array Construction 919

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Difference cover, external memory algorithms, suffix array

1. Introduction

The suffix tree [Weiner 1973] of a string is the compact trie of all its suffixes. It
is a powerful data structure with numerous applications in computational biology
[Gusfield 1997] and elsewhere [Grossi and Italiano 1996]. It can be constructed
in linear time in the length of the string [Weiner 1973; McCreight 1976; Ukkonen
1995; Farach 1997; Farach-Colton et al. 2000]. The suffix array [Gonnet et al.
1992; Manber and Myers 1993] is the lexicographically sorted array of the suffixes
of a string. It contains much the same information as the suffix tree, although
in a more implicit form, but is a simpler and more compact data structure for
many applications [Gonnet et al. 1992; Manber and Myers 1993; Burrows and
Wheeler 1994; Abouelhoda et al. 2002]. However, until recently, the only linear-
time construction algorithm was based on a lexicographic traversal of the suffix tree.

Due to a more explicit structure and the direct linear-time construction algo-
rithms, theoreticians tend to prefer suffix trees over suffix arrays. This is evident,
for example, in textbooks, including recent ones [Crochemore and Rytter 2002;
Smyth 2003]. Practitioners, on the other hand, often use suffix arrays, because
they are more space-efficient and simpler to implement. This difference of theo-
retical and practical approaches appears even within a single paper [Navarro and
Baeza-Yates 2000].

We address the gap between theory and practice by describing the first direct
linear-time suffix array construction algorithm, elevating suffix arrays to equals of
suffix trees in this sense. Independently and simultaneously to our result, which
originally appeared in Kärkkäinen and Sanders [2003], two different linear-time
algorithms were introduced by Kim et al. [2005], and Ko and Aluru [2005]. In
this article, we will also introduce several extensions and generalizations of the
algorithm, including space-efficient, parallel and external memory variants.

1.1. LINEAR-TIME ALGORITHM. Many linear-time suffix tree construction al-
gorithms are truly linear-time only for constant alphabet, that is, when the size of the
alphabet is constant [Weiner 1973; McCreight 1976; Ukkonen 1995]. Farach [1997]
introduced the first algorithm to overcome this restriction; it works in linear-time for
integer alphabet, that is, when the characters are integers from a linear-sized range.
This is a significant improvement, since a string over any alphabet can be trans-
formed into such a string by sorting the characters and replacing them with their
ranks. This preserves the structure of the suffix tree and the order of the suffixes.
Consequently, the complexity of constructing the suffix tree of a string is the same
as the complexity of sorting the characters of the string [Farach-Colton et al. 2000].

Whereas the algorithms requiring a constant alphabet are incremental, adding one
suffix or one character at a time to the tree, Farach’s algorithm takes the following
half-recursive divide-and-conquer approach:

(1) Construct the suffix tree of the suffixes starting at odd positions. This is done
by reduction to the suffix tree construction of a string of half the length, which
is solved recursively.

(2) Construct the suffix tree of the remaining suffixes using the result of the first
step.

920 J. KÄRKKÄINEN ET AL.

(3) Merge the two suffix trees into one.

The crux of the algorithm is the merging step, which is an intricate and complicated
procedure.

The same structure appears in some parallel and external memory suffix tree con-
struction algorithms [Farach and Muthukrishnan 1996; Farach et al. 1998; Farach-
Colton et al. 2000] as well as the direct linear-time suffix array construction algo-
rithm of Kim et al. [2005]. In all cases, the merge is a very complicated procedure.
The linear-time suffix array construction algorithm of Ko and Aluru [2005] also
uses the divide-and-conquer approach of first sorting a subset or sample of suffixes
by recursion. However, its choice of the sample and the rest of the algorithm are
quite different.

We introduce a linear-time suffix array construction algorithm following the
structure of Farach’s algorithm but using 2/3-recursion instead of half-recursion:

(1) Construct the suffix array of the suffixes starting at positions i mod 3 �= 0. This
is done by reduction to the suffix array construction of a string of two thirds
the length, which is solved recursively.

(2) Construct the suffix array of the remaining suffixes using the result of the first
step.

(3) Merge the two suffix arrays into one.

Surprisingly, the use of two thirds instead of half of the suffixes in the first step
makes the last step almost trivial: simple comparison-based merging is sufficient.
For example, to compare suffixes starting at i and j with i mod 3 = 0 and j mod
3 = 1, we first compare the initial characters, and if they are the same, we compare
the suffixes starting at i + 1 and j + 1, whose relative order is already known from
the first step.

1.2. SPACE-EFFICIENT ALGORITHMS. All the above suffix array construction
algorithms require at least n pointers or integers of extra space in addition to the n
characters of the input and the n pointers/integers of the suffix array. Until recently,
this was true for all algorithms running in O(n log n) time. There are also so-called
lightweight algorithms that use significantly less extra space [Manzini and Ferragina
2004], but their worst-case time complexity is �(n2). Manzini and Ferragina [2004]
have raised the question of whether it is possible to achieveO(n log n) runtime using
sublinear extra space.

The question was answered positively by Burkhardt and Kärkkäinen [2003] with
an algorithm running in O(n log n) time and O(n/

√
log n) extra space. They also

gave a generalization running in O(n log n +nv) time and O(n/
√

v) extra space for
any v ∈ [3, n2/3]. In this article, combining ideas from Burkhardt and Kärkkäinen
[2003] with the linear-time algorithm, we improve the result to O(nv) time in
O(n/

√
v) extra space, leading to an o(n log n) time and o(n) extra space algorithm.

To achieve the result, we generalize the linear-time algorithm so that the sample
of suffixes sorted in the first step can be chosen from a family, called the difference
cover samples, that includes arbitrarily sparse samples. This family was introduced
in Burkhardt and Kärkkäinen [2003] and its name comes from a characterization
using the concept of difference cover. Difference covers have also been used for
VLSI design [Kilian et al. 1990], distributed mutual exclusion [Luk and Wong
1997; Colbourn and Ling 2000], and quantum computing [Bertoni et al. 2003].

Linear Work Suffix Array Construction 921

TABLE I. SUFFIX ARRAY CONSTRUCTION ALGORITHMSa

Model of Computation Complexity Alphabet Source

RAM O(n log n) time general

[Manber and Myers 1993;
Larsson and Sadakane
1999; Burkhardt and
Kärkkäinen 2003]

O(n) time integer
[Farach 1997; Kim et al.

2005; Ko and Aluru
2005], this article

External Memory
[Vitter and Shriver 1994]

D disks, block size B,
fast memory of size M

O(n
DB log M

B

n
B log n) I/Os

O(n log M
B

n
B log n) internal work integer

[Crauser and Ferragina
2002]

O(n
DB log M

B

n
B) I/Os

O(n log M
B

n
B) internal work integer

[Farach-Colton et al.
2000], this article

Cache Oblivious
[Frigo et al. 1999]

M/B cache blocks
of size B

O(n
B log M

B

n
B log n) cache faults general

[Crauser and Ferragina
2002]

O(n
B log M

B

n
B) cache faults general

[Farach-Colton et al.
2000], this article

BSP [Valiant 1990]

P processors
h-relation in time L + gh

O(n log n
P + (L + gn

P) log3 n log P
log(n/P)) time general [Farach et al. 1998]

O(n log n
P + L log2 P + gn log n

P log(n/P))
time general this article

P = O(n1−ε) processors O(n/P + L log2 P + gn/P) time integer this article

EREW-PRAM [Jájá 1992] O(log4 n) time, O(n log n) work general [Farach et al. 1998]

O(log2 n) time, O(n log n) work general this article

arbitrary-CRCW-PRAM
[Jájá 1992] O(log n) time, O(n) work (rand.) constant [Farach and

Muthukrishnan 1996]

priority-CRCW-PRAM
[Jájá 1992] O(log2 n) time, O(n) work (rand.) constant this article

aThe algorithms in Farach and Muthukrishnan [1996], Farach [1997], Farach et al. [1998], and Farach-
Colton et al. [2000] are indirect, that is, they actually construct a suffix tree, which can be then be
transformed into a suffix array.

An even more space-efficient approach is to construct compressed indexes [Lam
et al. 2002; Hon et al. 2003a; 2003b; Na 2005]. The only one these algorithms that
runs in linear time for integer alphabets is in fact based on the same 2/3-recursion
as our algorithm [Na 2005].

1.3. ADVANCED MODELS OF COMPUTATION. Since our algorithm is con-
structed from well studied building blocks like integer sorting and merging, simple
direct suffix array construction algorithms for several models of computation are
almost a corollary. Table I summarizes these results. We win a factor �(log n) over
the previously best direct external memory algorithm. For BSP and EREW-PRAM
models, we obtain an improvement over all previous results, including the first
linear work BSP algorithm.

922 J. KÄRKKÄINEN ET AL.

1.4. OVERVIEW. The article is organized as follows. Section 3 explains the basic
linear time algorithm DC3. We then use the concept of a difference cover introduced
in Section 4 to describe a generalized algorithm called DC in Section 5 that leads
to a space efficient algorithm in Section 6. Section 7 explains implementations of
the DC3 algorithm in advanced models of computation. The results together with
some open issues are discussed in Section 8.

2. Notation

We use the shorthands [i, j] = {i, . . . , j} and [i, j) = [i, j − 1] for ranges of
integers and extend to substrings as seen below.

The input of a suffix array construction algorithm is a string T = T [0, n) =
t0t1 · · · tn−1 over the alphabet [1, n], that is, a sequence of n integers from the
range [1, n]. For convenience, we assume that t j = 0 for j ≥ n. Sometimes
we also assume that n + 1 is a multiple of some constant v or a square to avoid
a proliferation of trivial case distinctions and �·� operations. An implementation
will either spell out the case distinctions or pad (sub)problems with an appropriate
number of zero characters. The restriction to the alphabet [1, n] is not a serious
one. For a string T over any alphabet, we can first sort the characters of T , remove
duplicates, assign a rank to each character, and construct a new string T ′ over the
alphabet [1, n] by renaming the characters of T with their ranks. Since the renaming
is order preserving, the order of the suffixes does not change.

For i ∈ [0, n], let Si denote the suffix T [i, n) = ti ti+1 · · · tn−1. We also extend
the notation to sets: for C ⊆ [0, n], SC = {Si | i ∈ C}. The goal is to sort the
set S[0,n] of suffixes of T , where comparison of substrings or tuples assumes the
lexicographic order throughout this article. The output is the suffix array SA[0, n]
of T , a permutation of [0, n] satisfying SSA[0] < SSA[1] < · · · < SSA[n].

3. Linear-Time Algorithm

We begin with a detailed description of the simple linear-time algorithm, which we
call DC3 (for Difference Cover modulo 3, see Section 4). A complete implementa-
tion in C++ is given in Appendix A. The execution of the algorithm is illustrated
with the following example

0 1 2 3 4 5 6 7 8 9 10 11

T [0, n) = y a b b a d a b b a d o,

where we are looking for the suffix array

SA = (12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0).

Step 0: Construct a Sample
For k = 0, 1, 2, define

Bk = {i ∈ [0, n] | i mod 3 = k}.
Let C = B1 ∪ B2 be the set of sample positions and SC the set of sample suffixes.

Example 3.1. B1 = {1, 4, 7, 10}, B2 = {2, 5, 8, 11}, that is, C = {1, 4, 7, 10,
2, 5, 8, 11}.

Linear Work Suffix Array Construction 923

Step 1: Sort Sample Suffixes
For k = 1, 2, construct the strings

Rk = [tk tk+1tk+2][tk+3tk+4tk+5] . . . [tmax Bk tmax Bk+1tmax Bk+2]

whose characters are triples [ti ti+1ti+2]. Note that the last character of Rk is unique
because tmax Bk+2 = 0. Let R = R1 � R2 be the concatenation of R1 and R2.
Then, the (nonempty) suffixes of R correspond to the set SC of sample suffixes:
[ti ti+1ti+2][ti+3ti+4ti+5] · · · corresponds to Si . The correspondence is order preserv-
ing, that is, by sorting the suffixes of R we get the order of the sample suffixes SC .

Example 3.2. R = [abb][ada][bba][do0][bba][dab][bad][o00].

To sort the suffixes of R, first radix sort the characters of R and rename them
with their ranks to obtain the string R′. If all characters are different, the order of
characters gives directly the order of suffixes. Otherwise, sort the suffixes of R′
using Algorithm DC3.

Example 3.3. R′ = (1, 2, 4, 6, 4, 5, 3, 7) and S AR′ = (8, 0, 1, 6, 4, 2, 5, 3, 7).

Once the sample suffixes are sorted, assign a rank to each suffix. For i ∈ C ,
let rank(Si) denote the rank of Si in the sample set SC . Additionally, define
rank(Sn+1) = rank(Sn+2) = 0. For i ∈ B0, rank(Si) is undefined.

Example 3.4.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

rank(Si) ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0.

Step 2: Sort Nonsample Suffixes
Represent each nonsample suffix Si ∈ SB0 with the pair (ti , rank(Si+1)). Note that
rank(Si+1) is always defined for i ∈ B0. Clearly, we have, for all i, j ∈ B0,

Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (t j , rank(Sj+1)).

The pairs (ti , rank(Si+1)) are then radix sorted.

Example 3.5. S12 < S6 < S9 < S3 < S0 because (0, 0) < (a, 5) < (a, 7) <
(b, 2) < (y, 1).

Step 3: Merge
The two sorted sets of suffixes are merged using a standard comparison-based
merging. To compare suffix Si ∈ SC with Sj ∈ SB0 , we distinguish two cases:

i ∈ B1 : Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (t j , rank(Sj+1))
i ∈ B2 : Si ≤ Sj ⇐⇒ (ti , ti+1, rank(Si+2)) ≤ (t j , t j+1, rank(Sj+2))

Note that the ranks are defined in all cases.

Example 3.6. S1 < S6 because (a, 4) < (a, 5) and S3 < S8 because (b, a, 6) <
(b, a, 7).

The time complexity is established by the following theorem.

THEOREM 3.7. The time complexity of Algorithm DC3 is O(n).

PROOF. Excluding the recursive call, everything can clearly be done in linear
time. The recursion is on a string of length �2n/3�. Thus, the time is given by the
recurrence T (n) = T (2n/3) + O(n), whose solution is T (n) = O(n).

924 J. KÄRKKÄINEN ET AL.

4. Difference Cover Sample

The sample of suffixes in DC3 is a special case of a difference cover sample. In this
section, we describe what difference cover samples are, and in the next section we
give a general algorithm based on difference cover samples.

The sample used by the algorithms has to satisfy two sample conditions:

(1) The sample itself can be sorted efficiently. Only certain special cases are known
to satisfy this condition (see Kärkkäinen and Ukkonen [1996], Andersson et al.
[1999], Clifford and Sergot [2003], and Ko and Aluru [2005] for examples).
For example, a random sample would not work for this reason. Difference
cover samples can be sorted efficiently because they are periodic (with a small
period). Steps 0 and 1 of the general algorithm could be modified for sorting
any periodic sample of size m with period length v in O(vm) time.

(2) The sorted sample helps in sorting the set of all suffixes. The set of difference
cover sample positions has the property that for any i, j ∈ [0, n − v + 1] there
is a small � such that both i + � and j + � are sample positions. See Steps 2 – 4
in Section 5 for how this property is utilized in the algorithm.

The difference cover sample is based on difference covers [Kilian et al. 1990;
Colbourn and Ling 2000].

Definition 4.1. A set D ⊆ [0, v) is a difference cover modulo v if

{(i − j) mod v | i, j ∈ D} = [0, v).

Definition 4.2. A v-periodic sample C of [0, n] with the period D, that is,

C = {i ∈ [0, n] | i mod v ∈ D},
is a difference cover sample if D is a difference cover modulo v .

By being periodic, a difference cover sample satisfies the first of the sample
conditions. That it satisfies the second condition is shown by the following lemma:

LEMMA 4.3. If D is a difference cover modulo v, and i and j are integers, there
exists � ∈ [0, v) such that (i + �) mod v and (j + �) mod v are in D.

PROOF. By the definition of difference cover, there exists i ′, j ′ ∈ D such that
i ′ − j ′ ≡ i − j (mod v). Let � = (i ′ − i) mod v . Then

i + � ≡ i ′ ∈ D (mod v)

j + � ≡ i ′ − (i − j) ≡ j ′ ∈ D (mod v) .

Note that by using a lookup table of size v that maps (i − j) mod v into i ′, the
value � can be computed in constant time.

The size of the difference cover is a key parameter for the space-efficient algo-
rithm in Sections 6. Clearly,

√
v is a lower bound. The best general upper bound that

we are aware of is achieved by a simple algorithm due to Colbourn and Ling [2000]:

LEMMA 4.4 ([COLBOURN AND LING 2000]). For any v, a difference cover
modulo v of size at most

√
1.5v + 6 can be computed in O(

√
v) time.

The sizes of the smallest known difference covers for several period lengths are
shown in Table II.

Linear Work Suffix Array Construction 925

TABLE II. THE SIZE OF THE SMALLEST KNOWN DIFFERENCE COVER D
MODULO v FOR SEVERAL PERIOD LENGTHS va

v 3 7 13 21 31 32 64 128 256 512 1024 2048
|D| 2 3 4 5 6 7 9 13 20 28 40 58

aThe difference covers were obtained from Luk and Wong [1997] (v ≤ 64)
and Burkhardt and Kärkkäinen [2003] (v = 128, 256), or computed using the
algorithm of Colbourn and Ling [2000] (v ≥ 512). For v ≤ 128, the sizes are
known to be optimal.

5. General Algorithm

The algorithm DC3 sorts suffixes with starting positions in a difference cover sample
modulo 3 and then uses these to sort all suffixes. In this section, we present a
generalized algorithm DC that can use any difference cover D modulo v .

Step 0: Construct a Sample
For k ∈ [0, v), define

Bk = {i ∈ [0, n] | i mod v = k}.
The set of sample positions is now C = ⋃

k∈D Bk . Let D̄ = [0, v) \ D and C̄ =
[0, n] \ C .

Step 1: Sort Sample Suffixes
For k ∈ D, construct the strings

Rk = [tk tk+1 . . . tk+v−1][tk+v tk+v+1 . . . tk+2v−1] . . . [tmax Bk . . . tmax Bk+v−1].

Let R = ⊙
k∈D Rk , where

⊙
denotes a concatenation. The (nonempty) suffixes

of R correspond to the sample suffixes, and they are sorted recursively (using any
period length from 3 to (1 − ε)v2/|D| to ensure the convergence of the recursion).

Let rank(Si) be defined as in DC3 for i ∈ C , and additionally define rank(Sn+1) =
rank(Sn+2) = · · · = rank(Sn+v−1) = 0. Again, rank(Si) is undefined for i ∈ C̄ .

Step 2: Sort Nonsample Suffixes

Sort each SBk , k ∈ D̄, separately. Let k ∈ D̄ and let � ∈ [0, v) be such that
(k + �) mod v ∈ D. To sort SBk , represent each suffix Si ∈ SBk with the tuples
(ti , ti+1, . . . , ti+�−1, rank(Si+�)). Note that the rank is always defined. The tuples
are then radix sorted.

The most straightforward generalization of DC3 would now merge the sets SBk ,
k ∈ D̄. However, this would be a �(v)-way merging with O(v)-time compar-
isons giving O(nv log v) time complexity. Therefore, we take a slightly different
approach.

Step 3: Sort by First v Characters
Separate the sample suffixes SC into sets SBk , k ∈ D, keeping each set ordered.
Then we have all the sets SBk , k ∈ [0, v), as sorted sequences. Concatenate these
sequences and sort the result stably by the first v characters.

For α ∈ [0, n]v , let Sα be the set of suffixes starting with α, and let Sα
Bk

= Sα∩SBk .
The algorithm has now separated the suffixes into the sets Sα

Bk
, each of which is

correctly sorted. The sets are also grouped by α and the groups are sorted. For

926 J. KÄRKKÄINEN ET AL.

v = 3, the situation could look like this:

Saaa
B0

Saaa
B1

Saaa
B2

Saab
B0

Saab
B1

Saab
B2

Saac
B0

· · ·

Step 4: Merge
For each α ∈ [0, n]v , merge the sets Sα

Bk
, k ∈ [0, v), into the set Sα. This completes

the sorting.
The merging is done by a comparison-based v-way merging. For i, j ∈ [0, n],

let � ∈ [0, v) be such that (i + �) mod v and (j + �) mod v are both in D. Suffixes
Si and Sj are compared by comparing rank(Si+�) and rank(Sj+�). This gives the
correct order because Si and Sj belong to the same set Sα and thus ti ti+1 · · · ti+�−1 =
t j t j+1 · · · t j+�−1.

THEOREM 5.1. The time complexity of Algorithm DC is O(vn).

6. Lightweight Algorithm

We now explain how to implement algorithm DC using only O(n/
√

v) space in
addition to the input and the output. We will however reuse the space for the output
array a[0, n] as intermediate storage.

Step 0: Construct a Sample
The sample can be represented using their O(n/

√
v) starting positions.

Step 1: Sort Sample Suffixes
To sort the sample suffixes, we first (non-inplace) radix sort the v-tuples that start at
sample positions. This is easy using two arrays of size O(n/

√
v) for storing starting

positions of samples and n+1 counters (one for each character) stored in the output
array a[0, n]. This is analogous to the arrays R, SA12 and c used in Appendix A.
Renaming the tuples with ranks only needs the O(n/

√
v) space for the recursive

subproblem. The same space bound applies to the suffix array of the sample and
the space needed within the recursive call.

Step 2: Sort Nonsample Suffixes
Sorting nonsample suffixes for a particular class SBk , k ∈ D̄ amounts to radix
sorting (n + 1)/v many tuples of up to v integers in the range [0, n]. Similar to
Step 1, we need only space O(n/v) for describing these tuples. However, we now
arrange the sorted tuples in a[k(n + 1)/v, (k + 1)(n + 1)/v) so that the output array
is not available for counters as in Step 1. We solve this problem by viewing each
character as two subcharacters in the range [0,

√
n + 1).

Step 3: Sort by First v Characters
Scan the suffix array of the sample and store the sample suffixes SBk , k ∈ C in
a[k(n + 1)/v, (k + 1)(n + 1)/v) maintaining the order given by the sample within
each class SBk . Together with the computation in Step 2, the output array now
stores the desired concatenation of all sorted sets SBk . We now sort all suffixes
stably by their first v characters. Using a counter array of size O(

√
n) we can do

that in 2v passes, total time O(vn), and additional space O(n3/4) by applying the
almost inplace distribution sorting algorithm from Theorem B.1 in the appendix
with k = √

n + 1. Note that for v = O(
√

n), n3/4 = O(n/
√

v).

Linear Work Suffix Array Construction 927

TABLE III. OVERVIEW OF ADAPTATIONS FOR ADVANCED MODELS OF COMPUTATION

Model of Computation Complexity Alphabet

External Memory
[Vitter and Shriver 1994]

D disks, block size B,
fast memory of size M

O(n
DB log M

B

n
B) I/Os

O(n log M
B

n
B) internal work

integer

Cache Oblivious
[Frigo et al. 1999] O(n

B log M
B

n
B) cache faults general

BSP [Valiant 1990]

P processors
h-relation in time L + gh

O(n log n
P + L log2 P + gn log n

P log(n/P)) time general

P = O(n1−ε) processors O(n/P + L log2 P + gn/P) time integer

EREW-PRAM [Jájá 1992] O(log2 n) time and O(n log n) work general

priority-CRCW-PRAM
[Jájá 1992]

O(log2 n) time and O(n) work
(randomized) constant

Step 4: Merge
Suppose Sα is stored in a[b, b′). This array consists of v consecutive (possibly
empty) subarrays that represent Sα

Bk
, k ∈ [0, v) respectively. We can merge them

with O(
√|Sα|v) additional space using the almost inplace merging routine (see

Theorem B.2 in the appendix). Note that for v = O(
√

n),
√|Sα|v = O(n/

√
v).

THEOREM 6.1. For v = O(
√

n), algorithm DC can be implemented to run in
time O(vn) using additional space O(n/

√
v).

The upper bound for v can be increased to O(n2/3) by using the comparison
based algorithm from Burkhardt and Kärkkäinen [2003] when v = ω(

√
n).

7. Advanced Models

In this section, we adapt the DC3 algorithm for several advanced models of com-
putation. We first explain the main ideas and then bundle the results in Theorem 7.1
below.

The adaptation to memory hierarchies is easy since all operations can be described
in terms of scanning, sorting, and permuting sequences of tuples using standard
techniques. Since scanning is trivial and since permuting is equivalent to sorting, all
we really need is a good external sorting algorithm. The proof therefore concentrates
on bounding the internal work associated with integer sorting.

Parallelization is slightly more complicated since the scanning needed to find the
ranks of elements looks like a sequential process on the first glance. However, the
technique to overcome this is also standard: Consider a sorted array a[0, n]. Define
c[0] = 1 and c[i] = 1 if c[i − 1] �= c[i] and c[i] = 0 otherwise for i ∈ [1, n].
Now the prefix sums

∑
i∈[0, j] c[i] give the rank of a[j]. Computing prefix sums in

parallel is again a well studied problem.

THEOREM 7.1. The DC3 algorithm can be implemented to achieve the perfor-
mance guarantees shown in Table III on advanced models of computation.

928 J. KÄRKKÄINEN ET AL.

PROOF

External Memory. Step 1 of the DC3 algorithm begins by scanning the input and
producing tuples ([t3i+kt3i+k+1t3i+k+2], 3i + k) for k ∈ {1, 2} and 3i + k ∈ [0, n].
These tuples are then sorted by lexicographic order of the character triples. The
results are scanned producing rank position pairs (r3i+k, 3i + k). Constructing a
recursive problem instance then amounts to sorting using the lexicographic order
of (k, i) for comparing positions of the form 3i + k. Similarly, assigning ranks to
a sample suffix j at position i in the suffix array of the sample amounts to sorting
pairs of the form (i, j).

Step 2 sorts triples of the form (ti , rank(Si+1), i). Step 3 represents S3i as
(t3i , t3i+1, rank(S3i+1), rank(S3i+2), 3i), S3i+1 as (t3i+1, rank(S3i+2), 3i + 1), and
S3i+2 as (t3i+2, t3i+3, rank(S3i+4)), 3i + 2). This way all the information needed
for comparisons is available. These representations are produced using additional
sorting and scanning passes. A more detailed description and analysis of external
DC3 is given in Dementiev et al. [2006]. It turns out that the total I/O volume is
equivalent to the amount I/O needed for sorting 30n words of memory plus the I/O
needed for scanning 6n words.

All in all, the complexity of external suffix array construction is governed by the
effort for sorting objects consisting of a constant number of machine words. The
keys are integers in the range [0, n], or pairs or triples of such integers. I/O optimal
deterministic1 parallel disk sorting algorithms are well known [Nodine and Vitter
1993, 1995]. We have to make a few remarks regarding internal work however. To
achieve optimal internal work for all values of n, M , and B, we can use radix sort
where the most significant digit has �log M�− 1 bits and the remaining digits have
�log M/B� bits. Sorting then starts with O(logM/B n/M) data distribution phases
that need linear work each and can be implemented using O(n/DB) I/Os using the
I/O strategy of Nodine and Vitter [1993]. It remains to stably sort the elements by
their �log M� − 1 most significant bits. This is also done using multiple phases of
distribution sorting similar to Nodine and Vitter [1993] but we can now afford to
count how often each key appears and use this information to produce splitters that
perfectly balance the bucket sizes (we may have large buckets with identical keys
but this is no problem because no further sorting is required for them). Mapping
keys to buckets can use lookup tables of size O(M).

Cache Oblivious . These algorithms are similar to external algorithms with a
single disk but they are not allowed to make explicit use of the block size B or the
internal memory size M . This is a serious restriction here since no cache oblivious
integer sorting with O(n

B logM/B
n
B) cache faults and o(n log n) work is known.

Hence, we can as well go to the comparison based alphabet model. The result is
then an immediate corollary of the optimal comparison based sorting algorithm
[Frigo et al. 1999].

EREW PRAM. We can use Cole’s merge sort [Cole 1988] for parallel sorting
and merging. For an input of size m and P processors, Cole’s algorithm takes time
O((m log m)/P + log P). The i th level or recursion has an input of size n(2/3)i and
thus takes time (2/3)iO((n log n)/P + log P). After �(log P) levels of recursion,

1 Simpler randomized algorithms with favorable constant factors are also available [Dementiev and
Sanders 2003].

Linear Work Suffix Array Construction 929

the problem size has reduced so far that the remaining subproblem can be solved
in time O((n/P log(n/P)) on a single processor. We get an overall execution time
of O((n log n)/P + log2 P).

BSP. For the case of many processors, we proceed as for the EREW-PRAM
algorithm using the optimal comparison based sorting algorithm [Goodrich 1999]
that takes time O((n log n)/P + (gn/P + L) log n

log(n/P)).
For the case of few processors, we can use a linear work sorting algorithm

based on radix sort [Chan and Dehne 1999] and a linear work merging algorithm
[Gerbessiotis and Siniolakis 2001]. The integer sorting algorithm remains applica-
ble at least during the first �(log log n) levels of recursion of the DC3 algorithm.
Then, we can afford to switch to a comparison based algorithm without increasing
the overall amount of internal work.

CRCW PRAM. We employ the stable integer sorting algorithm [Rajasekaran and
Reif 1989] that works in O(log n) time using linear work for keys with O(log log n)
bits. This algorithm can be used for the first �(log log log n) iterations for constant
input alphabets. Then we can afford to switch to the algorithm [Hagerup and Raman
1992] that works for keys with O(log n) bits at the price of being inefficient by a
factor O(log log n). Comparison based merging can be implemented with linear
work and O(log n) time using [Hagerup and Rüb 1989].

The resulting algorithms are simple except that they may use complicated
subroutines for sorting to obtain theoretically optimal results. There are usu-
ally much simpler implementations of sorting that work well in practice al-
though they may sacrifice determinism or optimality for certain combinations of
parameters.

8. Conclusion

The main result of this article is DC3, a simple, direct, linear time algorithm for
suffix sorting with integer alphabets. The algorithm is easy to implement and it
can be used as an example for advanced string algorithms even in undergraduate
level algorithms courses. Its simplicity also makes it an ideal candidate for im-
plementation on advanced models of computation. There are already experiments
with an external memory implementation [Dementiev et al. 2006] and a parallel
implementation using MPI [Kulla and Sanders 2006], both of which show excellent
performance and scalability.

The concept of difference covers makes it possible to generalize the DC3 algo-
rithm. This generalized DC algorithm allows space efficient implementation. An
obvious remaining question is how to adapt DC to advanced models of computation
in a space efficient way. At least for the external memory model this is possible but
we only know an approach that needs I/O volume �(nv2.5).

The space efficient algorithm can also be adapted to sort an arbitrary set of
suffixes by simply excluding the nonsample suffixes that we do not want to sort in
the Steps 2–4. Sorting a set of m suffixes can be implemented to run inO(vm+n

√
v)

time using O(m + n/
√

v) additional space. Previously, the only alternatives were
string sorting in O(mn) worst case time or sorting all suffixes using O(n) additional
space. The space efficient Burrows–Wheeler transform in Kärkkäinen [2006] relies
on space efficient sorting of subsets of suffixes.

930 J. KÄRKKÄINEN ET AL.

In many applications [Manber and Myers 1993; Kärkkäinen 1995; Kasai et al.
2001; Abouelhoda et al. 2002, 2004], the suffix array needs to be augmented with the
longest common prefix array lcp that stores the length of the longest common prefix
of SAi and SAi+1 in lcp[i]. Once the lcp information is known it also easy to infer
advanced search data structures like suffix trees and string B-trees [Ferragina and
Grossi 1999]. There are simple linear time algorithms for computing the lcp array
from the suffix array [Kasai et al. 2001; Manzini 2004], but they do not appear
to be suitable for parallel or external computation. Farach’s algorithm [Farach
1997] and the other half-recursive algorithms compute the lcp array at each level
of the recursion since it is needed for merging. With a similar technique the DC
algorithm can be modified to compute the lcp array as a byproduct: If k = SA[i]
and j = SA[i + 1], then find an � such that k + � and j + � are both in the sample.
If T [k, k + �) �= T [j, j + �) then lcp[i] can be computed locally. Otherwise,
lcp[i] = �+ lcp(Sk+�, Sj+�). The lcp of Sk+� and Sj+� can be approximated within
an additive term v from the lcp information of the recursive string R using range
minima queries. All these operations can be implemented in parallel or for memory
hierarchies using standard techniques.

Appendix

A. Source Code

The following C++ file contains a complete linear time implementation of suffix
array construction. The main purpose of this code is to “prove” that the algorithm
is indeed simple and that our natural language description is not hiding nonobvious
complications. It should be noted that there are now faster (more complicated)
implementations of our algorithm [Puglisi et al. 2005]. A driver program can be
found at http://www.mpi-sb.mpg.de/~sanders/programs/suffix/.

inline bool leq(int a1, int a2, int b1, int b2) // lexicographic order

{ return(a1 < b1 || a1 == b1 && a2 <= b2); } // for pairs

inline bool leq(int a1, int a2, int a3, int b1, int b2, int b3)

{ return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3)); } // and triples

// stably sort a[0..n-1] to b[0..n-1] with keys in 0..K from r

static void radixPass(int* a, int* b, int* r, int n, int K)

{ // count occurrences

int* c = new int[K + 1]; // counter array

for (int i = 0; i <= K; i++) c[i] = 0; // reset counters

for (int i = 0; i < n; i++) c[r[a[i]]]++; // count occurrences

for (int i = 0, sum = 0; i <= K; i++) // exclusive prefix sums

{ int t = c[i]; c[i] = sum; sum += t; }

for (int i = 0; i < n; i++) b[c[r[a[i]]]++] = a[i]; // sort

delete [] c;

}

// find the suffix array SA of T[0..n-1] in {1..K}^n

// require T[n]=T[n+1]=T[n+2]=0, n>=2

void suffixArray(int* T, int* SA, int n, int K) {

Linear Work Suffix Array Construction 931

int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;

int* R = new int[n02 + 3]; R[n02]= R[n02+1]= R[n02+2]=0;

int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;

int* R0 = new int[n0];

int* SA0 = new int[n0];

//******* Step 0: Construct sample ********

// generate positions of mod 1 and mod 2 suffixes

// the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1

for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) R[j++] = i;

//******* Step 1: Sort sample suffixes ********

// lsb radix sort the mod 1 and mod 2 triples

radixPass(R , SA12, T+2, n02, K);

radixPass(SA12, R , T+1, n02, K);

radixPass(R , SA12, T , n02, K);

// find lexicographic names of triples and

// write them to correct places in R

int name = 0, c0 = -1, c1 = -1, c2 = -1;

for (int i = 0; i < n02; i++) {

if (T[SA12[i]] != c0 || T[SA12[i]+1] != c1 || T[SA12[i]+2] != c2)

{ name++; c0 = T[SA12[i]]; c1 = T[SA12[i]+1]; c2 = T[SA12[i]+2]; }

if (SA12[i] % 3 == 1) { R[SA12[i]/3] = name; } // write to R1

else { R[SA12[i]/3 + n0] = name; } // write to R2

}

// recurse if names are not yet unique

if (name < n02) {

suffixArray(R, SA12, n02, name);

// store unique names in R using the suffix array

for (int i = 0; i < n02; i++) R[SA12[i]] = i + 1;

} else // generate the suffix array of R directly

for (int i = 0; i < n02; i++) SA12[R[i] - 1] = i;

//******* Step 2: Sort nonsample suffixes ********

// stably sort the mod 0 suffixes from SA12 by their first character

for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) R0[j++] = 3*SA12[i];

radixPass(R0, SA0, T, n0, K);

//******* Step 3: Merge ********

// merge sorted SA0 suffixes and sorted SA12 suffixes

for (int p=0, t=n0-n1, k=0; k < n; k++) {

#define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)

int i = GetI(); // pos of current offset 12 suffix

int j = SA0[p]; // pos of current offset 0 suffix

if (SA12[t] < n0 ? // different compares for mod 1 and mod 2 suffixes

leq(T[i], R[SA12[t] + n0], T[j], R[j/3]) :

932 J. KÄRKKÄINEN ET AL.

leq(T[i],T[i+1],R[SA12[t]-n0+1], T[j],T[j+1],R[j/3+n0]))

{ // suffix from SA12 is smaller

SA[k] = i; t++;

if (t == n02) // done --- only SA0 suffixes left

for (k++; p < n0; p++, k++) SA[k] = SA0[p];

} else { // suffix from SA0 is smaller

SA[k] = j; p++;

if (p == n0) // done --- only SA12 suffixes left

for (k++; t < n02; t++, k++) SA[k] = GetI();

}

}

delete [] R; delete [] SA12; delete [] SA0; delete [] R0;

}

B. Almost Inplace Stable Sorting and Merging

For the lightweight implementation of the DC-algorithm, we need subroutines that
are combinations of well known ideas. We outline them here to keep this article
self-contained.

The first idea is used for inplace yet instable distribution sorting (e.g., McIlroy
et al. [1993], and Neubert [1998]): The algorithm works similar to the radixPass
routine in Appendix A yet it reuses the input array to allocate the output buckets.
When character a[i] is moved to its destination bucket at array entry j , a[j] is taken
as the next element to be distributed. This process is continued until an element
is encountered that has already been moved. This order of moving elements de-
composes the permutation implied by sorting into its constituent cycles. Therefore,
the termination condition is easy to check: A cycle ends when we get back to the
element that started the cycle. Unfortunately, this order of moving elements can
destroy a preexisting order of keys with identical value and hence is instable.

The second idea avoids instability using a reinterpretation of the input as a
sequence of blocks. For example, (almost) inplace multiway merging of files is a
standard technique in external memory processing [Witten et al. 1999, Section 5.3].

The synthesis of these two ideas leads to a “file-like” stable implementation of
distribution sorting and multiway merging followed by an inplace permutation at
the block level that converts the file-representation back to an array representation.
We work out the details in the proofs of the following two theorems. Figure 1 gives
an example.

THEOREM B.1. An array a[0, n) containing elements with keys in the range
[0, k), k = O(n), can be stably sorted in time O(n) using O(

√
kn) additional

space.

PROOF. Let b j = [
a[i] : i ∈ [0, n), key(a[i]) = j

]
denote the j=th bucket, that

is, the sequence of elements with key j . Sorting a means to permute it in such a
way that b j = a[

∑
i∈[0, j) |bi |,

∑
i∈[0, j] |bi |). We begin with a counting phase that

computes the bucket sizes |b j |.
Then, we reinterpret a as a sequence of blocks of size B = �(

√
n/k). For the

time being, buckets will also be represented as sequences of blocks. For each key,
we create an initially empty bucket that is implemented as an array of �|b j |/B�
pointers to blocks. The first (

∑
i∈[0, j) |bi |) mod B elements of the first block of

Linear Work Suffix Array Construction 933

FIG. 1. Example for the distribution algorithm for k = 3, n = 32, and B = 4. Four states are shown:
Before distribution, when all but two blocks have been distributed, when all blocks are distributed,
and the final sorted arrays. The numbers give the order of block moves in the final permutation. In
this example, only three additional blocks are needed for temporary storage.

b j are left empty in the distribution process. This way, elements are immediately
moved to the correct position mod B. Buckets aquire additional blocks from a free
list as needed. However, for the last block of a bucket b j , j < k − 1, the first block
of bucket b j+1 is used. This way, only one partially filled block remains at the end:
The last block of bk−1 is stored in another preallocated block outside of a. The free
list is initially equipped with 2k + 2 empty blocks. The distribution process scans
through the input sequence and appends an element with key j to bucket b j . When
the last element from an input block has been consumed, this block is added to the
free list. Since at any point of time there are at most 2k + 1 partially filled blocks
(one for the input sequence, one at the start of a bucket, and one at the end of a
bucket), the free list never runs out of available blocks.

After the distribution phase, the blocks are permuted in such a way that a becomes
a sorted array. The blocks can be viewed as the nodes of a directed graph where
each nonempty block has an edge leading to the block in a where it should be
stored in the sorted order. The nodes of this graph have maximum in-degree and
out-degree one and hence the graph is a collection of paths and cycles. Paths end at
empty blocks in a. This structure can be exploited for the permutation algorithm:
In the outermost loop, we scan the blocks in a until we encounter a nonempty block
a[i, i + B) that has not been moved to its destination position j yet. This block is
moved to a temporary space t . We repeatedly swap t with the block of a where its
content should be moved until we reach the end of a path or cycle. When all blocks
from a are moved to their final destination, the additionally allocated blocks can be
moved to their final position directly. This includes the partially filled last block of
bk−1.

The total space overhead is O(k B) = O(
√

nk) for the additional blocks,
O(�n/B�+ k) = O(

√
nk) for representing buckets, and O(�n/B�+ k) = O(

√
nk)

for pointers that tell every block where it wants to go.

THEOREM B.2. An array a[0, n) consisting of k ≤ n sorted subarrays can be
sorted in time O(n log k) using O(

√
kn) additional space.

934 J. KÄRKKÄINEN ET AL.

PROOF. The algorithm is similar to the distribution algorithm from Theorem B.1
so that we only outline the differences. We reinterpret the subarrays as sequences
of blocks of a with a partially filled block at their start and end. Only blocks that
completely belong to a subarray are handed to the free list. The smallest unmerged
elements from each sequence are kept in a priority queue. Merging repeatedly
removes the smallest element and appends it to the output sequence that is repre-
sented as a sequence of blocks aquired from the free list. After the merging process,
it remains to permute blocks to obtain a sorted array. Except for space O(k) for the
priority queue, the space overhead is the same as for distribution sorting.

REFERENCES

ABOUELHODA, M. I., KURTZ, S., AND OHLEBUSCH, E. 2004. Replacing suffix trees with enhanced suffix
arrays. J. Disc. Algor. 2, 1, 53–86.

ABOUELHODA, M. I., OHLEBUSCH, E., AND KURTZ, S. 2002. Optimal exact string matching based on
suffix arrays. In Proceedings of the 9th International Symposium on String Processing and Information
Retrieval. Lecture Notes in Computer Science, vol. 2476. Springer-Verlag, Berlin/Heidelberg, Germany,
31–43.

ANDERSSON, A., LARSSON, N. J., AND SWANSON, K. 1999. Suffix trees on words. Algorithmica 23, 3,
246–260.

BERTONI, A., MEREGHETTI, C., AND PALANO, B. 2003. Golomb rulers and difference sets for succinct
quantum automata. Int. J. Found. Comput. Sci. 14, 5, 871–888.

BURKHARDT, S., AND KÄRKKÄINEN, J. 2003. Fast lightweight suffix array construction and checking.
In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching. Lecture Notes in
Computer Science, vol. 2676. Springer-Verlag Berlin/Heidelberg, Germany, 55–69.

BURROWS, M., AND WHEELER, D. J. 1994. A block-sorting lossless data compression algorithm. Tech.
Rep. 124, SRC (digital, Palo Alto).

CHAN, A., AND DEHNE, F. 1999. A note on coarse grained parallel integer sorting. Parall. Proc. Lett. 9, 4,
533–538.

CLIFFORD, R., AND SERGOT, M. 2003. Distributed and paged suffix trees for large genetic databases.
In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching. Lecture Notes in
Computer Science, vol. 2676. Springer-Verlag Berlin/Heidelberg, Germany, 70–82.

COLBOURN, C. J., AND LING, A. C. H. 2000. Quorums from difference covers. Inf. Process. Lett. 75, 1–2
(July), 9–12.

COLE, R. 1988. Parallel merge sort. SIAM J. Comput. 17, 4, 770–785.
CRAUSER, A., AND FERRAGINA, P. 2002. Theoretical and experimental study on the construction of suffix

arrays in external memory. Algorithmica 32, 1, 1–35.
CROCHEMORE, M., AND RYTTER, W. 2002. Jewels of Stringology. World Scientific, Singapore.
DEMENTIEV, R., MEHNERT, J., KÄRKKÄINEN, J., AND SANDERS, P. 2006. Better external memory suf-

fix array construction. ACM Journal of Experimental Algorithmics. To appear. (Earlier version in
ALENEX ’05.)

DEMENTIEV, R., AND SANDERS, P. 2003. Asynchronous parallel disk sorting. In Proceedings of the 15th
Annual Symposium on Parallelism in Algorithms and Architectures. ACM, New York, 138–148.

FARACH, M. 1997. Optimal suffix tree construction with large alphabets. In Proceedings of the 38th
Annual Symposium on Foundations of Computer Science. IEEE Computer Society, Los Alamitos, CA,
137–143.

FARACH, M., FERRAGINA, P., AND MUTHUKRISHNAN, S. 1998. Overcoming the memory bottleneck in
suffix tree construction. In Proceedings of the 39th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society, Los Alamitos, CA, 174–183.

FARACH, M., AND MUTHUKRISHNAN, S. 1996. Optimal logarithmic time randomized suffix tree construc-
tion. In Proceedings of the 23th International Conference on Automata, Languages and Programming.
Lecture Notes in Computer Science, vol. 1099. Springer-Verlag London, UK, 550–561.

FARACH-COLTON, M., FERRAGINA, P., AND MUTHUKRISHNAN, S. 2000. On the sorting-complexity of
suffix tree construction. J. ACM 47, 6, 987–1011.

FERRAGINA, P., AND GROSSI, R. 1999. The string B-tree: A new data structure for string search in external
memory and its applications. J. ACM 46, 2, 236–280.

Linear Work Suffix Array Construction 935

FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHANDRAN, S. 1999. Cache-oblivious algorithms.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science. IEEE Computer
Society, Los Alamitos, CA, 285–298.

GERBESSIOTIS, A. V., AND SINIOLAKIS, C. J. 2001. Merging on the BSP model. Paral. Comput. 27,
809–822.

GONNET, G., BAEZA-YATES, R., AND SNIDER, T. 1992. New indices for text: PAT trees and PAT arrays. In
Information Retrieval: Data Structures & Algorithms, W. B. Frakes and R. Baeza-Yates, Eds. Prentice-
Hall, Englewood Cliffs, NJ.

GOODRICH, M. T. 1999. Communication-efficient parallel sorting. SIAM J. Comput. 29, 2, 416–
432.

GROSSI, R., AND ITALIANO, G. F. 1996. Suffix trees and their applications in string algorithms. Rapporto
di Ricerca CS-96-14, Università “Ca’ Foscari” di Venezia, Italy.

GUSFIELD, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge, UK.

HAGERUP, T., AND RAMAN, R. 1992. Waste makes haste: Tight bounds for loose parallel sorting. In
Proceedings of the 33rd Annual Symposium on Foundations of Computer Science. IEEE Computer
Society, Los Alamitos, CA, 628–637.

HAGERUP, T., AND RÜB, C. 1989. Optimal merging and sorting on the EREW-PRAM. Inf. Proc.
Lett. 33, 4, 181–185.

HON, W.-K., LAM, T.-W., SADAKANE, K., AND SUNG, W.-K. 2003a. Constructing compressed suffix
arrays with large alphabets. In Proceedings of the 14th International Symposium on Algorithms and
Computation. Lecture Notes in Computer Science, vol. 2906. Springer, Berlin/Heidelberg, Germany,
240–249.

Hon, W.-K., Sadakane, K., and Sung, W.-K. 2003b. Breaking a time-and-space barrier in constructing
full-text indices. In Proceedings of the 44th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, Los Alamitos, CA, 251–260.

JÁJÁ, J. 1992. An Introduction to Parallel Algorithms. Addison Wesley, Reading, MA.
KÄRKKÄINEN, J. 1995. Suffix cactus: A cross between suffix tree and suffix array. In Proceedings of the

6th Annual Symposium on Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol.
937. Springer-Verlag, Berlin/Heidelberg, UK, 191–204.

KÄRKKÄINEN, J. 2006. Fast BWT in small space by blockwise suffix sorting. Theor. Comput. Sci. To
appear.

KÄRKKÄINEN, J., AND SANDERS, P. 2003. Simple linear work suffix array construction. In Pro-
ceedings of the 30th International Conference on Automata, Languages and Programming. Lec-
ture Notes in Computer Science, vol. 2719. Springer-Verlag, Berlin/Heidelberg, Germany, 943–
955.

KÄRKKÄINEN, J., AND UKKONEN, E. 1996. Sparse suffix trees. In Proceedings of the 2nd Annual Inter-
national Conference on Computing and Combinatorics. Lecture Notes in Computer Science, vol. 1090.
Springer-Verlag, Berlin/Heidelberg, Germany, 219–230.

KASAI, T., LEE, G., ARIMURA, H., ARIKAWA, S., AND PARK, K. 2001. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Proceedings of the 12th Annual Symposium
on Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 2089. Springer-Verlag,
Berlin/Heidelberg, Germany, 181–192.

KILIAN, J., KIPNIS, S., AND LEISERSON, C. E. 1990. The organization of permutation architectures with
bused interconnections. IEEE Trans. Comput. 39, 11 (Nov.), 1346–1358.

KIM, D. K., SIM, J. S., PARK, H., AND PARK, K. 2005. Constructing suffix arrays in linear time. J. Disc.
Algor. 3, 2–4 (June), 126–142.

KO, P., AND ALURU, S. 2005. Space efficient linear time construction of suffix arrays. J. Disc. Algor. 3, 2–4
(June), 143–156.

KULLA, F., AND SANDERS, P. 2006. Scalable parallel suffix array construction. In Proceedings of the 13th
European PVM/MPI User’s Group Meeting. Lecture Notes in Computer Science, vol. 4192. Springer-
Verlag, Berlin/Heidelberg, Germany, 22–29.

LAM, T.-W., SADAKANE, K., AND SUNG, W.-K., AND YIU, S.-M. 2002. A space and time efficient algo-
rithm for constructing compressed suffix arrays. In Proceedings of the 8th Annual Itnternational Confer-
ence on Computing and Combinatorics. Lecture Notes in Computer Science, vol. 2387. Springer-Verlag,
Berlin/Heidelberg, Germany, 401–410.

LARSSON, N. J., AND SADAKANE, K. 1999. Faster suffix sorting. Tech. Rep. LU-CS-TR:99-214, Dept.
Computer Science, Lund University, Sweden.

936 J. KÄRKKÄINEN ET AL.

LUK, W.-S., AND WONG, T.-T. 1997. Two new quorum based algorithms for distributed mutual exclusion.
In Proceedings of the 17th International Conference on Distributed Computing Systems. IEEE Computer
Society, Los Alamitos, CA, 100–106.

MANBER, U., AND MYERS, G. 1993. Suffix arrays: A new method for on-line string searches. SIAM J.
Comput. 22, 5 (Oct.), 935–948.

MANZINI, G. 2004. Two space saving tricks for linear time LCP array computation. In Proceedings of
the 9th Scandinavian Workshop on Algorithm Theory. Lecture Notes in Computer Science, vol. 3111.
Springer-Verlag, Berlin/Heidelberg, Germany, 372–383.

MANZINI, G., AND FERRAGINA, P. 2004. Engineering a lightweight suffix array construction algorithm.
Algorithmica 40, 1 (June), 33–50.

MCCREIGHT, E. M. 1976. A space-economic suffix tree construction algorithm. J. ACM 23, 2, 262–272.
MCILROY, P. M., BOSTIC, K., AND MCILROY, M. D. 1993. Engineering radix sort. Comput. Syst. 6, 1,

5–27.
NA, J. C. 2005. Linear-time construction of compressed suffix arrays using o(n log n)-bit working space

for large alphabets. In Proceedings of the 16th Annual Symposium on Combinatorial Pattern Matching.
Springer-Verlag, Berlin/Heidelberg, Germany, 57–67.

NAVARRO, G., AND BAEZA-YATES, R. 2000. A hybrid indexing method for approximate string matching.
J. Disc. Algor. 1, 1, 205–239. (Special issue on Matching Patterns.)

NEUBERT, K.-D. 1998. The Flashsort1 algorithm. Dr. Dobb’s J. 23, 2 (Feb.), 123–125.
NODINE, M. H., AND VITTER, J. S. 1993. Deterministic distribution sort in shared and distributed memory

multiprocessors. In Proceedings of the 5th Annual Symposium on Parallel Algorithms and Architectures.
ACM, New York, 120–129.

NODINE, M. H., AND VITTER, J. S. 1995. Greed sort: An optimal sorting algorithm for multiple disks. J.
ACM 42, 4, 919–933.

PUGLISI, S., SMYTH, W., AND TURPIN, A. 2005. The performance of linear time suffix sorting algorithms.
In Proceedings of the Data Compression Conference. IEEE Computer Society, Los Alamitos, CA, 358–
367.

RAJASEKARAN, S., AND REIF, J. H. 1989. Optimal and sublogarithmic time randomized parallel sorting
algorithms. SIAM J. Comput. 18, 3, 594–607.

SMYTH, B. 2003. Computing Patterns in Strings. Pearson Addison–Wesley, Harlow, England.
UKKONEN, E. 1995. On-line construction of suffix trees. Algorithmica 14, 3, 249–260.
VALIANT, L. G. 1990. A bridging model for parallel computation. Commun. ACM 22, 8 (Aug.), 103–111.
VITTER, J. S., AND SHRIVER, E. A. M. 1994. Algorithms for parallel memory, I: Two level memories.

Algorithmica 12, 2/3, 110–147.
WEINER, P. 1973. Linear pattern matching algorithm. In Proceedings of the 14th Symposium on Switching

and Automata Theory. IEEE Computer Society, Los Alamitos, CA, 1–11.
WITTEN, I. H., MOFFAT, A., AND BELL, T. C. 1999. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann, San Francisco, CA.

RECEIVED JULY 2004; REVISED APRIL 2005; ACCEPTED JUNE 2006

Journal of the ACM, Vol. 53, No. 6, November 2006.

