
Space Efficient Linear Time Construction of

Suffix Arrays ?

Pang Ko and Srinivas Aluru
Dept. of Electrical and Computer Engineering

1 Laurence H. Baker Center for Bioinformatics and Biological Statistics
2 Iowa State University

Ames, IA 50011
{kopang, aluru}@iastate.edu

Abstract. We present a linear time algorithm to sort all the suffixes of
a string over a large alphabet of integers. The sorted order of suffixes of
a string is also called suffix array, a data structure introduced by Manber
and Myers that has numerous applications in pattern matching, string
processing, and computational biology. Though the suffix tree of a string
can be constructed in linear time and the sorted order of suffixes derived
from it, a direct algorithm for suffix sorting is of great interest due to
the space requirements of suffix trees. Our result improves upon the best
known direct algorithm for suffix sorting, which takes O(n logn) time.
We also show how to construct suffix trees in linear time from our suffix
sorting result. Apart from being simple and applicable for alphabets not
necessarily of fixed size, this method of constructing suffix trees is more
space efficient.

1 Introduction

Suffix trees and suffix arrays are important fundamental data structures useful in
many applications in string processing and computational biology. The suffix tree
of a string is a compacted trie of all the suffixes of the string. The suffix tree of a
string of length n over an alphabetΣ can be constructed in O (n log |Σ|) time and
O(n) space, or inO(n) time andO(n|Σ|) space [McC76, Ukk95, Wei73]. These al-
gorithms are suitable for small, fixed size alphabets. Subsequently, Farach [FM96]
presented an O(n) time and space algorithm for the more general case of con-
structing suffix trees over integer alphabets. For numerous applications of suffix
trees in string processing and computational biology, see [Gus97].

The suffix array of a string is the lexicographically sorted list of all its suffixes.
In 1993, Manber and Myers introduced the suffix array data structure [MM93]
as a space-efficient substitute for suffix trees. As a lexicographic-order traversal
of a suffix tree can be used to produce the sorted list of suffixes, suffix arrays can
be constructed in linear time and space using suffix trees. However, this defeats
the whole purpose if the goal is to avoid suffix trees. Hence, Manber and Myers

? Research supported by IBM Faulty Award and NSF under ACI-0203782.

presented direct construction algorithms that run in O(n log n) worst-case time
and O(n) expected time, respectively. Since then, the study of algorithms for
constructing suffix arrays and for using suffix arrays in computational biology
applications has attracted considerable attention.

The suffix array is often used in conjunction with another array, called lcp
array, containing the lengths of the longest common prefixes between every pair
of consecutive suffixes in sorted order. Manber and Myers also presented algo-
rithms for constructing lcp array inO(n log n) worst-case time andO(n) expected
time, respectively [MM93]. More recently, Kasai et al. [KLA+01] presented a lin-
ear time algorithm for constructing the lcp array directly from the suffix array.
While the classic problem of finding a pattern P in a string T of length n

can be solved in O(|P |) time for fixed size Σ using a suffix tree of T , Manber
and Myers’ pattern matching algorithm takes O(|P |+ log n) time, without any
restriction on Σ. Recently, Abouelhoda et al. [AOK02] have improved this to
O(|P |) time using additional linear time preprocessing, thus making the suffix
array based algorithm superior. In fact, many problems involving top-down or
bottom-up traversal of suffix trees can now be solved with the same asymptotic
run-time bounds using suffix arrays [AKO02, AOK02]. Such problems include
many queries used in computational biology applications including finding ex-
act matches, maximal repeats, tandem repeats, maximal unique matches and
finding all shortest unique substrings. For example, the whole genome alignment
tool MUMmer [DKF+99] uses the computation of maximal unique matches.

While considerable advances are made in designing optimal algorithms for
queries using suffix arrays and for computing auxiliary information that is re-
quired along with suffix arrays, the complexity of direct construction algorithms
for suffix arrays remained O(n log n) so far. Several alternative algorithms for
suffix array construction have been developed, each improving the previous best
algorithm by an additional constant factor [IT99, LS99]. We close this gap by
presenting a direct linear time algorithm for constructing suffix arrays over in-
teger alphabets. Contemporaneous to our result, Kärkkänen et al. [KS03] and
Kim et al. [KSPP03] also discovered suffix array construction algorithms with
linear time complexity.

It is well known that the suffix tree of a string can be constructed from the
sorted order of its suffixes and the lcp array [FM96]. Because the lcp array can
be inferred from the suffix array in linear time [KLA+01], our algorithm can also
be used to construct suffix trees in linear time for large integer alphabets, and
of course, for the special case of fixed size alphabets. Our algorithm is simpler
and more space efficient than Farach’s linear time algorithm for constructing
suffix trees for integer alphabets. In fact, it is simpler than linear time suffix
tree construction algorithms for fixed size alphabets [McC76, Ukk95, Wei73]. A
noteworthy feature of our algorithm is that it does not construct or use suffix
links, resulting in additional space advantage. To the best of our knowledge,
this is the first suffix tree construction algorithm that achieves linear run-time
without exploiting the use of suffix links.

I S S I S S I P P I $MT

S L L S SL L L L L L/SLType

2 3 4 5 6 7 8 91 121110Pos

Fig. 1. The string “MISSISSIPPI$” and the types of its suffixes.

The remainder of this paper is organized as follows: In Section 2, we present
our linear time suffix sorting algorithm. An implementation strategy that further
improves the run-time in practice is presented in Section 3. Section 4 concludes
the paper.

2 Suffix Sorting Algorithm

Consider a string T = t1t2 . . . tn over the alphabet Σ = {1 . . . n}. Without loss
of generality, assume the last character of T occurs nowhere else in T , and is
the lexicographically smallest character. We denote this character by ‘$’. Let
Ti = titi+1 . . . tn denote the suffix of T starting with ti. To store the suffix Ti,
we only store the starting position number i. For strings α and β, we use α ≺ β

to denote that α is lexicographically smaller than β. Throughout this paper the
term sorted order refers to lexicographically ascending order.

We classify the suffixes into two types: Suffix Ti is of type S if Ti ≺ Ti+1,
and is of type L if Ti+1 ≺ Ti. The last suffix Tn does not have a next suffix, and
is classified as both type S and type L.

Lemma 1. All suffixes of T can be classified as either type S or type L in O(n)
time.

Proof. Consider a suffix Ti (i < n).

Case 1: If ti 6= ti+1, we only need to compare ti and ti+1 to determine if Ti is
of type S or type L.

Case 2: If ti = ti+1, find the smallest j > i such that tj 6= ti.

if tj > ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type S.
if tj < ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type L.

Thus, all suffixes can be classified using a left to right scan of T in O(n) time.
ut

The type of each suffix of the string MISSISSIPPI$ is shown in Figure 1.
An important property of type S and type L suffixes is, if a type S suffix and
a type L suffix both begin with the same character, the type S suffix is always
lexicographically greater than the type L suffix. The formal proof is presented
below.

Lemma 2. A type S suffix is lexicographically greater than a type L suffix that

begins with the same first character.

Proof. We prove this by contradiction. Suppose a type S suffix Ti and a type L
suffix Tj be two suffixes that start with the same character c, such that Ti ≺ Tj .
We can write Ti = cαc1β and Tj = cαc2γ, where c1 6= c2 and α, β, and γ are
(possibly empty) strings.

Case 1: α contains a character other than c. Let c3 be the leftmost character
in α that is different from c. Because Ti is a type S suffix, it follows that
c3 > c. Similarly, for Tj to be a type L suffix, c3 < c, a contradiction.

Case 2: α does not contain any character other than c. In this case, we have
the following:

Ti of type S ⇒ c1 ≥ c

Tj of type L⇒ c2 ≤ c

c2 ≤ c and c ≤ c1 ⇒ c2 ≤ c1

But Ti ≺ Tj ⇒ c1 < c2, a contradiction. ut

Corollary 1. In the suffix array of T , among all suffixes that start with the

same character, the type S suffixes appear after the type L suffixes.

Proof. Follows directly from Lemma 2.

Let A be an array containing all suffixes of T , not necessarily in sorted order.
Create an array Rev such that R[i] = k if A[k] = i, i.e., R[i] indicates the position
where suffix Ti is stored in A. We need to keep Rev up-to-date, thus any change
made to A is also reflected in Rev. Let B be an array of all suffixes of type S,
sorted in lexicographic order. Using B, we can compute the lexicographically
sorted order of all suffixes of T as follows:

1. Bucket all suffixes of T according to their first character in array A. Each
bucket consists of all suffixes that start with the same character. This step
takes O(n) time.

2. Scan B from right to left. For each suffix encountered in the scan, move the
suffix to the current end of its bucket in A, and advance the current end by
one position to the left. More specifically, the move of a suffix in array A to a
new position should be taken as swapping the suffix with the suffix currently
occupying that position. After the scan of B is completed, by Corollary 1, all
type S suffixes are in their correct positions in A. The time taken is O(|B|),
which is bounded by O(n).

3. Scan A from left to right. For each entry A[i], if TA[i]−1 is a type L suffix,
move it to the current front of its bucket in A, and advance the front of the
bucket by one. This takes O(n) time. At the end of this step, A contains all
suffixes of T in sorted order.

8 5 212

12

12 8 5 211 1 9 10 3 4 6 7

11 8 5 2 1 10 9 7 4 6 3

T

1 2 3 4 5 6 7 8 9

M I S S I S S I P P I

10 11

S SType

Pos

S

Bucket

Order Of Type S suffixes

Sorted Order

After Step 2

$

S

12

$ I M P S

Fig. 2. Illustration of how to obtain the sorted order of all suffixes, from the sorted
order of type S suffixes of the string MISSISSIPPI$.

In Figure 2, the suffix pointed by the arrow is moved to the current front
of its bucket when the scan reaches the suffix at the origin of the arrow. The
following lemma proves the correctness of the procedure in Step 3.

Lemma 3. In step 3, when the scan reaches A[i], then suffix TA[i] is already in

its sorted position in A.

Proof. By induction on i. To begin with, the smallest suffix in T must be of
type S and hence in its correct position A[1]. By inductive hypothesis, assume
that A[1], A[2], . . . , A[i] are the first i suffixes in sorted order. We now show that
when the scan reaches A[i + 1], then the suffix in it, i.e., TA[i+1] is already in
its sorted position. Suppose not. Then there exists a suffix referenced by A[k]
(k > i + 1) that should be in A[i + 1] in sorted order, i.e., TA[k] ≺ TA[i+1]. As
all type S suffixes are already in correct positions, both TA[k] and TA[i+1] must
be of type L. Because A is bucketed by the first character of the suffixes prior
to step 3, and a suffix is never moved out of its bucket, TA[k] and TA[i+1] must
begin with the same character, say c. Let TA[i+1] = cα and TA[k] = cβ. Since
TA[k] is type L, β ≺ TA[k]. From TA[k] ≺ TA[i+1], β ≺ α. Since β ≺ TA[k], and the
correct sorted position of TA[k] is A[i+1], β must occur in A[1] . . . A[i]. Because
β ≺ α, TA[k] should have been moved to the current front of its bucket before
TA[i+1]. Thus, TA[k] can not occur to the right of TA[i+1], a contradiction. ut

So far, we showed that if all type S suffixes are sorted, then the sorted position
of all suffixes of T can be determined in O(n) time. In a similar manner, the
sorted position of all suffixes of T can also be determined from the sorted order
of all suffixes of type L. To do this, we bucket all suffixes of T based on their

first characters into an array A. We then scan the sorted order of type L suffixes
from left to right and determine their correct positions in A by moving them
to the current front of their respective buckets. We then scan A from right to
left and when A[i] is encountered, if TA[i]−1 is of type S, it will be moved to the
current end of its bucket.

Once the suffixes of T are classified into type S and type L, we choose to
sort those type of suffixes which are fewer in number. Without loss of generality,
assume that type S suffixes are fewer. We now show how to recursively sort these
suffixes.

Define position i of T to be a type S position if the suffix Ti is of type S,
and similarly to be a type L position if the suffix Ti is of type L. The substring
ti . . . tj is called a type S substring if both i and j are type S positions, and
every position between i and j is a type L position.

Our goal is to sort all the type S suffixes in T . To do this we first sort all
the type S substrings. The sorting generates buckets where all the substrings
in a bucket are identical. The buckets are numbered using consecutive integers
starting from 1. We then generate a new string T ′ as follows: Scan T from left
to right and for each type S position in T , write the bucket number of the type
S substring starting from that position. This string of bucket numbers forms T ′.
Observe that each type S suffix in T naturally corresponds to a suffix in the new
string T ′. In Lemma 4, we prove that sorting all type S suffixes of T is equivalent
to sorting all suffixes of T ′. We sort T ′ recursively.

We first show how to sort all the type S substrings in O(n) time. Consider
the array A, consisting of all suffixes of T bucketed according to their first
characters. For each suffix Ti, define its S-distance to be the distance from its
starting position i to the nearest type S position to its left (excluding position
i). If no type S position exists to the left, the S-distance is defined to be 0. Thus,
for each suffix starting on or before the first type S position in T , its S-distance
is 0. The type S substrings are sorted as follows (illustrated in Figure 3):

1. For each suffix in A, determine its S-distance. This is done by scanning T

from left to right, keeping track of the distance from the current position to
the nearest type S position to the left. While at position i, the S-distance of
Ti is known and this distance is recorded in array Dist. The S-distance of
Ti is stored in Dist[i]. Hence, the S-distances for all suffixes can be recorded
in linear time.

2. Let m be the largest S-distance. Create m lists such that list j (1 ≤ j ≤ m)
contains all the suffixes with an S-distance of j, listed in the order in which
they appear in array A. This can be done by scanning A from left to right
in linear time, referring to Dist[A[i]] to put TA[i] in the correct list.

3. We now sort the type S substrings using the lists created above. The sorting
is done by repeated bucketing using one character at a time. To begin with,
the bucketing based on first character is determined by the order in which
type S suffixes appear in array A. Suppose the type S substrings are bucketed
according to their first j − 1 characters. To extend this to j characters, we
scan list j. For each suffix Ti encountered, move the type S substring starting

I S S I S S I P P I $MT
Type S S S S

12 2 5 8

12 8 5 2

12 8 5 2

2 5 8 11 1 9 10 3 76412
2 3 4 5 6 7 8 9 1211101Pos

Dist 0 0 1 2 3 1 2 3 1 2 3 4
Pos 2 3 4 5 6 7 8 9 121 10 11

9 3 61

10 4 72

5 1183

4 12

Step 2. Construct S−distance Lists

12 8 5 2

12 8 5 2

Step 3. Sort all type S substrings
Original

Sort according to list 1

Sort according to list 2

A

Step 1. Record the S−distances

Sort according to list 3

Sort according to list 4

Fig. 3. Illustration of the sorting of type S substrings of the string MISSISSIPPI$.

at ti−j to the current front of its bucket. Because the total size of all the
lists is O(n), the sorting of type S substrings only takes O(n) time.

The sorting of type S substrings using the above algorithm respects lexico-
graphic ordering of type S substrings, with the following important exception: If
a type S substring is the prefix of another type S substring, the bucket number
assigned to the shorter substring will be larger than the bucket number assigned
to the larger substring. This anomaly is designed on purpose, and is exploited
later in Lemma 4.

As mentioned before, we now construct a new string T ′ corresponding to
all type S substrings in T . Each type S substring is replaced by its bucket
number and T ′ is the sequence of bucket numbers in the order in which the
type S substrings appear in T . Because every type S suffix in T starts with
a type S substring, there is a natural one-to-one correspondence between type
S suffixes of T and all suffixes of T ′. Let Ti be a suffix of T and T ′i′ be its
corresponding suffix in T ′. Note that T ′i′ can be obtained from Ti by replacing
every type S substring in Ti with its corresponding bucket number. Similarly, Ti

can be obtained from T ′i′ by replacing each bucket number with the corresponding
substring and removing the duplicate instance of the common character shared
by two consecutive type S substrings. This is because the last character of a
type S substring is also the first character of the next type S substring along T .

Lemma 4. Let Ti and Tj be two suffixes of T and let T
′

i′ and T ′j′ be the corre-

sponding suffixes of T ′. Then, Ti ≺ Tj ⇔ T ′i′ ≺ T ′j′ .

Proof. We first show that T ′i′ ≺ T ′j′ ⇒ Ti ≺ Tj . The prefixes of Ti and Tj

corresponding to the longest common prefix of T ′i′ and T ′j′ must be identical.
This is because if two bucket numbers are the same, then the corresponding
substrings must be the same. Consider the leftmost position in which T ′i′ and T ′j′

differ. Such a position exists and the characters (bucket numbers) of T ′i′ and T ′j′

in that position determine which of T ′i′ and T ′j′ is lexicographically smaller. Let k
be the bucket number in T ′i′ and l be the bucket number in T ′j′ at that position.
Since T ′i′ ≺ T ′j′ , it is clear that k < l. Let α be the substring corresponding to k

and β be the substring corresponding to l. Note that α and β can be of different
lengths, but α cannot be a proper prefix of β. This is because the bucket number
corresponding to the prefix must be larger, but we know that k < l.

Case 1: β is not a prefix of α. In this case, k < l ⇒ α ≺ β, which implies
Ti ≺ Tj .

Case 2: β is a proper prefix of α. Let the last character of β be c. The corre-
sponding position in T is a type S position. The position of the corresponding
c in α must be a type L position.
Since the two suffixes that begin at these positions start with the same
character, by Corollary 1, the type L suffix must be lexicographically smaller
then the type S suffix. Thus, Ti ≺ Tj .

From the one-to-one correspondence between the suffixes of T ′ and the type S

suffixes of T , it also follows that Ti ≺ Tj ⇒ T ′i′ ≺ T ′j′ . ut

Corollary 2. The sorted order of the suffixes of T ′ determines the sorted order

of the type S suffixes of T .

Proof. Let T ′i′
1

, T ′i′
2

, T ′i′
3

, . . . be the sorted order of suffixes of T ′. Let Ti1 , Ti2 , Ti3 , . . .

be the sequence obtained by replacing each suffix T ′i′
k

with the corresponding type

S suffix Tik
. Then, Ti1 , Ti2 , Ti3 , . . . is the sorted order of type S suffixes of T .

The proof follows directly from Lemma 4. ut

Hence, the problem of sorting the type S suffixes of T reduces to the problem
of sorting all suffixes of T ′. Note that the characters of T ′ are consecutive integers
starting from 1. Hence our suffix sorting algorithm can be recursively applied to
T ′.

If the string T has fewer type L suffixes than type S suffixes, the type L

suffixes are sorted using a similar procedure − Call the substring ti, . . . , tj a type
L substring if both i and j are type L positions, and every position between i

and j is a type S position. Now sort all the type L substrings and construct
the corresponding string T ′ obtained by replacing each type L substring with
its bucket number. Sorting T ′ gives the sorted order of type L suffixes.

Thus, the problem of sorting the suffixes of a string T of length n can be
reduced to the problem of sorting the suffixes of a string T ′ of size at most dn

2 e,
and O(n) additional work. This leads to the recurrence

T (n) = T
(⌈n

2

⌉)

+O(n)

Theorem 1. The suffixes of a string of length n can be lexicographically sorted

in O(n) time and space.

We now consider the space required for the execution of our suffix array
construction algorithm. By applying several implementation strategies, some
of which are similar to those presented by Manber and Myers [MM93], it is
possible to derive an implementation of our algorithm that uses only 3 integer
arrays of size n and 3 boolean arrays (2 of size n and one of size dn

2 e). Assuming
each integer representation takes 4 bytes of space, the space requirement of
our algorithm is 12n bytes plus 2.5n bits. This compares favorably with the best
space-efficient implementations of linear time suffix tree construction algorithms,
which still require 20n bytes [AOK02]. Hence, direct linear time construction of
suffix arrays using our algorithm is more space-efficient.

In case the alphabet size is constant, it is possible to further reduce the space
requirement. Note that the maximum space utilization by our algorithm occurs
in the first iteration. As the size of the string reduces at least by half in each
iteration, so does the space required by the algorithm. We take advantage of this
fact by designing a more space-efficient implementation for the first iteration,
which is applicable only for constant sized alphabets. The main underlying idea
is to eliminate the construction of the lists used in sorting type S substrings. This
reduces the space required to only 8n bytes plus 0.5n bits for the first iteration.
Note that this idea cannot be used in subsequent iterations because the string T ′

to be worked on in the second iteration will still be based on integer alphabet. So
we resort to the traditional implementation for this and all subsequent iterations.
As a result, the space requirement for the complete execution of the algorithm
can be reduced to 8n bytes plus 1.25n bits. This is competitive with Manber and
Myers’ O(n log n) time algorithm for suffix array construction [MM93], which
requires only 8n bytes. In many practical applications, the size of the alphabet
is a small constant. For instance, computational biology applications deal with
DNA and protein sequences, which have alphabet sizes of 4 and 20, respectively.

3 Reducing the Size of T
′

In this section, we present an implementation strategy to further reduce the size
of T ′. Consider the result of sorting all type S substrings of T . Note that a type
S substring is a prefix of the corresponding type S suffix. Thus, sorting type S

substrings is equivalent to bucketing type S suffixes based on their respective
type S substring prefixes. The bucketing conforms to the lexicographic order-
ing of type S suffixes. The purpose of forming T ′ and sorting its suffixes is to
determine the sorted order of type S suffixes that fall into the same bucket. If
a bucket contains only one type S substring, the position of the corresponding
type S suffix in the sorted order is already known.

Let T ′ = b1b2 . . . bm. Consider a maximal substring bi . . . bj (j < m) such
that each bk (i ≤ k ≤ j) contains only one type S substring. We can shorten
T ′ by replacing each such maximal substring bi . . . bj with its first character bi.

Since j < m the bucket number corresponding to ‘$’ is never dropped, and this
is needed for subsequent iterations. It is easy to directly compute the shortened
version of T ′, instead of first computing T ′ and then shortening it. Shortening T ′

will have the effect of eliminating some of the suffixes of T ′, and also modifying
each suffix that contains a substring that is shortened. We already noted that
the final positions of the eliminated suffixes are already known. It remains to be
shown that the sorted order of other suffixes is not affected by the shortening.

Consider any two suffixes T ′k = bk . . . bm and T ′l = bl . . . bm, such that at
least one of the suffixes contains a substring that is shortened. Let j ≥ 0 be
the smallest integer such that either bk+j or bl+j (or both) is the beginning of a
shortened substring. The first character of a shortened substring corresponds to
a bucket containing only one type S substring. Hence, the bucket number occurs
nowhere else in T ′. Therefore bk+j 6= bl+j , and the sorted order of bk . . . bm

and bl . . . bm is determined by the sorted order of bk . . . bk+j and bl . . . bl+j . In
other words, the comparison of any two suffixes never extends beyond the first
character of a shortened substring.

4 Conclusions

In this paper we present a linear time algorithm for sorting the suffixes of a
string over integer alphabet, or equivalently, for constructing the suffix array
of the string. Our algorithm can also be used to construct suffix trees in linear
time. Apart from being the first direct algorithm for constructing suffix arrays
in linear time, the simplicity and space advantages of our algorithm are likely to
make it useful in suffix tree construction as well.

References

[AKO02] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array
and its applications to genome analysis. In 2nd Workshop on Algorithms

in Bioinformatics, pages 449–63, 2002.

[AOK02] M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string
matching based on suffix arrays. In International Symposium on String

Processing and Information Retrieval, pages 31–43. IEEE, 2002.

[DKF+99] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and
S. L. Salzberg. Alignment of whole genomes. Nucleic Acids Research,
27:2369–76, 1999.

[FM96] M. Farach and S. Muthukrishnan. Optimal logarithmic time randomized
suffix tree construction. In Proc. of 23rd International Colloquium on

Automata Languages and Programming, 1996.

[Gus97] D. Gusfield. Algorithms on Strings Trees and Sequences. Cambridge Uni-
versity Press, New York, New York, 1997.

[IT99] H. Itoh and H. Tanaka. An efficient method for in memory construction
of suffix array. In International Symposium on String Processing and In-

formation Retrieval, pages 81–88. IEEE, 1999.

[KLA+01] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications.
In 12th Annual Symposium, Combinatorial Pattern Matching, pages 181–
92, 2001.

[KS03] J. Kärkkänen and P. Sanders. Simpler linear work suffix array construction.
In International Colloquium on Automata, Languages and Programming,
page to appear, 2003.

[KSPP03] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of
suffix arrays. In 14th Annual Symposium, Combinatorial Pattern Matching,
2003.

[LS99] N. J. Larsson and K. Sadakane. Faster suffix sorting. Technical Report
LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/1–20/(1999), Department of
Computer Science, Lund University, Sweden, May 1999.

[McC76] E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 23:262–72, 1976.

[MM93] U. Manber and G. Myers. Suffix arrays: a new method for on-line search.
SIAM Journal on Computing, 22:935–48, 1993.

[Ukk95] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249–60,
1995.

[Wei73] P. Weiner. Linear pattern matching algorithms. In 14th Symposium on

Switching and Automata Theory, pages 1–11. IEEE, 1973.

