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Abstract: Rock art, human-made markings on stone, is an important cultural 
artifact and the earliest expression of abstract thinking. While there are tens of 
millions of photographs of rock art in existence, there have been no large-scale 
attempts to organize, classify or cluster them. This omission is not due to a lack 
of interest, but reflects the extraordinary difficultly of extracting useful data 
from an incredibly heterogeneous and noisy dataset. As we shall show, rock art 
is likely to resist efforts of automatic extraction from images for a long time. In 
this work we show that we can use CAPTCHAs, puzzles designed to tell hu-
mans and computers apart, to segment and index rock art. Unlike other CAPT-
CHAs which operate on inherently discrete data and expect discrete responses, 
our method considers inherently real-valued data and expects real-valued re-
sponses. This creates a challenge which we have overcome by using a recently 
introduced distance measure. We demonstrate our system is capable of acting as 
a secure CAPTCHA, while producing data that allows for indexing the rock art. 

Keywords: CAPTCHA, Image Processing, Cultural Artifacts, Rock Art 

1. INTRODUCTION 

Rock art is the archaeological term for human-made markings on stone, including pe-
troglyphs, carvings into stone surfaces and pictographs, paintings on stone. Fig. 1 il-
lustrates some examples of each, which hint at the astonishing variability of rock art 
in terms of complexity and appearance. 

 
Fig. 1. A selection rock art hints at their incredible variability, complexity and beauty. 

Petroglyphs and pictographs are perhaps the earliest expressions of abstract think-
ing. Studies of rock art have implications beyond anthropology and history. For ex-
ample, a recent study postulates the existence of a now-extinct Australian bat species 
based on extraordinarily detailed pictographs known to be at least 17,500 years old 
[13]. Petroglyphs have been used in studies of climate change; the changing invento-
ries of species in the Dampier Archipelago from the Pleistocene to the early Holocene 



period have been reconstructed partly by petroglyph evidence [4]. However, in spite 
of these successes, progress in petroglyph research has been frustratingly slow. A 
decade ago, Walt et al. summed up the state of petroglyph research by noting, “Com-
plete-site and cross-site research thus remains impossible, incomplete, or impression-
istic” [15]. Surprisingly, there has been little change in the intervening decade. We 
believe that this is due only to the difficultly of extracting the petroglyphs from raw 
images. More concretely, we claim that given the extracted “outline” data, indexing, 
classification and clustering of rock art would be relatively easy. Since this is the fun-
damental assumption in our work, let us immediately demonstrate it. In Fig. 2 we 
have clustered eight rock art images, for which we have (human extracted) “skeleton” 
data, in the form of a binary bitmap. 

 
Fig. 2. A clustering of eight petroglyphs using the GHT measure proposed in [16]. 

This result hints at the fact that if we could only extract the skeletonized data, a 
wealth of opportunities for anthropological data mining would open up. However, as 
we shall demonstrate, in the vast majority of cases, the extraction of meaningful data 
from photographs of rock art is likely to be beyond the capabilities of image segmen-
tation algorithms for a long time. With this in mind, we proposed to extract useful in-
formation from unconstrained images of rock art by turning the problem into a 
CAPTCHA [1]. CAPTCHAs (“Completely Automated Public Turing test to tell 
Computers and Humans Apart”) are tests given by a machine to ensure that a re-
sponse is generated by a human, not a computer. The most familiar instantiation of 
them is a sequence of distorted letters that the user must reproduce. Fig. 3 shows two 
examples. 

 
Fig. 3. Two examples of CAPTCHAs. In order to solve the CAPTCHA, and get access to the 
next webpage (in this case, offering a free email account) the user must type in 28iVW and 
jw62K respectively. 



These CAPTCHAs operate on inherently discrete data (text, albeit distorted) and 
expect discrete responses (keystrokes); we can therefore use equality tests to decide if 
the test was passed, i.e.  equals('28iVW ','28iVW ')? 

In contrast, our method considers inherently real-valued data (photographs of rock 
art) and expects real-valued responses (mouse movements). We cannot expect to test 
for equality. This creates a significant challenge which we have overcome by using a 
recently introduced distance measure [16] to test if a tracing of a petroglyph is close 
enough to a real pattern to indicate human intelligence. 

2. BACKGROUND AND RELATED WORK 

2.1 Background on Rock Art 

The earliest petroglyphs have traditionally been associated with the appearance of 
modern humans in Europe such as the famous example from the Lascaux Cave, 
France, and an early one from the Chauvet Cave, France which dates back to as early 
as 30,000 years ago [14].  Recent work has shown that the idea of expressing abstract 
motifs appears much earlier, 77,000 years ago in South Africa [8].  Given this long 
history, this art is one of the most valuable sources of humanity that has persisted to 
the present time. 

Beyond their value as an aesthetic expression, petroglyphs provide a rich source of 
information for researchers. Repeated motifs can be identified and traced through 
time and space, which in turn may shed light on the dynamic histories of human 
populations, patterns of their migrations and interactions, and even continuities to pre-
sent indigenous societies. However, the nature of petroglyphs poses an extremely dif-
ficult challenge. As in the case of any other artifacts of history, damages to petro-
glyphs are permanent and irreversible.  In addition, unlike other artifacts that can be 
preserved and protected within the confines of a controlled environment in a museum, 
petroglyphs are mostly left in their natural settings, exposed to elements of nature that 
will erode them inevitably with time. There is an urgent need to identify petroglyphs 
and to archive them for humanity. 

An understanding of similarity must be at the heart of any effort to analyze petro-
glyphs and other cultural artifacts. For example, an image of a horseman incised on a 
fossilized ostrich eggshell fragment was recently found among eolian deposits in the 
Gobi Desert, Mongolia [11]. An obvious thing to do with such an image in order to 
place it in a cultural context is to ask if a similar image exists among the many petro-
glyphs in the region. In Section 4.2 we show that we can support such queries.  

2.2 Background on Image Processing 

Another fundamental assumption in this work is that there is no automatic segmenta-
tion algorithm that can robustly segment rock art. To demonstrate this, we conducted 
a simple experiment on what is probably one of the most amiable images imaginable, 
the famous petroglyphs of Alta, Norway. 



We took one image of a reindeer as shown in Fig. 4.left, and tried segmenting it 
with six different methods: the Sobel method, Prewitt method, Roberts method, 
Laplacian of Gaussian method, Zero-cross method and Canny method. In each case 
we spent fifteen minutes adjusting the parameters to achieve the best (subjectively) 
feature extraction. The best result, using the Prewitt method, is shown in Fig. 4.right. 

 
Fig. 4. left) Reindeer rock art from Norway, dating to 4200 to 500 BC. The rock carvings have 
been retouched in bright red by researchers, making them extremely high contrast.  right) a 
segmentation of the image using the Prewitt method, carefully tuned. 

Note that while our efforts have paid off in that we have captured much of the ani-
mal in question, we are missing a large section of the rump. What is worse, we have 
many spurious lines corresponding to cracks in the rock. Of course, it is possible that 
a more sophisticated algorithm could be tuned to do a better job; however, this tuned 
version is unlikely to generalize to other petroglyphs. Furthermore, it is worth restat-
ing that this example is among the highest contrast, cleanest examples of rock art. 

2.3 Background on Human Computation 

The last five years has seen a flurry of research on Human Computation, much of it 
leveraging off the pioneering work of Luis von Ahn [2]. The essence of human com-
putation is to have computers do as much work as possible to solve a given problem, 
but to outsource certain critical steps to humans. These steps are ones which are diffi-
cult for computers, but simple for humans. One of the most famous examples is the 
Google Image Labeler, which is a program that allows the user to label random im-
ages to help improve the quality of Google’s image search results. Like many such ef-
forts, human time is donated for free, because the task is embedded in a fun game; 
hence the recently coined term, Games with a Purpose, or GWAP [3]. 

2.4 Distance Measures for Line Drawings 

As noted in Section 2.1, an effective and robust similarity measure is crucial to min-
ing petroglyphs and, as we shall see, in testing to see if a "skeleton" drawing submit-
ted to a CAPTCHA can be attributed to human intelligence. After soliciting feedback 
and advice from various researchers in the data mining and image processing com-
munity, and testing dozens of possible measures, we proposed a distance measured 
based on the Generalized Hough Transform (GHT) [16]. The utility of this measure 
can be subjectively judged in Fig. 2 and objectively measured by classifying hand 
drawn symbols (Farsi digits, icons, etc.) that are “petroglyph-like” [16]. 



The GHT is a useful method to detect arbitrary two-dimensional shapes [5][12], in 
which shapes are constituted of edge points (simply the dark pixels in the binary rep-
resentation of shapes). The goal of GHT is to find the best fit between a query shape 
Q and a candidate shape C. That is, if we place Q onto C (with only translation in the 
plane allowed), the number of matched edge points should be the maximal. 

For clarity and simplicity, here we give a toy example to illustrate how it works. 
Fig. 5.left shows a query shape Q and candidate shapes C1 and C2. A best fit between 
Q and C1 is also shown on the right of Fig. 5, and we can consider that Q is found in 
C1 at this particular alignment.  

 
Fig. 5. left) Toy examples of a query Q and candidate matches C1 and C2. Each cell is a pixel, 
and the dark colors denote edge points of shapes. right) The GHT aligns Q and C1 by maximiz-
ing matched edge points between them.  

The GHT can effectively detect shapes, but it does not explicitly encode a distance 
measure. To find a numeric evaluation of it, we defined the minimal unmatched edge 
points (MUE) of Q, which is simply the number of edge points in Q minus maximal 
matched points. In our example, with the similar shape C1, its value is 12 − 8 = 4 (re-
flected by the four arrows in Fig. 5.right). If we had compared Q to C2, the MUE 
would equal 6, meaning Q is less similar to C2 than C1.  

We also considered several slight variations of MUE to enable higher-level data 
mining algorithms, and we will use one of them, the clustering distance variant [16], 
in all experiments in this paper.  

3. CAPTCHA-ROCK 

3.1 A Simple Image-based Stickman CAPTCHA  

While the goal of this research is to introduce a method that will allow us to capture 
data from real photographs of petroglyphs, for ease of exposition we will begin dis-
cussing the problem as if our only intention were to produce an image-based 
CAPTCHA with artificial data.  
It is simple to write a program to produce random instances of a “stick figure”; Fig. 6 
shows four examples. 

 
Fig. 6. Four examples of a parameterized Stickman. 

C2Q C1

 



To ensure each stickman is unique (with very high probability), we have param-
eterized the code. The following features are parameterized: 

• The head size and aspect ratio 
• The length of the humerus, forearm, femur, tibia and foot  
• The angles of knees, elbows, ankle and torso (these may be asymmetric) 
There are other elements of a human stick figure that we could represent and pa-

rameterize, but this simple model is sufficient for our purposes.  
For reasons that we will see shortly, it is useful to ask what the average distance is 

between two randomly created figures under the GHT-distance measure discussed in 
the previous section. To calculate this, we generated 1,000 pairs of stickmen and cal-
culated the distance between each pair, summarizing the results in Fig. 7.   

 
Fig. 7. left) A pair of randomly generated stickmen. right) The distribution of GHT distances 
between 1,000 pairs of randomly generated stickmen. 

If we instead produce random stickmen, and ask humans to trace their outline on 
the screen with the mouse pointer (as in Fig. 8.left), we might expect the distances be-
tween the generated and traced outlines to be generally smaller. 

To verify this, we generated 20 stickmen and asked volunteers to trace them. How 
well a person can trace the stickmen depends on their dexterity, input device, screen 
size, etc. Given these variations, we asked three volunteers to trace each stickman on 
their own machines. Fig. 8.right shows the distribution of these distances.  

 
Fig. 8. left) A randomly generated stickman in black and a human tracing of it in red. right) The 
distribution of GHT distances between randomly generated stickmen and human tracings of 
them are shown with a finer bucket size (in red), because there is less data. The distribution of 
GHT distances between two randomly generated stickmen is shown for context (in blue).  

It is easy to see that we could use these results to create a simple stickman 
CAPTCHA. We could produce a stickman, and ask the user to trace it. If a human 
traces the stickman, we can be near certain that the distance to the template will be 
less than 3 (from Fig. 8). For simplicity here we assume that the attacker has the code 
to produce the stickmen, and simply sends a random stickman as his guess. If that is 
so, his guess will almost certainly be greater than 3 (from Fig. 7/Fig. 8) and we can 
reject his attempt. Of course the attacker could use an image processing algorithm to 
produce a “customized guess”, and we could counter by imbedding the stickman in 
field of distracters and distortions, however, a better idea is to find “stickmen” in rock 
art, the subject of the next section.  
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3.2 A CAPTCHA-ROCK System Helping Extract Data From Petroglyphs 

Motivated by our experiences with the stickmen CAPTCHA, we can now ask: is it 
possible to design a CAPTCHA system which provides high security (serves as a 
CAPTCHA) while collecting useful information about rock art (serves as a Human 
Computation tool)? The reCAPTCHA [2] proposed by Luis von Ahn is the ideal pa-
radigm to follow.  In this system, which is designed to transcribe degraded text from 
scanned books and newspapers, each test gives the user two words to recognize, one 
of which is a “control word”, whose answer is known, and the other one is an un-
known word. If the user can correctly type the “control word”, the reCAPTCHA as-
sumes that the inputs come from a human and the answer for the “unknown word” is 
correct (or at least plausible). Once an “unknown word” receives enough "votes" from 
a same answer, it can become a “control word”. This system has already transcribed 
several hundred million words, which OCR systems failed to parse.  

We can use the same idea to build our CAPTCHA-ROCK system. An example is 
shown in Fig. 9, in which the user is asked to trace both petroglyphs correctly to pass 
the CAPTCHA. 

 
Fig. 9. A CAPTCHA-ROCK consists of two rock art images: one control image and one un-
known image. Note that users do not know which one is which. 

There are still three extra problems/questions we must solve to make this work: 
• How should we build the initial “control image” set? 
To frustrate robots that break challenges by simple random guesses, the set of con-

trol words in reCAPTCHA contains more than 100,000 items. Do we also need such a 
large “control image” set? We believe that the answer is no. We can frustrate an at-
tacker that attempts to simply memorize the entire control image set (with solution 
tracings) by performing simple scale and translation operations to images. This means 
that even if the attacker's algorithm correctly detects which image is the control image 
(perhaps by color), the relative location of the petroglyph within the image may have 
changed just enough so that even if the attacker sends the right trace, it will be in the 
wrong location.  

As we shall show in the next section, our initial experiments show that even for a 
control set containing only 143 images, by using these simple scale and translation 
operations, CAPTCHA-ROCK has a pass rate of 0.020% to attackers, even after the  
attacker has been given a careful tracing for each image in the control set.  

• Is one trace per image enough?    
Assume two histograms in Fig. 8 have an overlap. To assure the low pass rate for 

robots, we have to set a smaller threshold. In this case a false negative occurs: some 
legitimate attempts by humans would be denied.  

Please trace both petroglyphs with your mouse pointer 

Help with the digitization of important cultural artifacts, visit www.cs.ucr.edu/~eamonn/anthropology/ 

Too hard? Get a different pair to work on 

Don’t understand? Get video or text help  

Can’t do this? Get an audio or text only test 

 



Our solution is to store multiple traces for one image. When a tentative solution is 
submitted by a user, we compare it to all traces and pass it if there is at least one dis-
tance below the threshold. Although human traces for the same image vary, by com-
paring to more than one "interpretation", the possibility of finding a close enough 
match increases. Note that this will not affect the pass rate for robot significantly. If a 
random trace is far from one trace, it is also far from other traces of the same image. 

Based on our experiments which will be presented in Section 4.1, three traces per 
image improve the human pass rate, without helping the attackers.  

• When can we promote an “unknown image” to a “control image”? 
Once we have recorded three traces for an “unknown image”, we promote it into 

the control set. Note that as a control image, the CAPTCHA-ROCK system will ob-
tain more traces for the image. What should we do with these additional traces? We 
could ignore them, we could add them to the original three traces, or we could tempo-
rarily merge the new offering with the other three, expunging the one that has the fur-
thest average distance from the others. We leave these considerations for future work. 

4. EXPERIMENTAL RESULTS 

4.1 Quantitative Evaluation of CAPTCHA-ROCK System 

We have designed all experiments such that they are not only reproducible, but easily 
reproducible. To this end, we have built a webpage [17] which contains all datasets 
and code used in this work. In this section, we intend to show that: 

• Our CAPTCHA-ROCK is very easy for humans to solve (high pass rate) and 
hard for robots (low pass rate). 

• Storing multiple traces for each image helps increase the pass rate for humans, 
while not affecting the pass rate for robots significantly. 

• A small “control image” set is sufficient, at least to bootstrap the system. 
We randomly chose 143 images from our rock art image database, and had four 

volunteers draw traces for each image. The volunteers worked completely inde-
pendely of each other.  We call this initial trace dataset Trace_ini.  

For reasons we will see shortly, we performed two rounds of rescaling and 2-
dimensional translation to each trace in Trace_ini. In the first round, we rescaled each 
trace image to 10%~50% of its original size, and translated it in 2 dimensions by 
plus/minus 0~3 times of  the size in the X and Y axis independently. We call this new 
dataset Trace_robot. In the second round, every 4 traces of the same image in 
Trace_ini were performed by a same rescale and transition, and this dataset is called 
Trace_human. 

As we assume that there is no automatic algorithm for extracting rock art data, we 
need to come up with an attack model. We make the pessimistic assumption that the 
attacker has our entire 143 image database, together with a human trace for each im-
age. These seems to suggest that if the attacker simply submits a random tracing, he 
would have a one in 143 chance of passing the test, but recall that the images have 
been rescaled/translated in the plane. Such distortion means that even if the attacker 
happens to send the correct trace, it will probably not line up with the stored template, 
and will fail the test due to the penalty to the distance of centers of mass.  



We first tested the system with one randomly chosen (of four possibilities) trace 
from Trace_human for the “control image”. To model the attacks from robots, each 
time we picked one trace from Trace_robot (but not those from the same person of 
the challenge trace). There were thus 3×143 tries for each challenge. As the human 
input, we picked the other three traces of the “control image” in Trace_human. 

Using a threshold of seven, only 41 of 245,388 robot tests could pass, a pass rate of 
0.014%; whereas 1,632 of 1,716 human tests passed, a pass rate of 94.99%. 

Then we tested with three traces for each image. As noted in Section 3.2, each in-
put from the user was compared to three traces of the “control image”, and if its dis-
tance to one of them was below the threshold, the user passed the test. Each time we 
picked three traces of the same image from Trace_human as traces of the “control im-
age”. To model the attacks from robots, each time we picked one trace from the fourth 
person in Trace_robot. Thus, there were 143 tries for each challenge. As the human 
input we picked the remaining trace of the “control image” in Trace_human. 

Using the same threshold of 7, only 22 of 81,796 robot tests could pass, a pass rate 
of 0.020%; while only 5 of 572 human tests could not pass, a pass rate of 99.13%. 

Although our pass rate for robots is slightly larger than the generally accepted fig-
ure of 0.01% [6], note that all results are based on the initial control image set, with 
only 143 images. We expect the robot rate to decrease with more data, while the hu-
man rate should stay almost constant. Further recall that these results assume the pes-
simistic and unrealistic assumption that the attacker has traces for the entire database.  

4.2 Supporting Similarity Search 

The major goal of this work is to produce a dataset that will enable research by an-
thropologists. However, a minor goal is to produce a tool for non-specialists to query 
a database of petroglyphs. This tool could be used to support tourism [7], and to en-
courage an appreciation of indigenous people’s cultural achievements.  

We envision the following scenario: A hiker on a trail spots a petroglyph, and 
wants to know if it is known, and if so, what anthropologists and/or tribal historians 
have said about it.  She photographs the petroglyph on her iPhone, traces the outline, 
and submits the query... 

In order for this query to return the correct answer, our system must have several 
invariances. Some are trivial, as we are operating on a binary representation of the 
data, color and contrast invariance is automatically achieved1. However, as shown in 
Fig. 10, there need to be at least somewhat invariant in size, angle of view, etc. 

 
Fig. 10. Left) A petroglyph from Utah that has been indexed in our database. Right) An image 
of the same petroglyph found on Flickr.com. Could this image be used as a query to retrieve the 
anthropologist’s annotated version in our database? 

                                                           
1 For faint petroglyphs changing the contrast/color balance can enhance the petroglyphs visibility [9] [10] 



To test the feasibility of this scenario we obtained several examples of images of 
petroglyphs that we know are in our database (referred to the “control image” set in 
Section 4.1), but which were taken on a different day, by a different person, with a 
different camera etc. To normalize our expectations we also obtained photographs of 
petroglyphs that are known not to be in our database. 

We had volunteers trace these petroglyph images. Note that in each case, these vol-
unteers had not seen the data in the database, and were not familiar with our project. 

Recall from the previous section that each petroglyph in our data collection had 
been traced by four independent volunteers. This means that for each petroglyph we 
had four models we could use to index it. We could also choose to have only one 
model for each petroglyph instead, by either averaging all four, or choosing the most 
typical one. However, here we kept all four models, both for simplicity, and because 
(as we shall see) it is instructive.  

Our small dataset in this preliminary experiment does not warrant calculating pre-
cision/recall or similar statistics. Instead, we show typical results, and archive all re-
sults at [17]. Fig. 11 shows an example of a query using a (different photograph of) 
petroglyph that is in our database. The results are quite promising. Note that the query 
was taken from an image that was not as tightly cropped, and the user issuing the 
query (rightly or wrongly) traced a hook-like appendage on the left leg of the figure. 
Furthermore, note that among the four tracings in the database there is significant dis-
agreement. For example, one individual did not trace the head as a circle. In spite of 
this, query-by-content is clearly successful in this example, as the first four matches 
are correct (the maximum possible). 

 
Fig. 11. left) A query petroglyph that happens to be in our database and its tracing.  right) The 
five nearest neighbors to the query; the first four all refer to the same image, the correct target. 

In Fig. 12, we see two more queries for which the relevant petroglyph (traced from 
a different photograph) is known to be in the database. For the “wheel” the 1st, 2nd and 
4th matches are correct, and the two others are at least plausible. For the bighorn sheep 
petroglyph, the first four matches are correct (the maximum possible), and the 5th 
match is also plausible.  

1st NN 2nd NN 3rd NN 4th NN 5th NN Query   
Trace      

Query Image 



 
Fig. 12. An abstract (top) and animal petroglyph (bottom) which had been traced and issued as 
queries to our database. The list of the five nearest neighbors to each are shown left to right.   

Finally, we consider the more difficult case, queries for which we know the rele-
vant petroglyph is not in the database. Here the judgment of quality is subjective. 
Note also that we might expect to do better and better at this case as the database 
grows larger and larger.  In Fig. 13 we show two queries and their best matches. In 
both cases the returned answers are reasonable.  

 
Fig. 13. left) An anthromorph is used as a query, and it retrieves another stylized human fig-
ure with similar limbs right) A petroglyph of concentric circles retrieves a "sunburst". 

5. CONCLUSIONS AND FUTURE WORK 

In this work, we consider the problem of digitizing large collections of rock art to en-
able the data mining of this neglected cultural resource. We have framed the feature 
extraction problem as a CAPTCHA, the first CAPTCHA we are aware of to produce 
and expect real-valued data. There are many private individuals that have on the order 
of hundreds of thousand of rock art images (i.e. the collection of Mark and Billo 
[10]), and Flicker.com appears to have on the order of one million rock art images. 
We believe that we could process all this data in less than one year, under realistic as-
sumptions.  

We note several limitations of our work. We could become victims of our own 
success, given that there are only tens of millions of rock images in existence, but 
there is a need for tens of millions of CAPTCHAs per day. So even if we capture only 
a small fraction of the CAPTCHA market, we may run out of rock art images. We be-
lieve that we may be able to bypass this issue by generating synthetic rock art images, 
in a spirit similar to the stickmen shown in Section 3.1. In addition, a significant frac-
tion of petroglyphs images may not be amenable to our system; our CAPTCHA is not 
usable by blind users; and our system may be difficult to use on small screens such as 
iPhones. All these issues are the subject of ongoing research.   

Query not true match 

Query Best match  

not true match 

not true match Query 

Query Best match  
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