Hierarchical Time-Series Clustering for Data Streams

Pedro Rodrigues, João Gama and João Pedro Pedroso

Computer Science Department - Faculty of Science Artificial Intelligence and Computer Science Laboratory University of Porto

Overview

- Motivation
- Related Work
- Divisive Analysis Clustering (DIANA)
- Online Divisive-Agglomerative Clustering (ODAC)
 - Behaviour
 - Structure
 - Algorithm Criteria
 - Splitting
 - Split Support
 - Aggregate
- Experimental Work
- Discussion and Future Work
- Summary

Motivation

- Many modern databases consist of continuously stored data from unclassified time-series
 - Power systems, financial market, web logs, network routers, etc...
- Environment is often so dynamic that our models must be always adapting
- Our goal is to design a system that:
 - hierarchically cluster time-series ("whole" clustering);
 - defines clusters of variables
 - one has no need to pre-define the number of clusters
 - is built incrementally, working online;
 - dynamically adapts to new data;
 - basically... works! ;-)

Related Work

- Parametric Clustering
 - Reconstructive models (tend to minimize a cost function)
 - K-means, K-medians, Simulated Annealing, ...
 - Generative models (assume instances are observations from a set of K unknown distributions
 - Gaussian Mixture Model using Expectation-Maximization, C-Means Fuzzy, ...
- Non-parametric Clustering (hierarchical models)
 - usually based on dissimilarities between elements of the same cluster
 - either agglomerative (AGNES) or divisive (DIANA)
- Data Streams
 - VFDT, VFDTc, UFFT, VFML...

Divisive Analysis Clustering (DIANA)

- Starts with one large cluster containing all time-series
- At each step the largest cluster is divided in two
- Stop when all clusters contain only one time-series
- Keep heights of splitting to construct a dendrogram

EUNITE dataset 20 variables 15973 examples 1-corr dissimilarity

Online Divisive-Agglomerative Clustering (ODAC)

• ODAC main characteristics:

- Expand Structure
 - divide clusters
- Contract Structure
 - aggregate clusters
- Other Issues
 - top-down strategy
 - incremental
 - works online
 - any time cluster definition
 - single scan on data

EUNITE dataset 20 variables 15973 examples 1-corr dissimilarity

ODAC Behaviour

ODAC Behaviour

ODAC Behaviour

Dissimilarity Measure

• DIANA uses real dissimilarity between time-series

$$d(a,b) = \sum_{i=1}^{n} \frac{|a^{i}-b^{i}|}{n}$$

• We could benefit from a ranged measure...

$$corr(a,b) = \frac{\sum_{i=1}^{n} a_{i}b_{i} - n\bar{a}\bar{b}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2} - n\bar{a}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2} - n\bar{b}^{2}}}$$

Incremental Correlation

• We can see that the sufficient statistics needed to compute correlation on the fly are...

$$A = \sum_{i=1}^{n} a_{i}$$

$$Corr(a,b) = \frac{\sum_{i=1}^{n} a_{i}b_{i} - n\bar{a}\bar{b}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2} - n\bar{a}^{2}}\sqrt{\sum_{i=1}^{n} b_{i}^{2} - n\bar{b}^{2}}}$$

$$B = \sum_{i=1}^{n} b_{i}$$

$$A2 = \sum_{i=1}^{n} a_{i}^{2}$$

$$B2 = \sum_{i=1}^{n} b_{i}^{2}$$

$$AB = \sum_{i=1}^{n} a_{i}b_{i}$$

$$N = n$$

$$Corr(a,b) = \frac{\sum_{i=1}^{n} a_{i}b_{i} - n\bar{a}\bar{b}}{\sqrt{A} - n\bar{b}^{2}}$$

$$AB - \frac{A \cdot B}{N}$$

$$AB - \frac{A \cdot B}{N}$$

Dissimilarity Measure - Diameter

• We use as dissimilarity measure between time-series *a* and *b*, at *n* examples:

$$d_n: \mathbb{N} \times \mathbb{N} \to [0,2]_{\mathbb{R}}$$
$$d_n(a,b) = 1 - corr_N(a,b)$$

• As in DIANA, we consider the highest dissimilarity between two time-series belonging to the same cluster as the cluster's *diameter*.

ODAC Structure

Splitting Criteria

- DIANA always splits clusters into single objects
- ODAC splits only when we have confidence on a good decision: *Hoeffding bound*.
- For *n* independent observations of variable v_k with mean $\overline{v_k}$ and range *R*, the Hoeffding bound states that with probability $1-\delta$ the true mean of the variable is at least $\overline{v_k} \epsilon_n$, where

$$\epsilon_n = \sqrt{\frac{R^2 \ln{(1/\delta)}}{2n}}$$

Splitting Criteria

- Let C_k be the largest current cluster on the system. We use an improved version of the splitting rule from DIANA:
- Rank variables $v_i \in C_k$ by average dissimilarity $(\bar{d}_n(i)_k)$, in descent order, ex: $\bar{d}_n(a)_k \ge \bar{d}_n(c)_k \ge \bar{d}_n(b)_k$
- Following the Hoeffding bound, we choose to split this cluster if $\bar{d}_n(a)_k \bar{d}_n(c)_k > \epsilon_n$ ensuring, with confidence $1-\delta$, that this difference is significant.
- But this is not all... what if the two most dissimilar have the same average dissimilarity? The cluster would never be split!

Splitting Criteria Enhanced

Dissimilarity Space View

- If $\bar{d}_n(a)_k \bar{d}_n(c)_k \le \epsilon_n$ then we test $\bar{d}_k(c) \bar{d}_k(b) > \epsilon_n$
- If this is true, then we move both variables a and c to the new cluster and then test for the other variables.
- If not, just follow the ranking until a cut point is found, or no split will occur.

Splitting Criteria Enhanced

• After a split point has been detected, DIANA changes to the new cluster those variables that are closer, in average, to the splinter group then to the remaining group.

$$\overline{d}(b)_{k} - \overline{d}(b)_{s} > 0$$

• ODAC has a different perspective:

Are we confident that the other variables should move to the new cluster along those already moved?

• Move variable b to new cluster C_s if

$$\overline{d}_n(b)_k - \overline{d}_n(b)_s > \epsilon_n$$

Split Support Criteria

- After a split, we only keep the new divided structure if the change really improves a quality measure, the *Divisive Coefficient*.
- Let dd(i) be the diameter of the last cluster C_k to which variable v_i belonged, divided by the global diameter. The divisive coefficient of a cluster definition *clust* is

$$DC_{clust} = 2(1 - \sum_{i=1}^{m} dd(i)/n)$$

• A new cluster definition *clust2* is kept only if

$$DC_{clust2} - DC_{clust} > \epsilon_n$$

ensuring, with confidence $1-\delta$, that the new structure is better (according to the quality measure, of course) than the previous.

Aggregate Criteria

- If at some point, no split occur in any of the existent clusters, we proceed to agglomerative clustering.
- Let C_k be the smallest current cluster of the definition clust.
- Assume C_k 's parent is a leaf and compute corresponding DC_{clust2}
- Following the Hoeffding bound, we choose this cluster definition if $DC_{clust} DC_{clust2} \le \epsilon_n$

assuming no confidence that this difference is significant.

• All of C_{ν} 's parent's children are pruned!

Experimental Work

Discussion and Future Work

- The system is built incrementally and behaves dynamically; Works online, giving an any time cluster definition;
- The system stores all information about variables since it started; Concept drift will clarify the notion of learn and forget;
- Some times the system stalls at a given cluster, dividing and aggregating consecutively;
- Benefits from saving computations are still to assure as the divisive coefficient is calculated every time a split support or aggregate decision must be made;
- Introducing new time-series along the iterations is not yet implemented but is on the forge...

Summary

- ODAC a new algorithm to incrementally cluster online timeseries in data streams:
 - hierarchically cluster time-series ("whole" clustering);
 - top-down strategy;
 - is built incrementally, working online;
 - dynamically adapts to new data: dividing and aggregating;
 - any time cluster definition;
 - single scan on data;
 - basically... works ;-)...but should and will (!) work better!
 - What is missing in ODAC?

You tell us, please!

Thank You!

Pedro Rodrigues, João Gama and João Pedro Pedroso

Computer Science Department - Faculty of Science Artificial Intelligence and Computer Science Laboratory University of Porto

DIANA Algorithm

- 1. Select cluster C_k with highest diameter
- 2. Find the object $s \in C_k$ with highest average dissimilarity to all other objects $i \in C_k$ and start a new cluster C_s (splinter group) with this object.
- 3. For each object $i \in C_k \setminus C_s$ compute $D_i = \{average\ d(i,j), j \notin C_s\} \{average\ d(i,j), j \in C_s\}$
- 4. Find the object h with largest difference D_h . If $D_h > 0$ then h is, on average, closer to the splinter group than to the old group, so move h to C_s .
- 5. Repeat steps 3. and 4. until all D_i are negative
- 6. If there is a cluster C_k with $\#C_k > 1$ then goto 1.

ODAC Algorithm

- 1. Get next n_{min} examples
- 2. Update and propagate sufficient statistics for all variables
- 3. Compute the Hoeffding bound (\in)
- 4. Choose next cluster C_k in descending order of diameters
- 5. TestSplit() in cluster C_{ν}
- 6. If we found a split point, goto 12. with new cluster tree
- 7. If still exists a cluster C_{k} not yet tested for splitting goto 4.
- 8. Choose next cluster C_{ι} in ascending order of diameters
- 9. TestAggregate() in cluster C_{k}
- 10. If we found an aggregation then goto 12. with new cluster tree
- 11. If still exists a cluster C_{k} not yet tested for aggregation goto 8.
- 12. If not end of data, goto 1.