
 1

Performance Measurement of AES Crypto Algorithm in Microcode Environment of

IXP2400 Platform

Piyush Ranjan Satapathy

Department of Computer Science & Engineering

University of California, Riverside

Riverside, CA 92521

piyush@cs.ucr.edu

Abstract

In this report first i highlight the mathematical

properties of 128-bit AES encryption and then

keeping these properties in view i port the

algorithm in microcode environment of the

IXP2400 platform. Then I do some performance

measurement based on the memory optimization

and thread optimization. I apply a pipelined and

best parallelized approach of implementing the

AES algorithm. I also studied the crypto unit of

IXP2850 and measured the performance of 3DES

algorithm performed on this crypto unit. Finally I

try to compare the performance results of the

algorithm with the version written in MicroC by

authors from Tsinghua University [1].

1. Introduction

Data Security is going to have increased importance as

the Internet continues to gain popularity in ecommerce

activities. Therefore, Security is given its own

category in EEMBC Benchmarks. The Security

category includes several common algorithms for data

encryption, decryption and hashing. One algorithm,

rijndael, is the new Advanced Encryption Standard

(AES). AES is computationally intensive and

furthermore, networks must apply it to every packet

crossing a secure link. To address this problem and

add security functions to network processors, a

straightforward approach—one that achieves

comparable performance—is to implement them in

hardware. Unfortunately, many security chips or

coprocessors can only handle a few algorithms, while

most Internet security standards allow flexibility in

algorithm selection. In addition, cryptographic

hardware is not cheap or readily exportable. To

compensate for these drawbacks, vendors often build

security functionality directly into the same silicon as

the network processor. But this method is still

inflexible in that it cannot implement multiple

algorithms (the Intel IXP2850 network processor, for

example, has only two block ciphers and one hash

algorithm). Besides, data must traverse shared memory

and buses at least four times. So the resource

contention problem actually prevents those inline

cryptographic units from reaching their claimed

performance. Hence, the implementation of

cryptographic applications on network processors via

software is still necessary. Clearly, the most

challenging work for software implementations is to

provide performance guarantees, for instance, covering

the handling packets at high speed. On general-

purpose processors, traditional optimization techniques

emphasize improving instruction level parallelism.

This report studies the architectural properties for AES

cryptographic algorithm on an actual Intel IXP2400

network processor. The rest of the report has been

organized as below. Section 2 presents the over view

of the 128-bit AES algorithm. Section3 describes some

current proposition of the parallel and pipelined

implementation of AES algorithm. Section 4 describes

the Intel Ixp2400 architecture. Next section describes

the experiments and some results. And section 6

concludes the paper.

2. AES Algorithm

AES (Advanced Encryption Standard), which

is also named as Rijndael [11], is the standard of AES

[12]. It has a variable key size of 128, 192 or 256 bits.

The symmetric and parallel structure of this algorithm

gives implementers a lot of flexibility, and has not

allowed effective cryptanalytic attacks. AES can be

well adapted to a wide range of modern processors

such as Pentium, RISC and parallel processors. AES

has been put into wide use up to now. One of the

examples is DMSEnvoy developed by Distributed

Management System Ltd.

 AES is a substitution-linear transformation

network with 10, 12 or 14 rounds, depending on the

key size. A data block to be encrypted by AES is split

into an array of bytes, and each encryption operation is

byte-oriented. AES's round function consists of four

layers. In the first layer, an 8x8 S-box is applied to

each byte. The second and third layers are linear

 2

mixing layers, in which the rows of the array are

shifted, and the columns are mixed. In the fourth layer,

sub key bytes are XORed into each byte of the array.

In the last round, the column mixing is omitted. So the

algorithm consists of 4 main steps: a substitution step,

a shift row step, a mix column step and a sub key

addition step. The substitution step consists of Sboxes.

The shift row step consists of a cyclic-shifting of the

bytes within the rows.The key addition is straight

forward XOR operations between the data and the key.

Fig1. (Architecture of Advanced Encryption

Standard Data path)
Here I have chosen AES algorithm of key length of

128 bits and of cipher block chaining (cbc) encryption.

The Rijndael algorithm is selected by National

Institute of Standards and technology (NIST) as a new

Advanced Encryption Standards (AES). The Rijndael

algorithm is based on arithmetic in a finite Galois

field, GF (2
8
). We consider only operations using a

128-bit cipher key and 128-bit data blocks, although

the algorithm scales to accommodate different key and

data block sizes. The algorithm requires 11 rounds.

Each round operates on the state, a 4 x 4 matrix of 8-

bit values. Each round involves up to four basic

transformations:

1. Byte Substitution (ByteSub) – Each state byte is

replaced with an affine transformation of it’s

multiplicative inverse in GF (2
8
).

2.2.2.2. ShiftRow – Each row of the state is cyclically

shifted by i bytes, where i is the row number.

3.3.3.3. MixColumn – Each column of the state is treated as

a polynomial over GF (2
8
), and multiplied by the

fixed polynomial, c(x) = ‘03’x
3
 + ‘01’x

2
+ ‘01’x +

‘02’, modulo x
4
+1.

4.4.4.4. AddRoundKey – A bitwise XOR of the state and

the round key. The round key is an extension of the

cipher key unique to each round. The algorithm

operates in eleven rounds. The first round performs

only the AddRoundKey transformation, while the

middle 9 rounds perform all four transformations. The

final round performs the ByteSub, ShiftRow, and

AddRoundKey transformations, omitting the

MixColumn operation.

The main loop of the Rijndael AES algorithm

implementation is implemented with a series of table

lookups and functionally reduced to operations that is

be of the form:

 Fig2. (C or Java Code of the AES algorithm)

This code can be implemented as combinations of the

following basic operations:

1. BYTE SELECT => t[i+...] is a byte select
2. TABLE LOOK UP => T1[xxx] (the byte

selected is the index for the table)

3. SHIFT/MASK => >> 24,16,8 & 0xFF
4. XOR => ^ (bit-wise logical Exclusive OR)

Where, Key [][] is the extended encryption key.

3. Parallel and Pipelined Approach to AES

The paper [2] presents a single-chip parallel

architecture for advanced encryption standard (AES).

The proposed architecture uses the thread approach,

which integrates fully pipelined parallel units, that

process 128 bits/cycle and quadruples the data

throughput. The threads architecture allows the

reduction of the clock rate by a factor of four, while

maintaining the data throughput, and consumes lesser

power. The prototype runs at data rate of 7.68 Gbps on

a Xilinx xc2V1500 Virtex-II FPGA. The data rate

shows that the proposed thread approach produces one

of the fastest single-chip FPGA implementation

currently available. In addition, the proposed

architecture is scalable to 192, 256 and higher bits.

The data pipeline is designed noting that the complex

middle round transformations can be reduced to a

series of look-up-table operations and bitwise XOR

operations, using the T-table methods outlined in [6].

Since the look-up-tables can be mapped into the

dedicated Virtex-II SelectRAM block RAM (BRAM)

resources, and bitwise XORs are easily implemented

in Virtex-II configurable logic blocks (CLBs), the T-

table optimizations are ideal for our implementation.

One middle round of the pipeline is illustrated below

(Figure 3). The individual round is repeated 11 times

to form the entire pipeline (the specifics of the first

 3

and last rounds are not explained here, though they

deviate from the middle rounds).

Fig3. Rijndael Middle Round

For each round, every cycle we take in 32-bits and

output 32-bits (a column of the input and output state

matrices, respectively). Therefore, four cycles are

required per 128-bit data block. Each 32-bit output is

the result of XORing four 32-bit data values (one from

each of the four T-tables) with a 32-bit word of the key

round. The correct T-table values are determined from

the state. Since all 128-bits of the state are required for

T-table addressing, and the design is pipelined, an

entire 128-bit state matrix is registered (taking 4

cycles) in one of two register banks (A, comprised of

32-bit registers A0, A1, A2, and A3, or B, comprised

of 32-bit registers

4. Intel IXP2400 Architecture

Closely examining the IXP2400’s hardware

architecture, shown in Figure 1, helps to elucidate the

implementation and optimization. IXP2400 is a

member of Intel’s second-generation network

processor family. Like its predecessor, IXP1200,

IXP2400 is also a 32-bit RISC-based multicore system

that exploits the system-on-chip (SOC) technique for

deep packet inspection, traffic management, and high-

speed forwarding. The 600-MHz XScale core is a

general-purpose processor used for exception

handling, slow-path processing, and other control

plane tasks. The eight 600MHz micro engines (MEs)

are data plane PEs, connected in two clusters. MEs in

the same cluster share a common command bus, which

they use to forward memory and I/O requests to other

relevant units. Adjacent MEs (referred to as next

neighbors) connect together in a pipeline with their

nearest neighbors to provide one-way communication.

Intel designed the 32-bit media switch fabric and PCI

interface to connect to a media access controller and

external devices. Unlike general-purpose processors—

which rely heavily on a large cache and efficient cache

replacement policies to improve performance—the

lack of locality in packet processing has forced

network processor designers to come up with

innovative memory and PE architectures. For example,

IXP2400 has a distributed, shared memory hierarchy

that supports two types of external memory: RDRAM

and quad-data rate SRAM. In addition, the processor

includes a 16-Kbyte, on-chip, scratch SRAM (shared

among all MEs), plenty of registers, and a small

amount of local memory per ME. In Table 1, we list

the capacity, transfer size, reference latency, and the

typical usage of these registers and memories. As

shown in the table, memory access latencies have not

kept pace with ME processing speed. For instance, the

minimum read latency for fastest shared SRAM

(scratch) is 100 ME cycles. To solve this problem, the

IXP architecture uses eight zero-thread-switching-

overhead hardware hard ware threads for interleaved

operation—one thread does computation while others

block, waiting for memory operations to complete.

Thread swapping can be software controlled, and MEs

can perform asynchronous memory and I/O operations

using multiple signals that indicate the completion of

these references. Moreover, each ME supports a single

cycle arithmetic logic unit (ALU) with shifter, a

multiply unit, and other specially designed I/O

instructions.

Fig4. (IXP2400 Chassis Concept Block Diagram)

Name SizeBytes Transfer

Size(Bytes)

Reference

latency in

cycles

GPR/ME 256*4

bytes

4 1

TR/ME 512*4 4 1

NNR/ME 128*4 4 1

LM/ME 640*4 4 3

Scratch 16K 4 60

SRAM 64M 4 90

DRAM 1G 16 120

Table1. (Characteristics of IXP2400 register and

Memories)

 4

5. Experiments and Results

To observe the architectural characteristics of AES

cryptographic algorithm and its utilization of internal

resources and to detect performance bottlenecks, i

conducted experiments under Workbench 4.1, a cycle

accurate IXP2400 simulator. My experiments covered

600MHz ME configurations, 200-MHz SRAMs, and

400-MHz RDRAMs. I compiled the source code using

the Intel IXP MicroCode Assembler 4.1 instruction

sets, which offers the basic instruction and language

optimizations. I used up 1 MEs (all 8 threads) in one

ME cluster, as described earlier. The algorithm

includes several loops that consume the vast majority

of all processing time. Other operations, such as key

scheduling and able initialization, are pre calculated at

set-up time by slow path processors (such as the

XScale in the IXP2400). Thus, the work focuses on the

algorithm characteristics of the inner loops, while

many related statistics include other portions, even

those that contribute little to overall performance.

Some of the results found from the simulation are

plotted as below.

MicroEngine Utilisation Percentage

0%

20%

40%

60%

80%

100%

8 Threads 4Threads 2Threads 1Thread

No of Threads in Execution

P
e
rc
e
n
ta
g
e Idle

Stalled

Aborted

Executing

Fig5. MicroEngine utilization Percentage

Fig5 describes the utilization of 1 Micro Engine in

percentage keeping threads as a parameter. I

change the number of threads in a single micro

engine and observe the idle time, stalled time,

aborted time and execution time of that particular

micro engine. It’s obvious from the above graph

that as AES is better performed in threaded

platform rather than 1 thread. This is because the

implementation of the algorithm is having

significant memory accesses. And each time a

thread accesses a memory it shifts the control to

the next thread and thus it enhances the execution

percentages of the micro engine.

Command Bus Arbiter Statistics

0%

20%

40%

60%

80%

100%

8
Th
re
ad
s

1T
hr
ea
d

8T
hr
ea
ds

1T
hr
ea
d

None-SRAM SRAM

P
e
rc
e
n
ta
g
e

idle due to memory

queue fullness

Idle due to No request

Used

Fig6. Non-SRAM and SRAM Command Bus Arbiter

Fig6 depicts the SRAM command bus arbiter statistics

for a single micro engine under different threads. Its

observed that the usage of None-SRAM is higher than

the usage of SRAM. As I have implemented the most

of the memory operation in Scratch pad and DRAM so

is the reason to justify the above graph.

Throughput Improvement for 1 MicroEngine with

different threads

0

100

200

300

400

500

8 Threads 4Threads 2Threads 1Thread

No of threads

T
h
ro
u
g
h
p
u
t(
M
IP
S
)

Series1

Fig7. Throughput of 1 Micro Engine with

different number of threads

I performed the memory throughput across different

threads keeping the micro engine number fixed at 1

and plotted the graph as shown in the fig7. It’s

observed that the throughput increases if we increase

the number of the threads.

AES Throughput Across MicroEngines

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8

No of MicroEngines

T
h
ro
u
g
h
p
u
t(
M
IP
S
)

Fig8. Throughput with different number of Micro

Engines.

 5

I executed the algorithm in different number of

micro engines. As obvious it is, the throughput

increases with the increase number of micro

engine.

9. Conclusions:

I coded the AES algorithm in assemble language

of IXP2400 Intel Network processor and did some

performance measurement on the basis of

throughput, memory utilization and micro engine

utilization. The results clearly demonstrate that

crypto algorithms can best be implemented in

network processor with the usage of

multithreaded architecture. And also its observed

that parallelization and pipelining in AES crypto

algorithm can be implemented to some extent in

IXP2400 Network processor which is my next

focused area of work.

Acknowledgement

I would like to thank Yan Luo and Chris Baron for

their kind help and support to make me understand the

architecture and working style of the Intel IXP

Network processor.

References:

1. “Optimization and Benchmark of

 Cryptographic Algorithms on Network

 Processors”by Zhangxi Tan et. al, IEEE

 Micro, September/October 2004 Vol 24, No5,

 PP55-69

2. “A novel Pipelined Threads Architecture

 for AES Encryption Algorithm”by Mehboob

 Alam et al, ASAp’02, IEEE

3. “High Throughput, Parallelized 128-bit AES

 Encryption in a resource-Limited FPGA”by

 Christopher Caltagirone et. al, SPAA’03,

 ACM.

4. “AES Finalist Algorithm: The Rijndael Block

 Cipher” by Mel Tsai, University of California,

 Berkeley.

5. “IXP2400_IXP2800_PRM” A reference

 manual for Assemble code in Intel IXP2400

 platform Available with Intel IXP

 simulator version 4.1.6.

6. [4] “The Rijndael Block Cypher: AES

 Proposal”, Joan Daemen, Vincent Rijmen.

 First AES Candidate Conference (AES1),

 August 1998.

