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Abstract 

In this report first i highlight the mathematical 

properties of 128-bit AES encryption and then 

keeping these properties in view i port the 

algorithm in microcode environment of the 

IXP2400 platform. Then I do some performance 

measurement based on the memory optimization 

and thread optimization. I apply a pipelined and 

best parallelized approach of implementing the 

AES algorithm. I also studied the crypto unit of 

IXP2850 and measured the performance of 3DES 

algorithm performed on this crypto unit. Finally I 

try to compare the performance results of the 

algorithm with the version written in MicroC by 

authors from Tsinghua University [1].    

 

1.  Introduction 

 
Data Security is going to have increased importance as 

the Internet continues to gain popularity in ecommerce 

activities. Therefore, Security is given its own 

category in EEMBC Benchmarks. The Security 

category includes several common algorithms for data 

encryption, decryption and hashing. One algorithm, 

rijndael, is the new Advanced Encryption Standard 

(AES). AES is computationally intensive and 

furthermore, networks must apply it to every packet 

crossing a secure link. To address this problem and 

add security functions to network processors, a 

straightforward approach—one that achieves 

comparable performance—is to implement them in 

hardware. Unfortunately, many security chips or 

coprocessors can only handle a few algorithms, while 

most Internet security standards allow flexibility in 

algorithm selection. In addition, cryptographic 

hardware is not cheap or readily exportable. To 

compensate for these drawbacks, vendors often build 

security functionality directly into the same silicon as 

the network processor. But this method is still 

inflexible in that it cannot implement multiple 

algorithms (the Intel IXP2850 network processor, for 

example, has only two block ciphers and one hash 

algorithm). Besides, data must traverse shared memory 

and buses at least four times. So the resource 

contention problem actually prevents those inline 

cryptographic units from reaching their claimed 

performance. Hence, the implementation of 

cryptographic applications on network processors via 

software is still necessary. Clearly, the most 

challenging work for software implementations is to 

provide performance guarantees, for instance, covering 

the handling packets at high speed. On general-

purpose processors, traditional optimization techniques 

emphasize improving instruction level parallelism.  

 

This report studies the architectural properties for AES 

cryptographic algorithm on an actual Intel IXP2400 

network processor. The rest of the report has been 

organized as below. Section 2 presents the over view 

of the 128-bit AES algorithm. Section3 describes some 

current proposition of the parallel and pipelined 

implementation of AES algorithm. Section 4 describes 

the Intel Ixp2400 architecture. Next section describes 

the experiments and some results. And section 6 

concludes the paper. 
 

2.  AES Algorithm 

  
AES (Advanced Encryption Standard), which 

is also named as Rijndael [11], is the standard of AES 

[12]. It has a variable key size of 128, 192 or 256 bits. 

The symmetric and parallel structure of this algorithm 

gives implementers a lot of flexibility, and has not 

allowed effective cryptanalytic attacks. AES can be 

well adapted to a wide range of modern processors 

such as Pentium, RISC and parallel processors. AES 

has been put into wide use up to now. One of the 

examples is DMSEnvoy developed by Distributed 

Management System Ltd. 

 AES is a substitution-linear transformation 

network with 10, 12 or 14 rounds, depending on the 

key size. A data block to be encrypted by AES is split 

into an array of bytes, and each encryption operation is 

byte-oriented. AES's round function consists of four 

layers. In the first layer, an 8x8 S-box is applied to 

each byte. The second and third layers are linear 
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mixing layers, in which the rows of the array are 

shifted, and the columns are mixed. In the fourth layer, 

sub key bytes are XORed into each byte of the array. 

In the last round, the column mixing is omitted. So the 

algorithm consists of 4 main steps: a substitution step, 

a shift row step, a mix column step and a sub key 

addition step. The substitution step consists of Sboxes. 

The shift row step consists of a cyclic-shifting of the 

bytes within the rows.The key addition is straight 

forward XOR operations between the data and the key. 

 
 

Fig1. (Architecture of Advanced Encryption 

Standard Data path) 
Here I have chosen AES algorithm of key length of 

128 bits and of cipher block chaining (cbc) encryption. 

The Rijndael algorithm is selected by National 

Institute of Standards and technology (NIST) as a new 

Advanced Encryption Standards (AES). The Rijndael 

algorithm is based on arithmetic in a finite Galois 

field, GF (2
8
). We consider only operations using a 

128-bit cipher key and 128-bit data blocks, although 

the algorithm scales to accommodate different key and 

data block sizes. The algorithm requires 11 rounds. 

Each round operates on the state, a 4 x 4 matrix of 8-

bit values. Each round involves up to four basic 

transformations: 

1. Byte Substitution (ByteSub) – Each state byte is 

replaced with an affine transformation of it’s 

multiplicative inverse in GF ( 2
8 
). 

2.2.2.2.    ShiftRow – Each row of the state is cyclically 

shifted by i bytes, where i is the row number. 

3.3.3.3. MixColumn – Each column of the state is treated as 

a polynomial over GF ( 2
8
), and multiplied by the 

fixed polynomial, c(x) = ‘03’x
3
 + ‘01’x

2 
+ ‘01’x + 

‘02’, modulo x
4
+1. 

4.4.4.4. AddRoundKey – A bitwise XOR of the state and 

the round key. The round key is an extension of the 

cipher key unique to each round. The algorithm 

operates in eleven rounds. The first round performs 

only the AddRoundKey transformation, while the 

middle 9 rounds perform all four transformations. The 

final round performs the ByteSub, ShiftRow, and 

AddRoundKey transformations, omitting the 

MixColumn operation. 

 

The main loop of the Rijndael AES algorithm 

implementation is implemented with a series of table 

lookups and functionally reduced to operations that is 

be of the form:  

  Fig2. (C or Java Code of the AES algorithm) 

This code can be implemented as combinations of the 

following basic operations: 

1. BYTE SELECT => t[i+...] is a byte select  
2. TABLE LOOK UP => T1[xxx] (the byte 

selected is the index for the table)  

3. SHIFT/MASK => >> 24,16,8 & 0xFF  
4. XOR => ^ ( bit-wise logical Exclusive OR)  

Where, Key [][] is the extended encryption key.  

3.  Parallel and Pipelined Approach to AES 

 
The paper [2] presents a single-chip parallel 

architecture for advanced encryption standard (AES). 

The proposed architecture uses the thread approach, 

which integrates fully pipelined parallel units, that 

process 128 bits/cycle and quadruples the data 

throughput. The threads architecture allows the 

reduction of the clock rate by a factor of four, while 

maintaining the data throughput, and consumes lesser 

power. The prototype runs at data rate of 7.68 Gbps on 

a Xilinx xc2V1500 Virtex-II FPGA. The data rate 

shows that the proposed thread approach produces one 

of the fastest single-chip FPGA implementation 

currently available. In addition, the proposed 

architecture is scalable to 192, 256 and higher bits. 

 

The data pipeline is designed noting that the complex 

middle round transformations can be reduced to a 

series of look-up-table operations and bitwise XOR 

operations, using the T-table methods outlined in [6]. 

Since the look-up-tables can be mapped into the 

dedicated Virtex-II SelectRAM block RAM (BRAM) 

resources, and bitwise XORs are easily implemented 

in Virtex-II configurable logic blocks (CLBs), the T-

table optimizations are ideal for our implementation. 

One middle round of the pipeline is illustrated below 

(Figure 3). The individual round is repeated 11 times 

to form the entire pipeline (the specifics of the first 
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and last rounds are not explained here, though they 

deviate from the middle rounds). 

 
Fig3. Rijndael Middle Round 

 
For each round, every cycle we take in 32-bits and 

output 32-bits (a column of the input and output state 

matrices, respectively). Therefore, four cycles are 

required per 128-bit data block. Each 32-bit output is 

the result of XORing four 32-bit data values (one from 

each of the four T-tables) with a 32-bit word of the key 

round. The correct T-table values are determined from 

the state. Since all 128-bits of the state are required for 

T-table addressing, and the design is pipelined, an 

entire 128-bit state matrix is registered (taking 4 

cycles) in one of two register banks (A, comprised of 

32-bit registers A0, A1, A2, and A3, or B, comprised 

of 32-bit registers 

 

4. Intel IXP2400 Architecture 

 
Closely examining the IXP2400’s hardware 

architecture, shown in Figure 1, helps to elucidate the 

implementation and optimization. IXP2400 is a 

member of Intel’s second-generation network 

processor family. Like its predecessor, IXP1200, 

IXP2400 is also a 32-bit RISC-based multicore system 

that exploits the system-on-chip (SOC) technique for 

deep packet inspection, traffic management, and high-

speed forwarding. The 600-MHz XScale core is a 

general-purpose processor used for exception 

handling, slow-path processing, and other control 

plane tasks. The eight 600MHz micro engines (MEs) 

are data plane PEs, connected in two clusters. MEs in 

the same cluster share a common command bus, which 

they use to forward memory and I/O requests to other 

relevant units. Adjacent MEs (referred to as next 

neighbors) connect together in a pipeline with their 

nearest neighbors to provide one-way communication. 

Intel designed the 32-bit media switch fabric and PCI 

interface to connect to a media access controller and 

external devices. Unlike general-purpose processors—

which rely heavily on a large cache and efficient cache 

replacement policies to improve performance—the 

lack of locality in packet processing has forced 

network processor designers to come up with 

innovative memory and PE architectures. For example, 

IXP2400 has a distributed, shared memory hierarchy 

that supports two types of external memory: RDRAM 

and quad-data rate SRAM. In addition, the processor 

includes a 16-Kbyte, on-chip, scratch SRAM (shared 

among all MEs), plenty of registers, and a small  

amount of local memory per ME. In Table 1, we list 

the capacity, transfer size, reference latency, and the 

typical usage of these registers and memories. As 

shown in the table, memory access latencies have not 

kept pace with ME processing speed. For instance, the 

minimum read latency for fastest shared SRAM 

(scratch) is 100 ME cycles. To solve this problem, the 

IXP architecture uses eight zero-thread-switching-

overhead hardware hard ware threads for interleaved 

operation—one thread does computation while others 

block, waiting for memory operations to complete. 

Thread swapping can be software controlled, and MEs 

can perform asynchronous memory and I/O operations 

using multiple signals that indicate the completion of 

these references. Moreover, each ME supports a single 

cycle arithmetic logic unit (ALU) with shifter, a 

multiply unit, and other specially designed I/O 

instructions. 

 
Fig4. (IXP2400 Chassis Concept Block Diagram) 

 

Name SizeBytes Transfer 

Size(Bytes) 

Reference 

latency in 

cycles 

GPR/ME 256*4 

bytes 

4 1 

TR/ME 512*4 4 1 

NNR/ME 128*4 4 1 

LM/ME 640*4 4 3 

Scratch 16K 4 60 

SRAM 64M 4 90 

DRAM 1G 16 120 

Table1. (Characteristics of IXP2400 register and 

Memories) 
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5. Experiments and Results 

 
To observe the architectural characteristics of AES 

cryptographic algorithm and its utilization of internal 

resources and to detect performance bottlenecks, i 

conducted experiments under Workbench 4.1, a cycle 

accurate IXP2400 simulator. My experiments covered 

600MHz ME configurations, 200-MHz SRAMs, and 

400-MHz RDRAMs. I compiled the source code using 

the Intel IXP MicroCode Assembler 4.1 instruction 

sets, which offers the basic instruction and language 

optimizations. I used up 1 MEs (all 8 threads) in one 

ME cluster, as described earlier. The algorithm 

includes several loops that consume the vast majority 

of all processing time. Other operations, such as key 

scheduling and able initialization, are pre calculated at 

set-up time by slow path processors (such as the 

XScale in the IXP2400). Thus, the work focuses on the 

algorithm characteristics of the inner loops, while 

many related statistics include other portions, even 

those that contribute little to overall performance. 

Some of the results found from the simulation are 

plotted as below. 
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Fig5. MicroEngine utilization Percentage 

 

Fig5 describes the utilization of 1 Micro Engine in 

percentage keeping threads as a parameter. I 

change the number of threads in a single micro 

engine and observe the idle time, stalled time, 

aborted time and execution time of that particular 

micro engine. It’s obvious from the above graph 

that as AES is better performed in threaded 

platform rather than 1 thread. This is because the 

implementation of the algorithm is having 

significant memory accesses. And each time a 

thread accesses a memory it shifts the control to 

the next thread and thus it enhances the execution 

percentages of the micro engine.  
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Fig6. Non-SRAM and SRAM Command Bus Arbiter 

 

Fig6 depicts the SRAM command bus arbiter statistics 

for a single micro engine under different threads. Its 

observed that the usage of None-SRAM is higher than 

the usage of SRAM. As I have implemented the most 

of the memory operation in Scratch pad and DRAM so 

is the reason to justify the above graph. 
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Fig7. Throughput of 1 Micro Engine with 

different number of threads 
 

I performed the memory throughput across different 

threads keeping the micro engine number fixed at 1 

and plotted the graph as shown in the fig7. It’s 

observed that the throughput increases if we increase  

the number of the threads. 
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Fig8. Throughput with different number of Micro 

Engines. 
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I executed the algorithm in different number of 

micro engines. As obvious it is, the throughput 

increases with the increase number of micro 

engine. 

 

9. Conclusions: 

 

I coded the AES algorithm in assemble language 

of IXP2400 Intel Network processor and did some 

performance measurement on the basis of 

throughput, memory utilization and micro engine 

utilization. The results clearly demonstrate that 

crypto algorithms can best be implemented in 

network processor with the usage of 

multithreaded architecture. And also its observed 

that parallelization and pipelining in AES crypto 

algorithm can be implemented to some extent in 

IXP2400 Network processor which is my next 

focused area of work. 
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