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Abstract

We present an interactive approach for an-
imating the evolution of a city, adding to
previous work in computer graphics related to
automating the process of creating realistic-
looking cities. Specifically, we combine the
visual aspects of a graphical model with an
optimization-driven solver to aid entertainers
and urban developers alike in synthesizing the
controlled growth and decay of a city over
time. Our approach uses a hierarchical model
based on primitive units of zoning and various
heuristics taken from sociological and empirical
data about real-world cities. We break down
the city spatially into primitive units of zoning
blocks, and the system performs optimization
at this level to satisfy given constraints for
growth (or decay.) Through this simplified
model, animation for an entire city over a
number of years can be performed quickly.
To display the results, the system generates
a visual representation of the city with build-
ings on the zoning blocks. To control the
urban development of the generated city, the
user selects parameters to control changes in
the size of the population and land area used.

Keywords: Computer Graphics, Three-
Dimensional Graphics and Realism - Anima-
tion, Simulation and Modeling

1 Introduction

In this paper, we explore the animation of a city
over extended periods of time as it grows and
evolves based on changes in population and land
area use. To this end, we propose an interac-
tive approach that uses a sociologically based
model and a hierarchy of levels underlying it
focused on faithfully capturing the visual arti-
facts as a city changes over time. By abstracting
away unimportant details, we are able to create
an evolving urban system that mimics many of
the aspects apparent in real modern cities at in-
teractive rates.

To model a growable city, our system takes
advantage of two key features found in real ur-
ban settings. Nearly all urban areas have one or
more city centers, steadfast business districts at
the economic heart of the city, both metaphori-
cally and physically. These city centers are filled
with mostly commercial buildings and usually
have the tallest buildings in the city, thus driving
the look of the city to a large degree. Also, many
cities are broken down into block-size, or larger,
areas assigned based on zoning. These zones
enable city planners to designate different areas
for different uses, residential, commercial, mu-
nicipal and so on. By looking at the city struc-
ture as being built up from these types of zoning
units around city centers, we offer a representa-
tion that can easily be controlled by manipulat-
ing these two well-understood features and their



attributes, as they change over time. We can
also use these special ‘building blocks’ to de-
scribe a large amount about how urban cities de-
velop fairly easily. For example combining mul-
tiple zones, we can create large parks or residen-
tial communities and breaking such zoning units
into their smaller, constituent components yields
buildings, yards, streets, and more - matching
the real world.

With this model of the city, we cast the anima-
tion problem as a constrained, two-point bound-
ary problem that must be solved in order to meet
the expected growth (or shrinkage) based on the
changes in population or land area use, as in-
putted by the software user. To solve this prob-
lem, we follow the approaches used to solve the
thief’s Knapsack problem, well-known in com-
puter science, based on its likeness to our evo-
lution problem. To show the power of our ap-
proach we reconstruct the development of the
central basin in Los Angeles over an eighty-year
span. With our system, we are able to capture
the growth of the downtown city center of Los
Angeles and, at the same time, recreate the de-
velopment of urban sprawl indicative of growth
in Southern California.

We anticipate approaches like the one pre-
sented will be useful in the area of urban devel-
opment and sociology, since they can estimate
the population and size of a city over a long time
frame and include intuitive visual results. Social
scientists and students alike can play out what-if
scenarios with such a system and see how and
what factors affect the growth and development
of the synthesized city. Likewise, we hope this
tool will find its utility in next-generation realis-
tic environments for computer games and enter-
tainment.

2 Background

The automatic creation of graphical city mod-
els has received some attention in recent years.
With the popularity of urban-set games like
‘Sim-City’ and ‘Grand Theft Auto’ as well as
the creation of large synthetic environments for
the ‘Matrix,” ‘Terminator III’, and ‘Spiderman’
movies, there is no doubt that the need for auto-
matically generated, believable cityscapes is on
the rise. The techniques proposed for the gener-
ation of such realistic urban models have either
sought to rely on pure data recorded from the
real world as in the project described by Teller

et al. [1], through direct hand-crafted efforts like
those of Hamill and O’ Sullivan [2], via procedu-
ral approaches such as Parish and Miiller [3] or
some combination there-in. One popular hybrid
approach combines simple 3D models with real
photographs to create virtual architecture, as de-
scribed by [4, 5, 6]. Also, the creation of Instant
Architecture [7] follows heuristic rules from ac-
tual architectural design plus procedural gram-
mars created to mimic the look of real world
buildings. While our work most closely mod-
els that of Parish and Miiller in the generation
of our initial, static city model, none of these ef-
forts have addressed the evolution of a city as it
changes over time.

Urban development and planning as well as
the study of sociological aspects of city units
have given way to both a plethora of models for
describing the growth and decay of urban set-
tings as well as the need for visualizing such en-
vironments. We conclude from this work and
that of Palen [8], that the factors that drive the
evolution of a city are both vast and difficult
to separate into simple heuristics like ‘the pop-
ulation of modern cities is directly correlated
with its wealth’ for example or other unifying
rules. While Batty and Longley have shown that
the gross changes of real urban environments
over time share characteristics with models of
urban systems generated using fractals [9], they
shed little light on the practical visualization of
such models for use in computer graphics or for
the novice user interested in understanding the
growth of a city. As such, in our work, we
glean insights from the experts about urban de-
velopment such as the Burgess zoning model
described by Palen and combine them with a
grounded approach focused on generating a re-
alistic, graphical urban settings that are able to
evolve over time based on user constraints.

2.1 Urban Geography

Consulting texts in the area of urban stud-
ies [8, 10, 11], we found three basic mod-
els for the use of land in urban settings: the
Burgess’ concentric zone model; Hoyt’s sectoral
model; and Harris and Ullman’s multiple-nuclei
model. According to Palen [8], one early model
rising from urban “spatial-organizational con-
cerns” was the concentric-zone hypothesis pro-
posed by Burgess in 1924 [12]. This hypothesis
explains the segregation of land into business,



manufacturing, and residential usages, as seen in
modern industrial cities and purports that these
cities grow radially in a series of concentric
regions surrounding a central business district
(CBD), as seen in Figure 1. The sectoral model
suggests that, instead of zonal rings, cities de-
velop in wedge-like sectors moving radially out-
ward from the CBD and it makes allowances for
growth along main arterial routes like highways
and railways. The third, multiple-nuclei model
says that land usage depends on a number of
separate centers of activity for industry, man-
ufacturing, entertainment and more. Because
of its simplicity and well-defined structure, we
found the Burgess model most appropriate for
our animation purposes, although the sectoral
model and multiple-nuclei models do contain in-
teresting features and attractive avenues for fu-
ture exploration.

3 Building a city

Following urban land-use theories, we model
the city by explicitly placing different types
of zoning units in discrete regions that match
those proposed by Burgess, surrounding one
CBD and potentially a number of other city cen-
ters. For simplification, we consider only two
different zoning types, residential, which en-
compasses low-income, middle and upper class
housing, and commercial/municipal, which in-
cludes business, manufacturing, and govern-
ment land usage. We define density for the two
types based on population density for residen-
tial and the number of employees per square
area, analogous to the amount or ‘size’ of com-
merce in the commercial zones. The individ-
ual density of each zoning unit varies and the
maximum-allowed density in each zone is based
on its distance to the nearby CBD, following a
normal-distribution Gaussian curve. The ratio
of residential-to-commercial zones within each
region is created heuristically, based on the de-
scribed regions found in the Burgess model.
(See Figure 1)

3.1 Origination of a simple city

To create the starting model following the
Burgess hypothesis, our system starts from a
user-defined CBD and constrains the placement
of zoning units based on the desired population
of the city, the average number of individuals

commuters/suburbia

middle class

Figure 1: Burgess city model. Surrounding the
central business district (CBD) are re-
gions which move from highly com-
mercial to commuter’s suburbia. We
approximate the ratios of residential to
commercial land area for the regions
outside of the CBD at 30, 50, 70,and
90 percent, respectively.

per household, and the overall span and devel-
oped area of the city. The model also relies on
a number of fixed terms based on real cities re-
lated to the amount of commerce needed to sus-
tain a given population and its difference be-
tween regions, the shape and size of the zon-
ing units, and parameters associated with the
population density and average size of domi-
ciles within regions. For the simplest case, hav-
ing a single CBD with no geographical obstruc-
tion, the system first creates empty (undevel-
oped) zones moving outward from the CBD un-
til the city’s span, area Ay, is met and then ‘de-
velops’ zones randomly, weighted by their dis-
tance from the CBD, until the desired amount
of developed area, A,, is met. The relationship
between Ay and A; is controlled simply by the
percentage of developed land in the city. To keep
the development close to the CBD center, the
distance is weighted by an exponential when se-
lecting zones at random. During this initializa-
tion process, the system also randomly assigns
zoning usages based on the percentages associ-
ated with the Burgess’ region and density based
on the fall-off curve:
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P(T) = pmaxezazrt (D

where the 7 is the distance from the zone to the
CBD, r; is the circular radius surrounding A;
and pp,qz and o are the height and standard devi-
ation of the Gaussian. A secondary pass through
the developed zones makes small, uniform posi-
tive corrections in the densities of zones selected
at random until the desired population is met.
To do this, we compute the current population
by summing up the number of people each resi-
dential zone holds based on density and the area
size of the zone. This origination algorithm is
outlined here.

originateCity(desired_pop,Ad,At){

assignLandtoZones(At);

while (Ad > 0){
developZone(exp_random) ;

/lassigns density and type

Ad -

}

computePopulation();

while (current_pop != desired_pop){
adjustZoneDensity(random);
computePopulation();

}
3.2 Additional features

For more complex cities, we incorporate a num-
ber of additions to the simple city, to account
for multiple centers and for geographic limita-
tions by generating zones based on specific con-
straints. Since a real city with multiple city
centers usually shows different size and growth
rates among those centers, we allow the user
to assign relative densities and rates of growth
between different centers and the system uses
these when assigning zones for each. Also, the
zones of each center are given a unique orienta-
tion that may be assigned by the user or based on
some geographic features, for example direction
of the coastline.

Geographic features are specified through a
coded image map of the terrain, where regions,
such as bodies of water, represent areas where
no urban zones may occupy and other, ‘gray-
scale’ regions are used to specify changes in el-
evation. The system calculates slopes to deter-
mine the developable areas automatically based
on a given steepness threshold. Once the set of
assignable zones is determined for each center
based on these various geographic constraints,

the origination of the city follows along the
method described above with the exception that
p; for a given zoning unit in center; may be re-
placed by the density from another center; if
the computed density of Equation 1 is larger for
that zone due to center;. This adjustment avoids
unwanted jumps in the density profile for the
whole multi-centered urban region. The justifi-
cation for this is straightforward when consider-
ing the urban creep across borders seen in areas
surrounding metropolitan centers, for example
the edges of New Jersey state near New York
City.

To generate the appearance of the city from
the zoning units described, we use heuristics to
‘build’ different numbers and sizes of structures
appropriate according to the type of zone and its
density. We describe this in the rendering sec-
tion following the next section on the evolution
of the city over time.

4 Animating growth and demise

To synthesize evolution, our system solves the
two point-boundary problem between a city’s
current state and the new, desired state using
the origination algorithm to ‘establish’ the initial
city and an incremental optimizer which man-
ages its construction and destruction over time.
Once the desired city is ‘built’ as described
above, the user makes specifications to control
the evolution of the city over some period of
time. Specifically, the user may change the over-
all population and the physical size (land area)
of the city and dictates the number of years over
which the changes should occur. Then, an op-
timization routine manages the construction and
re-development of the urban zones based on a
uniform ‘growth schedule’. This schedule is
simply the equal distribution of the overall de-
sired change(s) over the given number of one-
year spans. Then, during each year, the in-
cremental optimization problem is to meet the
scheduled changes without any errors, although,
if errors associated with unmet changes do arise,
they are simply rolled-over and incorporated
into the subsequent year’s growth.

To solve the incremental optimization prob-
lem, as stated, we compare the desired goal
to the classic “Knapsack™ problem, which is
described in any algorithms text (for example,
see [13]). Mapping this algorithm to our city-
development problem, we introduce “Citysack”.



4.1 Citysack

We define Citysack as equivalent to the classic
problem, KnapSack, which states “A thief rob-
bing a store finds n items; the ¢-th item is worth
v; dollars and weighs w; pounds. He wants to
take as valuable a load as possible, but he can
carry at most W pounds in his knapsack. What
items should he take?” or

max Z v; such that Z w; < W (2)
1 1

Citysack is stated as “A city needs to grow (or
shrink) by modifying some subset of n zoning
units; the i-th zone has a current density value
of v; and potential w; (p(r) — v;). In order
to meet the growth demands and minimize the
people displaced, the overall change in density
should be minimized while the total change po-
tential, W, meets the new population require-
ments. What zones should be constructed or de-
stroyed and redeveloped?” or

min Z v; such that Z w; > W 3)
1 1

By casting the development problem very simi-
lar to the Knapsack problem, we can take advan-
tage of its known solutions and characteristics.

In order to apply Citysack to meet our urban-
development goals, we make a few simplifying
assumptions. We treat all zones based only on
the density, the most critical aspect with respect
to changes in population and land usage, so that
it can be isolated and most directly managed by
the optimizer. We associate a non-trivial cost,
equivalent to the density, for the destruction of a
unit. This prevents the optimizer from destroy-
ing more than is necessary. We also considered
adding the ability for Citysack to use zone-by-
zone vs. partial destruction and re-construction
within a zone which stems from its likeness to
Knapsack in which the thief is allowed to take
whole or partial items in his looting. However,
in practice, the former, so-called ‘0-1’ problem
resulted in solutions that were easier to manage
and showed little visual difference.

4.2 Solving the Citysack problem

To solve the stated Citysack problem, we mimic
the origination algorithm by first generating new
zones if the size of A; has increased and again
randomly build until the new desired developed

amount, Ay, is met. At the end of this stage,
if the population supported by the city is as
large as or larger than the target population, the
evolution algorithm halts. The assumption here
is that any excess developed space will be left
empty and abandoned but this will not neces-
sarily prevent new development from occurring.
(This step is analogous to the thief taking items
that have value but weight nothing) If there is a
deficit in the supported population, the evolution
step must include some destruction and redevel-
opment.

The Knapsack problem can be solved in a
number of ways. In [13], they propose using
dynamic programming to find a globally opti-
mal solution for the ‘0-1° Knapsack problem.
We decided to use locally optimal methods be-
cause the computation constitutes several orders
of magnitude speed-up over dynamic program-
ming (O(nlog(n)) vs. O(nW)). We propose
two algorithms and apply the best solution of the
two. The first is a so-called greedy approach
that picks the zone with the greatest potential
improvement and redevelops that zone to reach
its maximum potential (density.) This cycle re-
peats until the target population is met or all po-
tential improvements are made. The second is a
conservative approach where the zone with the
smallest density-to-potential ratio is improved to
its maximum potential, again repeating until the
target population is met or all potential improve-
ments are zero. While the conservative approach
usually resulted in a lower cost neither scheme
worked best in all cases. Thus, after calculat-
ing, the algorithm compares the solutions and
applies the one with the lower cost. The sched-
ule advances along with any resulting deficits
or surpluses to the following year. The pseudo-
code below outlines this incremental animation
algorithm.

SolveCitysack(desired pop, newAd, newAt) {
[Irun for each year in growth schedule

assignLandtoZones(newAt);

while (newAd > 0){
developZone (exp_random);
newAd--;

}

computePopulation();

if (current_pop < desired_pop){
runGreedy();
runConservative();
updateCity(); //based on lowest cost



S Rendering and Results

To generate the final look of the city, zones
are decomposed into individual buildings. The
decomposition from zone to building is depen-
dent on the assigned density of the zone and on
the equivalent building or set of buildings that
would occupy such a density. To simplify the
placement of buildings, all structures in a par-
ticular zoning unit are assigned the same height
value. Obviously, this is not in general true, al-
though there is often a high correlation between
the heights of neighboring buildings. The height
of a building, which drives the size of its foot-
print and subsequently the number of buildings
per zone, is derived from the assumption that
a uniform number of people will occupy each
floor of a given building and so, the proper num-
ber of floors, therefore, may be computed based
on the specified density of the zone or the integer
number of floors is round(ph) where factor h
is normalized based on the maximum density
Pmaz and the max number of floors allowed in
the city. Thus, for example, if a particular zone
is close to the maximum density, a single large
skyscraper would be assigned to the zone. But,
a zoning unit with a much lower density will be
decomposed into several shorter buildings. For
the high-resolution models shown in figure 3,
we use the commercial libraries of Marlin Stu-
dios [14] for real-looking urban and suburban
structures.

To show the progression of a city’s evolution
over time, we use simple edits that ‘fill in’ empty
‘lots’ with buildings or cross-dissolve between
one building and its replacement. Again, this is
a simplification, but it is not practical to animate
actual brick-laying or demolition. At the rate
of the animation, about a year every second or
so, we assessed that the simplest animation gave
way to the least amount of distractions and the
most pleasing results.

LA Basin. In Figure 2, we show the devel-
opment of the Los Angeles basin over an 80
year span. Urban sprawl, that is common in
the southern California area, begins to become
more prevalent as time goes on. In Figure 3, we
show three close-up views of Central Los Ange-
les. The top close-up image is from our interac-
tive software, decomposed into buildings, show-
ing the residential and commercial buildings in
red and blue, respectively. The middle close-up
image is a rendered version of the model gener-

ated. The bottom image is a photograph of Cen-
tral Los Angeles. In Figure 4, we show the Santa
Monica area, the leftmost city center in Figure 2.
Santa Monica is nestled between the ocean and
the mountains and therefore is constrained by
these geological obstacles, and forced to move
inland to build. We colored the zoning units
in four different ways (Burgess model, density,
type, age) to show the depth of the model.

6 Conclusions

Animating the development of any urban envi-
ronment requires serious concessions - in only
modeling select, pertinent processes and ignor-
ing many details to keep the computations fast.
By simplifying the animation of cities to the
incremental adjustment of ‘zone’ density and
comparing the optimization of this to a well-
known algorithm, we are able to find solutions
that are easy to understand and implement but
still produce complex graphical results because
of a visual model that is interpreted from the un-
derlying zone structure. Of course, these results
are constrained to expose the particular artifacts
important to the problem we chose as the focus
of this paper, i.e. animating population and area
changes over time.

We expect to improve this system and its
implementation as our current system does get
sluggish when animating the large city scenes,
like the Los Angeles basin example, but should
be able to find speed-up by exploiting repeated
patterns both in the program calculations and in
the city model itself. Even so, without speed-up,
it runs at 2.5 years per second with full OpenGL
graphics on a 2.8 Gz Pentium 4 processor with
NVidia TT 4600 for a single-center type city with
no geographical obstructions (see the image un-
der the title). By adding main transportation
networks, such as large roads or highways, we
can use sociological models such as the sectoral
model. Also, the addition of inner roads would
increase the visual appeal of the zoning units.
We anticipate that trees and parks, as well as
people and traffic, would add immensely to the
visual appeal of the final results. Although we
do currently account for ‘empty’ undeveloped
land, the overall results arguably appear stark.
Also, our city system currently ignores factors
like fire damage, demolition, and vandalism as
well as many other known and documented arti-
facts that influence a city. With proper demo-



graphics, we could likely make the final data
look more realistic and possibly convey more in-
formation through its animation.

We see that such city development software
could be used in number of scenarios. In the area
of entertainment for computer animated movies
that take place over time, in a city setting the
software could be used to create a consistent ur-
ban world with a past, present, and future. With
proper validation, such software could also be
used in sociology - understanding how a city
works, armed with measured data, a sociolo-
gist could play out careful scenarios to assess
how different factors affect real cities. The soft-
ware could aid in city planning when govern-
ment officials want to visualize (or show) how
their choices change things and what their po-
tential consequences may entail. Note, we are
not claiming this real-world problem-solving is
validated in the models we present currently.
But, by basing our system on a steadfast soci-
ological theory like Burgess’ and adding other
known/proven constraints, this type of city an-
imation could become a valuable tool for pro-
fessionals. Through easy-to-control, interactive
visualizations of city evolution, even simple an-
imation models can allow novices to learn and
understand the workings of a growing city in a
natural and intuitive way.
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Figure 2: Los Angeles basin over 80 years.

Figure 4: Close-up of Santa Monica area from
the simulated growth of the LA basin.
Top: Burgess model coloring as seen

Figure 3: Top: Central Los Angeles Simulated. in Figure 1. Second: Density of zon-

Middle: Central Los Angeles Ren- ing units, lighter colors are less dense.

dered. Bottom: Central Los Angeles. Thirdf Type of zonir'lg un'it, blue com-
mercial and red residential. Bottom:

Age of zoning unit, dark represents
older construction



