
LAB 7 Notes

Working with JDBC
• Any questions on the project (Discuss)
• In the previous lab we discussed Postgres. Today we will talk al little more

about how to work with postgres using JDBC and we are going to cover some
topics you will need for the project.

Outline
1) Working with JDBC
2) String manipulation in Java
3) Some Postgres features needed for the project

• Sequences
• Date/Timestamp functions

4) If time permits we will look at the project manual.

1) Working with JDBC

There are four architectural components in JDBC
• Application (initiates and terminates connections, submits SQL

statements)
• Driver manager (load JDBC driver)
• Driver (connects to data source, transmits requests and

returns/translates results and error codes)
• Data source (processes SQL statements)

Steps to submit a database query:
• Load the JDBC driver. For instance, if the class name is

jdbc.DriverXYZ , you would load the driver with the following
line of code:

Class.forName("jdbc.DriverXYZ");

Ch.1: Overview of Database Systems Ch.2:
Introduction to Database Design Ch.3: The
Relational Model Ch.4: Relational Algebra Ch.5:
SQL Ch.8: Storage and Indexing

Ch.9: Storing Data: Disks and Files Ch.10:
Tree-Structured Indexing Ch.11: Hash-
Based Indexing Ch.12: Overview of Query
Evaluation Ch.13: External Sorting Ch.14:
Evaluation of Relational Operators Ch.15: A
Typical Relational Query Optimizer Ch.16:
Overview of Transaction Management

• Connect to the data source. The second step in establishing a
connection is to have the appropriate driver connect to the
DBMS

Connection con = DriverManager.getConnection(url, "myLogin",
"myPassword");

• Create and execute a statement. A Statement object is what sends
your SQL statement to the DBMS. You simply create a Statement
object and then execute it, supplying the appropriate execute method
with the SQL statement you want to send.

o For a SELECT statement, the method to use is
executeQuery .

o For statements that create or modify tables, the method to
use is executeUpdate .

It takes an instance of an active connection to create a Statement
object. In the following example, we use our Connection object
con to create the Statement object stmt :

Statement stmt = con.createStatement();

stmt.executeUpdate("CREATE TABLE COFFEES " +
 "(COF_NAME VARCHAR(32), SUP_ID INTEGER,
PRICE FLOAT, " +
 "SALES INTEGER, TOTAL INTEGER)");

Retrieving Values from Result Sets. We now show how you send the
above SELECT statements from a program written in the Java
programming language and how you get the results we showed. JDBC
returns results in a ResultSet object, so we need to declare an instance of
the class ResultSet to hold our results. The following code demonstrates
declaring the ResultSet object rs and assigning the results of our earlier
query to it:

ResultSet rs = stmt.executeQuery(
 "SELECT COF_NAME, PRICE FROM COFFEES");

The variable rs , which is an instance of ResultSet , contains the rows of
coffees and prices shown in the result set example above.
In order to access the names and prices, we will go to each row and
retrieve the values according to their types. The method next moves what
is called a cursor to the next row and makes that row the one upon which
we can operate. Since the cursor is initially positioned just above the first
row of a ResultSet object, the first call to the method next moves the
cursor to the first row and makes it the current row. Successive
invocations of the method next move the cursor down one row at a time
from top to bottom

 while (rs.next ()) {
 for (int i=1; i<=numCol; ++i)
 System.out.println (rsmd.getColumnName (i) +
 " = " + rs.getString (i));
 System.out.println ();
 ++rowCount;
 }

2) String manipulation in Java

A string is simply a sequence of characters that can be manipulated as an
'entity'. The main operand you are going to use is the string
concatenation operator (+). More information about string you can find
in

http://www.scit.wlv.ac.uk/appdocs/java/api/java/lang/String.html

Converting String to value. To convert a string value to a number (for
example, to convert the String value in a text field to an int), use these
methods. Assume the following declarations: String s; int i; long l; float
f; double d;

type Example statement

Int i = Integer.parseInt(s);

long l = Long.parseLong(s);

float f = Float.parseFloat(s);

double d = Double.parseDouble(s);

3) Some Postgres features needed for the project

3.1) Sequences

A sequence object is usually used to generate unique identifiers for rows
of a table. The sequence functions, listed in the following table, provide
simple, multiuser-safe methods for obtaining successive sequence values
from sequence objects.

Table Sequence Functions

Function
Return
Type

Description

nextval(text) bigint
Advance sequence and return new
value

currval(text) bigint
Return value most recently obtained
with nextval

setval(text, bigint) bigint Set sequence's current value

setval(text, bigint,
boolean)

bigint
Set sequence's current value and
is_called flag

Example

SELECT nextval('foo') ;

3.2) Date/Timestamp functions.

PostgreSQL supports the full set of SQL date and time types to see them
check section in Section 8.5 in the postages web documentation. The
operations available on these data types are described in in Section 9.9.

