
LAB 4 Notes

The Relational Algebra

• Any questions on the project (Discuss)
• In the previous lab we discussed the Conceptual Database Design Phase and

the ER Diagram
• Today we will mainly discuss how to convert an ER model into the Relational

model of a specific database.

Outline
1) Glace at Relational Algebra Operators.

Selection
The selection operation selects tuples from a relation that fit some criteria, creating a
new relation with the selected tuples. We will use the notation

C(R) = { t | C is true for t }

where is the selection operator, C is the selection condition, and R is a relation. The
selection condition is a well-formed logical expression built from the following rules:

• a comparison operation between attribute names or attribute values, and
• the standard logical connectives: AND, OR, and NOT.

Some example conditions are given below for a relation with Name and Age
attributes.

Name = 'Sue'
Name = 'Sue' AND Age > 23
NOT (Name = 'Sue' AND Age > 23)

Let's look at some example of selection, and the meaning will become clear. Consider
the relation Professions.

Professions
Name | Job

Joe | Garbageman
Sue | Doctor
Joe | Surfer

Now consider the following selections and their results.

Name = Sue(Professions) =
{t | t.Name = Sue} =
{(Sue, Doctor)}

Ch.1: Overview of Database Systems
Ch.2: Introduction to Database Design
Ch.3: The Relational Model
Ch.4: Relational Algebra
Ch.5: SQL
Ch.8: Storage and Indexing

Ch.9: Storing Data: Disks and Files
Ch.10: Tree-Structured Indexing
Ch.11: Hash-Based Indexing
Ch.12: Overview of Query Evaluation
Ch.13: External Sorting
Ch.14: Evaluation of Relational Operators
Ch.15: A Typical Relational Query Optimizer
Ch.16: Overview of Transaction

Name = Sue OR Job = Surfer(Professions) =
{t | t.Name = Sue OR $t.Job = Surfer} =
{(Sue, Doctor), (Joe, Surfer)}

Name = Sue AND Job = Surfer(Professions) =
{t | t.Name = Sue AND t.Job = Surfer} =
{}

What does selection do in terms of the table metaphor? It merely selects those rows
from the table that satisfy the selection condition, ignoring the rest. Note that the
selected rows form a new table (possibly an empty table).

Projection
The projection operation projects out a list of attributes from a relation. For example,
suppose we have a relation with the schema R(A1, A2, ..., AN) and we want only the
first M attributes

A1, A2, ..., AM(R) = { (t[A1], t[A2], ... t[AM]) | t∈R }

where is the projection operator, A1, A2, ..., AM is a list of the first M attributes, and R
is a relation. In general, we can project any of the attributes in a relation in any order.
Let's look at some examples from the Professions relation depicted above.

• Job(Professions) would produce the following relation.
 Job

 Garbageman
 Doctor
 Surfer

• Name(Professions) would produce the following relation (assuming we
retain duplicates)
 Name

 Joe
 Sue
 Joe

or this table (assuming we eliminate duplicates)
 Name

 Joe
 Sue

Cartesian product of relations
The Cartesian product operation is similar to that for sets. Basically the Cartesian
product produces a relation consisting of all possible pairings of tuples as follows.
Assume we have relations R(A1, A2, ..., AN) and S(B1, B2, ..., BM) Then

R ×S = {((a1, a2, ..., aN, b1, b2, ..., bM) | (a1, a2, ..., aN) ∈R AND (b1, b2, ..., bM)
∈S }

Note that R × S is not the same as S ×R because the order of attributes differs.

Let's look at an example. Assume that in addition to the Professions relation, we
have a Salaries relation.

 Salaries
 Job | Pays

 Garbageman | 50000
 Doctor | 40000
 Surfer | 6500

The result of Professions × Careers is depicted below.
 Name | Job | Job | Pays

 Joe | Garbageman | Garbageman | 50000
 Joe | Garbageman | Doctor | 40000
 Joe | Garbageman | Surfer | 6500
 Sue | Doctor | Garbageman | 50000
 Sue | Doctor | Doctor | 40000
 Sue | Doctor | Surfer | 6500
 Joe | Surfer | Garbageman | 50000
 Joe | Surfer | Doctor | 40000
 Joe | Surfer | Surfer | 6500

Note that we have two attributes now with the same name, Job, we will assume that
one of the attributes is renamed appropriately.

Union, Intersection, Difference
Since a relation is just a set (or multiset), the set (or multiset) algebra operations,
union, intersection, and difference, are also present in the relational algebra, with
one constraint. These operations are only permitted between relations that are union
compatible. Two relations are union compatible if they have the same number of
attributes, and if the ith attribute in each relation has the same domain. Basically, the
two relations must have the same schemas, modulo renaming of the attributes, which
makes a lot of sense since you really do not want two completely different kinds of
tuples in the same relation.

A complete set of operations
We now have a complete set of relational algebra operations. Any other operator that
we might introduce, such as a join, is merely for our notational convenience.

Joins
In general, a join is an operation that glues relations together. There are several kinds
of joins.

Theta-join

The theta-join operation is the most general join operation. We can define theta-join
in terms of the operations that we are familiar with already.

R S = (R × S)
So the join of two relations results in a subset of the Cartesian product of those
relations. Which subset is determined by the join condition: . Let's look at an
example. The result of

Professions Job = Job Careers
is shown below.
 Name | Job | Job | Pays

 Joe | Garbageman | Garbageman | 50000
 Sue | Doctor | Doctor | 40000
 Joe | Surfer | Surfer | 6500

Equi-join

The join condition, , can be any well-formed logical expression, but usually it is just
the conjunction of equality comparisions between pairs of attributes, one from each of
the joined relations. This common case is called an equi-join. The example given
above is an example of an equi-join.

Natural join

Note that in the result of an equi-join, the join attributes are duplicated. A natural
join is an equi-join that projects away duplicated attributes. If is omitted from a we
will assume that the operation is a natural join. Let

R = (A1,...,An,X1,...,Xm)
and

S = (X1,...,Xm,B1,...,Bk)
Then

R S = A1,...,An,X1,...,Xm,B1,...,Bk(R X1 = X1 AND ... AND Xm = X1 S)
(We assume that the join attributes have been made distinct via renaming
appropriately.)

Let's look at an example. The result of

Professions Careers
is shown below.
 Name | Job | Pays

 Joe | Garbageman | 50000
 Sue | Doctor | 40000
 Joe | Surfer | 6500

Reordering columns in a table
How do I go about swapping columns in a relation? I use projection? Assume I have
relation

S = (A1, A2, A3)
I want a relation that is just like S but with exactly the opposite order of attributes.
Then I would do

A3, A2, A1(S)
the result is S with the columns swapped.

Examples of Relational Algebra
Consider the following relations (depicted as tables).
 STUDENTS
 name | subject

 joe | CP1500
 joe | CP1200
 sue | CP3020

PARENTOF

Parent| Name

pam | joe
pam | sue
ann | pam
eric | ann

The Cartesian product of these relations,

PARENTOF × STUDENTS
would result in the following relation.
 parent | name | name | subject

 pam | joe | joe | CP1500
 pam | joe | joe | CP1200
 pam | joe | sue | CP3020
 pam | sue | joe | CP1500
 pam | sue | joe | CP1200
 pam | sue | sue | CP3020
 ann | pam | joe | CP1500
 ann | pam | joe | CP1200
 ann | pam | sue | CP3020
 eric | ann | joe | CP1500
 eric | ann | joe | CP1200
 eric | ann | sue | CP3020
The equi-join (on the name attribute),

PARENTOF name = name STUDENTS
would result in the following relation.
 parent | name | name | subject

 pam | joe | joe | CP1500
 pam | joe | joe | CP1200
 pam | sue | sue | CP3020
Finally, the natural join,

PARENTOF STUDENTS
would yield the following.
 parent | name | subject

 pam | joe | CP1500
 pam | joe | CP1200
 pam | sue | CP3020
Now let's consider several examples using these relations.

Reordering columns example

Suppose I want a relation like STUDENTS, but with the subject first, then the
name. I would do

subject, name(STUDENTS)

What are the names of the students?:
STUDENTNAMES = name(STUDENTS)

Who is taking CP1500?:
CP1500 = name(subject = CP1500(STUDENTS))

Who is the parent of joe?:
JOES_PARENTS = parent(name = joe(PARENTOF))

The above three examples were all operations on a single table. We must use a join to
combine information from two or more tables.

Who is the parent of a student taking CP1500?: In this example, we make use of
the result of a previous query, the CP1500 relation is computed above.

CP1500_PARENTS = name(PARENTOF CP1500)

Who is the grandparent of of a student taking CP1500?:
CP1500_GRANDPARENTS = name(PARENTOF CP1500_PARENTS)

