LAB 4 Notes

The Relational Algebra

- Any questions on the project (Discuss)
- In the previous lab we discussed the Conceptual Database Design Phase and the ER Diagram
- Today we will mainly discuss how to convert an ER model into the Relational model of a specific database.

Selection

The selection operation selects tuples from a relation that fit some criteria, creating a new relation with the selected tuples. We will use the notation

$$
\sigma_{C}(R)=\{t \mid \text { C is true for } t\}
$$

where $\boldsymbol{\sigma i s}$ the selection operator, C is the selection condition, and R is a relation. The selection condition is a well-formed logical expression built from the following rules:

- a comparison operation between attribute names or attribute values, and
- the standard logical connectives: AND, OR, and NOT.

Some example conditions are given below for a relation with Name and Age attributes.

```
Name = 'Sue'
Name = 'Sue' AND Age > 23
NOT (Name = 'Sue' AND Age > 23)
```

Let's look at some example of selection, and the meaning will become clear. Consider the relation Professions.

Professions

```
Name | Job
-------------------
Joe | Garbageman
Sue | Doctor
Joe | Surfer
```

Now consider the following selections and their results.

$$
\begin{aligned}
\boldsymbol{\sigma}_{\text {Name }}= & \text { sue }(\text { Professions })= \\
& \{t \mid t \cdot \text { Name }=\text { Sue }\}= \\
& \{(\text { Sue }, \text { Doctor })\}
\end{aligned}
$$

```
\sigma
    {t|t.Name = Sue OR $t.Job = Surfer } =
    {(Sue, Doctor),(Joe, Surfer)}
\mp@subsup{\sigma}{\mathrm{ Name }}{}=\mathrm{ Sue AND Job = Surfer (Professions) =}
    {t|t.Name = Sue AND }t.Job=\mathrm{ Surfer }}
    {}
```

What does selection do in terms of the table metaphor? It merely selects those rows from the table that satisfy the selection condition, ignoring the rest. Note that the selected rows form a new table (possibly an empty table).

Projection

The projection operation projects out a list of attributes from a relation. For example, suppose we have a relation with the schema $R\left(A_{1}, A_{2}, \ldots, A_{N}\right)$ and we want only the first M attributes

$$
\pi_{A l, A 2}, \ldots, A M(R)=\left\{\left(t\left[A_{1}\right], t\left[A_{2}\right], \ldots t\left[A_{M}\right]\right) \mid t \in R\right\}
$$

where ris the projection operator, $A_{1}, A_{2}, \ldots, A_{M}$ is a list of the first M attributes, and R is a relation. In general, we can project any of the attributes in a relation in any order. Let's look at some examples from the Professions relation depicted above.

- $\pi_{\text {Job }}$ (Professions) would produce the following relation.

```
        Job
```

 -_----_-_-_----
 Garbageman
 Doctor
 Surfer
 - $\pi_{\text {Name }}$ (Professions) would produce the following relation (assuming we retain duplicates)
Name

Joe
Sue
Joe
or this table (assuming we eliminate duplicates)
Name

Joe
Sue

Cartesian product of relations

The Cartesian product operation is similar to that for sets. Basically the Cartesian product produces a relation consisting of all possible pairings of tuples as follows. Assume we have relations $R\left(A_{1}, A_{2}, \ldots, A_{N}\right)$ and $S\left(B_{1}, B_{2}, \ldots, B_{M}\right)$ Then

$$
\begin{aligned}
& R \times S=\left\{\left(\left(a_{1}, a_{2}, \ldots, a_{N}, b_{1}, b_{2}, \ldots, b_{M}\right) \mid\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in R \mathbf{A N D}\left(b_{1}, b_{2}, \ldots, b_{M}\right)\right.\right. \\
& \in S\}
\end{aligned}
$$

Note that $R \times S$ is not the same as $S \times R$ because the order of attributes differs.

Let's look at an example. Assume that in addition to the Professions relation, we have a Salaries relation.

Salaries Job	Pays
$----------------~$	50000
Garbageman	40000
Doctor	6500

The result of Professions \times Careers is depicted below.

Name	Job	Job	Pays	
Joe	Garbageman	Garbageman	50000	
Joe	Garbageman	\| Doctor	40000	
Joe	Garbageman	\| Surfer	6500	
Sue	Doctor	\| Garbageman	50000	
Sue	Doctor	\| Doctor	40000	
Sue	Doctor	\| Surfer	6500	
Joe	Surfer	\| Garbageman	50000	
Joe	Surfer	\\| Doctor	40000	
Joe	Surfer	Surfer	6500	

Note that we have two attributes now with the same name, Job, we will assume that one of the attributes is renamed appropriately.

Union, Intersection, Difference

Since a relation is just a set (or multiset), the set (or multiset) algebra operations, union, intersection, and difference, are also present in the relational algebra, with one constraint. These operations are only permitted between relations that are union compatible. Two relations are union compatible if they have the same number of attributes, and if the $i^{\text {th }}$ attribute in each relation has the same domain. Basically, the two relations must have the same schemas, modulo renaming of the attributes, which makes a lot of sense since you really do not want two completely different kinds of tuples in the same relation.

A complete set of operations

We now have a complete set of relational algebra operations. Any other operator that we might introduce, such as a join, is merely for our notational convenience.

Joins

In general, a join is an operation that glues relations together. There are several kinds of joins.

Theta-join

The theta-join operation is the most general join operation. We can define theta-join in terms of the operations that we are familiar with already.

$$
R \times \sqrt{2} S=\sigma\}(R \times S)
$$

So the join of two relations results in a subset of the Cartesian product of those relations. Which subset is determined by the join condition: 9. Let's look at an example. The result of

$$
\text { Professions } \mathbf{x}_{\text {Job }=\text { Job }} \text { Careers }
$$

is shown below.

Name	Job	Job	Pays
Joe	Garbageman	Garbageman	50000
Sue	Doctor	Doctor	40000
Joe	Surfer	Surfer	6500

Equi-join

The join condition, $\boldsymbol{\theta}$, can be any well-formed logical expression, but usually it is just the conjunction of equality comparisions between pairs of attributes, one from each of the joined relations. This common case is called an equi-join. The example given above is an example of an equi-join.

Natural join

Note that in the result of an equi-join, the join attributes are duplicated. A natural join is an equi-join that projects away duplicated attributes. If gis omitted from a खwe will assume that the operation is a natural join. Let

$$
R=\left(A_{1}, \ldots, A_{n}, X_{1}, \ldots, X_{m}\right)
$$

and

$$
S=\left(X_{1}, \ldots, X_{m}, B_{1}, \ldots, B_{k}\right)
$$

Then

$$
R \leadsto \mathbb{M}=\boldsymbol{\pi}_{A 1, \ldots, A n, X 1, \ldots, X m, B 1, \ldots, B k}\left(R \mathbb{\aleph}_{X 1}=X 1 \text { AND } \ldots \text { AND } X m=X 1 S\right)
$$

(We assume that the join attributes have been made distinct via renaming appropriately.)

Let's look at an example. The result of
ProfessionswCareers
is shown below.

Name	Job	Pays
Joe	Garbageman	50000
Sue	Doctor	40000
Joe	Surfer	6500

Reordering columns in a table

How do I go about swapping columns in a relation? I use projection? Assume I have relation

$$
S=\left(A_{1}, A_{2}, A_{3}\right)
$$

I want a relation that is just like S but with exactly the opposite order of attributes. Then I would do

$$
\bar{\pi}_{A 3, A 2, A 1}(S)
$$

the result is S with the columns swapped.

Examples of Relational Algebra

Consider the following relations (depicted as tables).

```
STUDENTS
name | subject
----------------
joe | CP1500
joe | CP1200
sue | CP3020
```


PARENTOF

```
Parent| Name
----------------
pam | joe
pam | sue
ann | pam
eric | ann
```

The Cartesian product of these relations, PARENTOF \times STUDENTS
would result in the following relation.

pam	joe	joe	CP1500
pam	joe	joe	CP1200
pam	joe	sue	CP3020
pam	sue	joe	CP1500
pam	sue	joe	CP1200
pam	sue	sue	CP3020
ann	pam	joe	CP1500
ann	pam	joe	CP1200
ann	pam	sue	CP3020
eric	ann	joe	CP1500
eric	ann	joe	CP1200
eric	ann	sue	CP3020

The equi-join (on the name attribute),

$$
\text { PARENTOF } \boldsymbol{m}_{\text {name }}=\text { name } S T U D E N T S
$$

would result in the following relation.

pam	joe	joe	CP1500
pam	joe	joe	CP1200
pam	sue	sue	CP3020

Finally, the natural join,
PARENTOF MSTUDENTS
would yield the following.

```
parent | name | subject
```


pam	joe	CP1500
pam	joe	CP1200
pam	sue	CP3020

Now let's consider several examples using these relations.

Reordering columns example

Suppose I want a relation like STUDENTS, but with the subject first, then the name. I would do

```
    \pi
```


What are the names of the students?:

$$
\text { STUDENTNAMES }=\boldsymbol{\pi}_{\text {name }}(\text { STUDENTS })
$$

Who is taking CP1500?:

$$
\text { CP1500 }=\boldsymbol{\pi}_{\text {name }}\left(\boldsymbol{\sigma}_{\text {subject }}=\text { CP1500 }(\text { STUDENTS })\right)
$$

Who is the parent of joe?:

$$
\text { JOES_PARENTS }=\boldsymbol{\pi}_{\text {parent }}\left(\boldsymbol{\sigma}_{\text {name }}=j o e(\text { PARENTOF })\right)
$$

The above three examples were all operations on a single table. We must use a join to combine information from two or more tables.

Who is the parent of a student taking CP1500?: In this example, we make use of the result of a previous query, the CP1500 relation is computed above.

CP1500_PARENTS $=\boldsymbol{\pi}_{\text {name }}($ PARENTOF $\propto C P 1500)$

Who is the grandparent of of a student taking CP1500?:

CP1500_GRANDPARENTS $=\boldsymbol{\pi}_{\text {name }}($ PARENTOF ※CP1500_PARENTS $)$

