
LAB 3 Notes 
 

The Relational Model – Chapter 3 
In the previous lab we discussed the Conceptual Database Design Phase and the ER 
Diagram.  Today we will mainly discuss how to convert an ER model into the 
Relational model of a specific database. 
 
Outline 

1) Introduction – discuss briefly the relational model 
2) Logical Database Design (Steps involved ER model -> 

Relational model). 
3) A glance at Views 
4) Putting it all together – An example using Postgres 

 
1) Introduction 
 

• Codd proposed the relational model in ‘70 
• Main advantage of Relational Model : Simple representation (relations-

tables(row, cols)) 
• DDL (Data Definition Language) – language for creating, manipulating and 

querying data in a relational DBMS. 
• Domain, Primary key, Foreign Key constraints are fundamental part of 

the relational model. 
 
2) Logical Database Design   [ ER schema -> relational database schema ] 
 
• ER schema is convenient for initial high-level description of the database design 
• There is a standardized procedure to translate the ER diagram -> Relational 

schema (in fact software does it automatically) 
 
A relation schema can be thought of as the basic information describing a table or 
relation. This includes a set of column names, the data types associated with each 
column, and the name associated with the entire table.  
 
Formally:{ < f1 : d1,… , fn : dn > | d1∈DOM1 , … , dn∈  DOMn } 
 
For example, a relation schema for the relation called Students could be expressed 
using the following representation: 

Students(sid: string, name: string, login: string, age: integer, gpa: real) 
There are five fields or columns, with names and types as shown above. 
 
Domain is synonymous with data type. Attributes can be thought of as columns in 
a table. Therefore, an attribute domain refers to the data type associated with a 
column. 
 
A relation instance is a set of tuples (also known as rows or records) that each 
conform to the schema of the relation. 



 
The relation cardinality is the number of tuples in the relation. 
The relation degree is the number of fields (or columns) in the relation. 
 

 
 
 
Entity Example: 
Employee(ssn, name, age);  
 
    Employee 

ssn name age 
 
We use the Data Definition Language (syntax) of a DBMS to describe the generated 
Tables 
 
// notation used in book, (ingres, ansi) 
- CREATE TABLE Employee (ssn  CHAR(11) NOT NULL, 
      name CHAR(30) NOT NULL, 
      age Integer, 
      Primary Key(ssn)); 
 
- ALTER TABLE Employee ADD Column surname:CHAR(40) NOT NULL; 
 
// Adding to a relation 
- INSERT INTO Employee(ssn, name, age) VALUES (“34342”, “Smith”, 18); 
 
//Update tuple 
- UPDATE Employee SET name=”John” where name=”smith”; 
 
//delete tuples 
- DELETE Employee WHERE name=”John” 
 
//Drop Table 
- DROP TABLE Employees; 
 
 



Step 2: Relationships  
 
Constraints found in a relationship 
Key Constraint  determined by the “At-Most” question 
Participation Constraint  determined by the “At-Least” question 
 
 
2a) WITHOUT PARTICIPATION CONSTRAINT 
 
M:N Relationships 

• The relationship becomes a relation itself EMP_DEPT(ssn,did) 
• Also called an Entity-Relationship 
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1:M Relationships 

• Suppose that an Employee manages
managed only by at-most 1 person. 

• The key of the one Entity moves to 
•  Employee(ssn), Department(did,
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CREATE TABLE Employee (ssn  CHAR(11) NOT NULL, 
      Primary Key(ssn)); 
 
CREATE TABLE Department (did  INTEGER NOT NULL, 
       ssn  CHAR(11)  
       Primary Key(did), 

   FOREIGN KEY (ssn) REFERENCES Employee(ssn)); 
 
Generally: 
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1:1 Relationships 

• Suppose an employee works on at-most 1 single-person project 
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i) FIRST of all the participation constraint makes it clear in which 
direction to move the key in the case of a 1:1 relationship 

 
Again 1:1 Relationships 

• Suppose an employee works on 0:1 projects and each project is 
worked on by 1:1 employees 
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Employee                             Department 
ssn 
1 
2 
3 

did ssn 
1 1 
2 2 
3 3 

 
 
If we want to delete employee 1 i.e. 
Delete FROM Employee where ssn=”1”; 

 System gives “Illegal Action – Violates Referential Integrity Constraint” 
 
We can change the manager did=1 to did=2 and then try again 
e.g. UPDATE Department D  
       SET D.ssn=2  
      WHERE D.ssn=1;  
 
b) CASCADE 
CREATE TABLE Department (did  INTEGER, 
       ssn  CHAR(11) NOT NULL 
      Primary Key(ssn) 

   FOREIGN KEY (ssn) REFERENCES Employee(ssn) 
     ON DELETE CASCADE; 

Means: 
ON DELETE of the refereed tuple in relation EMPLOYEE the DBMS should cascade 
the delete. That means that the Department record should be deleted as well.!!!! 
 
c) SET NULL 
  
CREATE TABLE Department (did  INTEGER, 
       ssn  CHAR(11) NOT NULL 
      Primary Key(ssn) 

   FOREIGN KEY (ssn) REFERENCES Employee(ssn) 
     ON DELETE SET NULL; 

ILLEGAL since ssn can’t be NULL 
MIGHT violate PARTICIPATION constraint 
 
 
 
d) SET DEFAULT 
CREATE TABLE Department (did  INTEGER, 
       ssn  CHAR(11) NOT NULL DEFAULT “0”; 
      Primary Key(ssn) 

    FOREIGN KEY (ssn) REFERENCES Employee(ssn) 
     ON DELETE SET DEFAULT; 

 
Means: 
ON DELETE of the refereed tuple in relation EMPLOYEE the DBMS should set ssn 
in Department to the default value (i.e. 0) !!!! 
 
 



Step 3: Weak Entities 
 
  
 
 
 
 
CREATE TABLE Dependent ( dname CHAR(11) N
       ssn  CHAR(11) NO
       age Integer, 
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Step 4 : ISA Hierarchies 

Ssn, name, lot

EMPLOYEE 

ISA
Hourly_wages, hours_worked 

 
Inherit the key & create 3 relations.  In order to f
hourly_employees we need to combine EMPLOYE
 EMPLOYEE 

SSN Name Lot 
   

HOURLY EMPLOYEE 
H_SSN H_wages Hours 

 
CONTRECT EMPLOYEE 
C_SSN C_ID 

 
3) VIEWS 
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CREATE VIEW Secure_Employee(ssn, name) 
 AS SELECT E.ssn, E.name 
       FROM Employee E; 
 
2) Useful for shrinking information – reducing cardinality 
CREATE TABLE Employee (ssn  CHAR(11) NOT NULL, 
    Name CHAR(30) NOT NULL, 
    BIRTHCITY char(30) NOT NULL, 
                   Primary Key(ssn)); 
 
CREATE VIEW Chicago_Employees(ssn, name) 
 AS SELECT E.ssn, E.name 
       FROM Employee E 

      WHERE E. BIRTHCITY= “Chicago”; 
Attention needs to be given on updating VIEWS, It is generally a bad idea but you 
can still do it (updatable views)  
 

MORE EXAMPLES GIVEN IN LAB AND OFFICE HOURS 
 
Putting it all together 
Consider the following ER diagram from last week: 

 
 
Construct a corresponding relational schema and database in Postgres.  In additional, 
create a view of reports with letter grades equal to A.  


