
LAB 3 Notes

The Relational Model – Chapter 3
In the previous lab we discussed the Conceptual Database Design Phase and the ER
Diagram. Today we will mainly discuss how to convert an ER model into the
Relational model of a specific database.

Outline

1) Introduction – discuss briefly the relational model
2) Logical Database Design (Steps involved ER model ->

Relational model).
3) A glance at Views
4) Putting it all together – An example using Postgres

1) Introduction

• Codd proposed the relational model in ‘70
• Main advantage of Relational Model : Simple representation (relations-

tables(row, cols))
• DDL (Data Definition Language) – language for creating, manipulating and

querying data in a relational DBMS.
• Domain, Primary key, Foreign Key constraints are fundamental part of

the relational model.

2) Logical Database Design [ER schema -> relational database schema]

• ER schema is convenient for initial high-level description of the database design
• There is a standardized procedure to translate the ER diagram -> Relational

schema (in fact software does it automatically)

A relation schema can be thought of as the basic information describing a table or
relation. This includes a set of column names, the data types associated with each
column, and the name associated with the entire table.

Formally:{ < f1 : d1,… , fn : dn > | d1∈DOM1 , … , dn∈ DOMn }

For example, a relation schema for the relation called Students could be expressed
using the following representation:

Students(sid: string, name: string, login: string, age: integer, gpa: real)
There are five fields or columns, with names and types as shown above.

Domain is synonymous with data type. Attributes can be thought of as columns in
a table. Therefore, an attribute domain refers to the data type associated with a
column.

A relation instance is a set of tuples (also known as rows or records) that each
conform to the schema of the relation.

The relation cardinality is the number of tuples in the relation.
The relation degree is the number of fields (or columns) in the relation.

Entity Example:
Employee(ssn, name, age);

 Employee

ssn name age

We use the Data Definition Language (syntax) of a DBMS to describe the generated
Tables

// notation used in book, (ingres, ansi)
- CREATE TABLE Employee (ssn CHAR(11) NOT NULL,
 name CHAR(30) NOT NULL,
 age Integer,
 Primary Key(ssn));

- ALTER TABLE Employee ADD Column surname:CHAR(40) NOT NULL;

// Adding to a relation
- INSERT INTO Employee(ssn, name, age) VALUES (“34342”, “Smith”, 18);

//Update tuple
- UPDATE Employee SET name=”John” where name=”smith”;

//delete tuples
- DELETE Employee WHERE name=”John”

//Drop Table
- DROP TABLE Employees;

Step 2: Relationships

Constraints found in a relationship
Key Constraint determined by the “At-Most” question
Participation Constraint determined by the “At-Least” question

2a) WITHOUT PARTICIPATION CONSTRAINT

M:N Relationships

• The relationship becomes a relation itself EMP_DEPT(ssn,did)
• Also called an Entity-Relationship

CREATE TABLE Employee (ssn CHAR(1
 Primary Key

CREATE TABLE Department (did INTEG
 Primary Key

CREATE TABLE Emp_Dept (ssn CHAR(
 did INTEGER NOT
 Primary Key(ssn, di

 FOREIGN KEY (ssn
 FOREIGN KEY (di

Generally:

 A B
a1 a2 a3

 C

a1 b1

b1 b

BA

M Nworks Employee
ssn

1:M Relationships

• Suppose that an Employee manages
managed only by at-most 1 person.

• The key of the one Entity moves to
• Employee(ssn), Department(did,

primary key

1) NOT NULL,
(ssn));

ER NOT NULL,
(did));

11) NOT NULL ,
 NULL ,

d),
) REFERENCES Employee(ssn),

d) REFERENCES Department(did));

2 b3

Department
did

 N Departments but any department is

the direction of M.
 ssn)

 foreign key

manages 1 M Department
did

Employee
ssn

CREATE TABLE Employee (ssn CHAR(11) NOT NULL,
 Primary Key(ssn));

CREATE TABLE Department (did INTEGER NOT NULL,
 ssn CHAR(11)
 Primary Key(did),

 FOREIGN KEY (ssn) REFERENCES Employee(ssn));

Generally:

A B
a1 a2 a3 b1

1:1 Relationships

• Suppose an employee works on at-most 1 single-person project

b1 b2 b3

Employee works 1

AB

• Move the key to either direction BUT
• E.g.

Employee(ssn, pid) Project(pid)

May create too many nulls because each em
least 1 project
The participation constraint that will be de
which direction we should move the key

• Employee(ssn) Project(pid, ssn
every project belongs to some e

2b) WITH PARTICIPATION Constraint

• Participation Constraint The A
• This will give you the complete p

and participation constraints

1
 Project
 remember that you want to avoid nulls

ployee is not said to be working on AT-

scribed in a while will make it clear to

) on the other hand has no nulls since
mployee.

s

t-Least question (bold line)
icture since any ER should capture key

pbakalov

pbakalov

pbakalov

pbakalov

pbakalov

pbakalov

i) FIRST of all the participation constraint makes it clear in which
direction to move the key in the case of a 1:1 relationship

Again 1:1 Relationships

• Suppose an employee works on 0:1 projects and each project is
worked on by 1:1 employees

Project Emplo

EID

• Now we automatically kn

the bold line. (so we avoi
• What would happen if the

sides
 the key goes to either

ii) Enforcing referential integr

• Suppose you are given th
• We already know what is

key)

PID EID

Employee
ssn

ma1

works Employee

ON [DELETE|UPDATE] “of the refereed
SET NULL, RESTRICT=NO ACTION=d
current relation”

a) RESTRICT=No ACTION=default
CREATE TABLE Department (did INTEG
 ssn CHAR(
 Primary Key

 FOREIGN KE

Means:
ON DELETE of the refereed tuple in rela
prohibit the delete of the given employee

1
1
yee
Name

ow that the key moves to the direction of
d nulls).
 participation constraint was from both

direction

ity

e following example
 happening with the keys. (Dept gets the

nages M Department
did

Project

 tuple the DBMS should”{ CASCADE,
efault, SET DEFAULT} “with the

ER,
11) NOT NULL
(ssn)

Y (ssn) REFERENCES Employee(ssn)
 ON DELETE NO ACTION;

tion EMPLOYEE the DBMS should

pbakalov

pbakalov

Employee Department
ssn
1
2
3

did ssn
1 1
2 2
3 3

If we want to delete employee 1 i.e.
Delete FROM Employee where ssn=”1”;

 System gives “Illegal Action – Violates Referential Integrity Constraint”

We can change the manager did=1 to did=2 and then try again
e.g. UPDATE Department D
 SET D.ssn=2
 WHERE D.ssn=1;

b) CASCADE
CREATE TABLE Department (did INTEGER,
 ssn CHAR(11) NOT NULL
 Primary Key(ssn)

 FOREIGN KEY (ssn) REFERENCES Employee(ssn)
 ON DELETE CASCADE;

Means:
ON DELETE of the refereed tuple in relation EMPLOYEE the DBMS should cascade
the delete. That means that the Department record should be deleted as well.!!!!

c) SET NULL

CREATE TABLE Department (did INTEGER,
 ssn CHAR(11) NOT NULL
 Primary Key(ssn)

 FOREIGN KEY (ssn) REFERENCES Employee(ssn)
 ON DELETE SET NULL;

ILLEGAL since ssn can’t be NULL
MIGHT violate PARTICIPATION constraint

d) SET DEFAULT
CREATE TABLE Department (did INTEGER,
 ssn CHAR(11) NOT NULL DEFAULT “0”;
 Primary Key(ssn)

 FOREIGN KEY (ssn) REFERENCES Employee(ssn)
 ON DELETE SET DEFAULT;

Means:
ON DELETE of the refereed tuple in relation EMPLOYEE the DBMS should set ssn
in Department to the default value (i.e. 0) !!!!

Step 3: Weak Entities

CREATE TABLE Dependent (dname CHAR(11) N
 ssn CHAR(11) NO
 age Integer,
 Primary Key(ssn,

 FOREIGN KEY (ss
 ON DELETE CAS

Step 4 : ISA Hierarchies

Ssn, name, lot

EMPLOYEE

ISA
Hourly_wages, hours_worked

Inherit the key & create 3 relations. In order to f
hourly_employees we need to combine EMPLOYE
 EMPLOYEE

SSN Name Lot

HOURLY EMPLOYEE
H_SSN H_wages Hours

CONTRECT EMPLOYEE
C_SSN C_ID

3) VIEWS
1) Useful for hiding information – reducing degr
CREATE TABLE Employee (ssn CHAR(11) NOT
 Name CHAR(30) NO
 PIN INTEGER NOT
 Primary Key(ssn));

Hourly_Emps C

Employee
ssn

M1 has>
dependent
OT NULL,
T NULL,

dname)
n) REFERENCES Employee(ssn)
CADE; // deletes dependent

ind e.g. name of
E, HOURLY_EMPS

ee
 NULL,
T NULL,

 NULL,

contractID

ontract_Emps

dname age

CREATE VIEW Secure_Employee(ssn, name)
 AS SELECT E.ssn, E.name
 FROM Employee E;

2) Useful for shrinking information – reducing cardinality
CREATE TABLE Employee (ssn CHAR(11) NOT NULL,
 Name CHAR(30) NOT NULL,
 BIRTHCITY char(30) NOT NULL,
 Primary Key(ssn));

CREATE VIEW Chicago_Employees(ssn, name)
 AS SELECT E.ssn, E.name
 FROM Employee E

 WHERE E. BIRTHCITY= “Chicago”;
Attention needs to be given on updating VIEWS, It is generally a bad idea but you
can still do it (updatable views)

MORE EXAMPLES GIVEN IN LAB AND OFFICE HOURS

Putting it all together
Consider the following ER diagram from last week:

Construct a corresponding relational schema and database in Postgres. In additional,
create a view of reports with letter grades equal to A.

