A Prolog-based Framework for Search, Integration and
Empirical Analysis on Software Evolution Data

Pamela Bhattacharya

lulian Neamtiu

Department of Computer Science and Engineering
University of California, Riverside, CA, USA
{pamelab,neamtiu}@cs.ucr.edu

ABSTRACT

Software projects use different repositories for storing project and
evolution information such as source code, bugs and patches. An
integrated system that combines these multiple repositories, along
with efficient search techniques that can answer a broad range of
queries regarding the project’s evolution history would be bene-
ficial to both software developers (for development and mainte-
nance) and researchers (for empirical analyses). For example, the
list of source code changes or the list of developers associated with
a bug fix are frequent queries for both developers and researchers.
Integrating and gathering this information is a tedious, cumber-
some, error-prone process when done manually, especially for large
projects. Previous approaches to this problem use frameworks that
limit the user to a set of pre-defined query templates, or use query
languages with limited power. In this paper, we argue the need for
a framework built with recursively enumerable languages, that can
answer temporal queries, and supports negation and recursion. As a
first step toward such a framework, we present a Prolog-based sys-
tem that we built, along with an evaluation of real-world integrated
data from the Firefox project. Our system allows for elegant and
concise, yet powerful queries, and can be used by developers and
researchers for frequent development and empirical analysis tasks.

1. INTRODUCTION

Software projects are larger than ever and their histories run for
longer than ever, so developers are overwhelmed whenever they
are faced with tasks such as program understanding or searching
through the evolution data for a project. Examples of such frequent
development tasks include understanding the control flow, finding
the list of functions that are dependent on a function, finding mod-
ules that will be affected when a module is changed during a bug-
fix, etc. Similarly, during the software maintenance phase, frequent
tasks include keeping track of files that are being changed due to a
bug-fix, finding which developer is suitable for fixing a bug (e.g.,
given that he has fixed similar bugs in the past or he has worked
on the modules that the bug occurs in). In addition, a framework
that allows querying on integrated evolution data for large projects
would be beneficial for research in empirical software engineering,
where data from these repositories is frequently used for hypothesis
testing. All these tasks require expressive and efficient search over
large datasets that crosses repositories; therefore a framework that
can integrate these data from multiple sources and answer a broad
range of queries would be beneficial for both software development
and empirical analysis.

While many search and visualization frameworks have been pro-
posed, that allow efficient search and analysis on software evolution
data, they have two main inconveniences: (1) they are not flexible
enough, e.g., they permit a limited range of queries, or have fixed

search templates; (2) they are not powerful enough, e.g., they do
not allow recursive queries, or do not support negation; however,
these features are essential for a wide range of search and analysis
tasks. In this paper, we show how we can address these shortcom-
ings by using a Prolog-based integration and query framework. We
chose Prolog for three main reasons: (1) it is declarative, which
allows elegant, concise expression of data collection and hypoth-
esis testing, (2) it supports negation, and (3) it supports recursive
queries, e.g., for computing transitive closure, which is essential in
many impact analysis studies. Our framework captures a wealth
of historical software evolution data (information on bugs, devel-
opers, source code), and allows concise yet broad-range queries on
this data. The three main novelties of our framework are: (1) it is
temporally aware; all the tuples in our database have time infor-
mation that allows comparison of evolution data (e.g., how has the
cyclomatic complexity of a file changed over time?); (2) it supports
powerful language features such as negation, recursion, and quan-
tification; (3) it supports efficient integration of data from multiple
repositories in the presence of incomplete or missing data using
several heuristics. In particular, with a single query (Q12 in Sec-
tion 4), we can now gather the bug tossing data we painstakingly
collected manually in one of our prior efforts [3].

The rest of the paper is organized as follows: we discuss re-
lated work in Section 2. We describe the advantages of using a
Prolog-based framework, the key novelties in our design, and our
data model in Section 3. We demonstrate how our framework can
elegantly express, and effectively answer, a broad range of queries,
without requiring pre-defined templates, in Section 4; these queries
form the kernel of a query library that can be used by developers
and researchers in their activities.

We tested our framework on a large, real-world project with sep-
arate source code and bug repositories: a subset of Firefox' evo-
lution data. From Firefox’s source code repository we extracted
change log histories to populate our source code database. We
then extracted the bugs associated with these source files. Finally,
we added function call edges (from the static call graph) to the
database, for demonstrating how our framework is beneficial in im-
pact analysis. In Section 5 we present preliminary results of eval-
uating our framework on Firefox data, in terms of result size and
query speed. In Section 6 we describe open research challenges
and future directions of our work.

2. RELATED WORK

Herraiz et al. [11] identified the need for organized software
repositories that can improve the state-of-art data retrieval tech-

"Firefox (http://www.mozilla.com/firefox) is the second most
widely-used web browser [6] and has been used in many empiri-
cal studies in software engineering [13, 2, 3].

niques in software engineering and ensure repeatability, traceability
and third-party independent verification and validation. They pro-
posed a research agenda by identifying the research challenges in
this area.

Hindle and German [12] proposed SCQL, a first-order and tem-
poral logic-based query language for source-code control reposi-
tories. Their data model is a directed graph that exhibits relation-
ship between source code revisions, files and modification requests.
SCQL supports universal and existential queries, as we do, but does
not support negation and recursion, which we do. While we do not
propose a new language, the significant difference is that we con-
sider multiple software repositories to integrate data and answer
queries. Instead of source code changes only, our framework cap-
tures relationships between three artifacts: developers, bugs and
source code.

Fischer et al. [7] proposed an approach for populating a release
history database that combines source code information with bug
tracking data and is therefore capable of pinpointing missing data
not covered by version control systems such as merge points. Sim-
ilar to Fischer et al., we build our database initially by extracting
information from source code and bug repositories.

German [8] proposed recovering software evolution history us-
ing software trails—information left behind by the contributors to
the development process, such as mailing lists, web sites, version
control logs, software releases, documentation, and the source code.
The method was used to recover software evolution traits for the
Ximian project. Our data collection and database population is sim-
ilar to German; however our framework is a search-based tool that
can answer queries aggregating data from multiple repositories.

Begel et al. [1] developed a framework named Codebook, which
is capable of combining multiple software repositories within one
platform. Our work is similar but the main challenge in building
a framework for open source projects lies in collecting and accu-
rately integrating related data in absence of organized repositories
and missing data [7]. Their query language is restricted to regular
expressions, but has support for a fixed set of pre-computed tran-
sitive closure results; we use Prolog, a Turing-complete language,
hence our framework can express and answer unrestricted queries,
including temporal ones.

Nussbaum et al. [14] presented the Ultimate Debian Database
that integrates information about the Debian project from various
sources to answer user queries related to bugs and source code us-
ing a SQL-based framework. However, their framework does not
have support for queries that require negation or transitive closure.

Starke et al. [16] conducted an empirical study about program-
mers’ search activities to identify the shortcomings of existing search
tools. They found that the state-of-the art source code search tools
based on the SQL-framework are not effective enough in express-
ing the information the developer is seeking. We believe that declar-
ative query support will improve the code-search experience of de-
velopers.

3. FRAMEWORK

We now turn to presenting our framework. We first motivate
our decision for choosing Prolog as the storage and querying en-
gine for our framework, then describe the key novel features in our
approach, followed by the data model. We implemented our frame-
work in DES, a free, open-source Prolog-based implementation of
a basic deductive database system [15].

3.1 Why Use Prolog?

Prolog is declarative. In declarative languages queries are kept
concise and elegant because there is no need to specify control flow.

Commit Logs & Bug Repository

<
g
G
v
Q S
£§
: 8
[~
S 3
\) =
Code Owner, Developers’ \. S s
Patches, association Devel.op‘ers Bug Fixes,
Bug fixes with source association= g, . Acsienments

with bugs

main 2.

Source code changes
while fixing bugs

Bug introducing changes|

Static Function
Call Graph
Bug Dependency
Graph

Bug Repository

Source Code Repository

Figure 1: Information integration in our framework.

Moreover, Prolog allows flexible, broad-range queries without re-
quiring pre-computation or having to define a set of query tem-
plates.

Prolog supports negation. Negation extends the range of ex-
pressible queries but is potentially expensive, hence existing frame-
works leave it out. For example, previous frameworks cannot an-
swer queries like “return the list of developers who have not fixed a
bug in the past” or “return the list of modules that are not affected
when module A is changed”; such queries are useful, however, e.g.,
the second query can be used to reduce regression testing. In Ta-
ble 2 we show an example of negation use in our framework.

Prolog supports recursion. Recursive queries are important, e.g.,
for computing the transitive closure required in impact analyses.
Although certain versions of SQL support recursion, it is usually
a limited form of recursion, and implemented via proprietary ex-
tensions. We provide an example query that requires recursion in
Table 2.

3.2 Key Features

We now showcase some key features of our framework; existing
approaches fail to support one or more of these features.

3.2.1 Temporal Queries

Previous approaches that build databases from integrating mul-
tiple software repositories are not capable of answering temporal
queries. For example, the following queries cannot be answered
by existing systems: (1) who modified file A on a given day?, (2)
whom was the bug B assigned to during a certain period?, (3) what
changes were made to a file F' during a specific period of time?, (4)
how have source code metrics (e.g., complexity, defect density) of
a file changed over time?

3.2.2 Recursion

Transitive closure is helpful for impact analysis, e.g., “return the
set of files that will be affected by modifications to file '.” The
problem with prior approaches is that they either cannot compute
transitive closure, or cannot compute it when the graph (where
edges indicate a “depends” relationship) is not known statically.
For example, we might want to find all the descendants of a file
F after it has been refactored. If we do not know the definition
of “depends”, i.e., in this case, i s—descendant-of, at the time
we construct the database, we first need to write a query that gen-
erates the graph, and then transitively close it, using a language
powerful enough to express transitive closure. Similarly, suppose

| Table | TableName | Attributes
Source Basic sourcebasic FileNameAndPath, Release, List of Functions Defined, Complexity, Defect Density, Date
Source Change | sourcechange FileNameAndPath, Date, RevisionID, BuglD, DeveloperID, Days, Lines Added
Source Depend | sourcedepend FileNameAndPath, List of Files Depends it on (w.r.t. the static call graph), Date
Bugs bugs Bug ID, Date Reported, Developer ID, Date Changed, Developer Role, Severity,
Bug Status, Bug Resolution, List of Dependencies, DaysReported, DaysFixed

Table 1: Database schema.

Feature Natural Language Query DES Clause

Negation Q1: Return the list of bugs fixed by developer D which do bugs_not_depend(B,D,R) :— bugs(B,_,D, , , , , ,R),
not depend on other bugs not(R="null’).

Transitive 02: Given two functions F1 and F2, check if a change to | reach(X,Y) :— sourcedepend(X,Y).

closure function F2 will affect function F1 (w.r.t. the call graph) reach(X,Y) :— reach(X,Z), sourcedepend(Z,Y).

Table 2: Query support for negation and transitive closure.

we have a bug B in file F', and we want to find the list of sub-
sequent bugs in F' that might have been introduced in the process
of fixing B;. The problem is, the list of subsequent bugs is con-
structed dynamically, e.g., all the bugs in /' minus the list of bugs
in F' that depend on other bugs in other files. Previous approaches
such as Codebook [1] use pre-computed transitive closure for effi-
ciently answering a pre-defined set of queries, e.g., “the set of all
functions F' depends on”; however, queries like “list all functions
that both F; and F> depends on” cannot be answered because they
require language support for recursion/transitive closure.

Moreover, when data from new releases is added to the database,
pre-computed transitive closure does not work, because the “de-
pends” relationships might have changed due to the new data, hence
a dynamic transitive closure algorithm would be required. Note
that we are not getting expressivity for free, as transitive closure
is expensive when computed naively (O(N?)); however, it can be
accelerated via matrix multiplication (O(N*log(N))) [4], or even
further with randomized algorithms [5].

3.2.3 Integration

In open source projects, it is often difficult to integrate related
information because it is spatially dispersed and incomplete. For
example, often bug reports do not have complete information about
files that were changed during a bug fix. Consider Mozilla bug
334314; according to the Bugzilla bug report, three changes were
made to file ssltap.c to fix this bug—once by developer ID
alexei.volkov.bugs and twice by developer ID nelson. The infor-
mation in the patch reference for this change is incomplete; 2 it is
not clear who-has-made-which-change. However, from the change
log of file ssltap.c, we can retrieve developers, changes, and
change timestamps, which helps us complete the bug database.

As another example, consider this query: “return the list of bugs
for which the developer who reported the bug fixed it.” Mozilla Bug
420212 is such an example; user Nelson Bolyard reported the bug
and developer with ID nelson fixed it. Entity resolution, i.e., iden-
tifying user “Nelson Bolyard” and developer “nelson” as the same
person is difficult to automate. Therefore, the bug-reporting and
bug-fixing tuples in our database will contain different names and
bug 420212 will not be returned in the query result. To solve this
problem, we use a heuristic—we check whether two names have
common a substring, e.g., in this case “Nelson Bolyard” contains

Patch for bug 334314:
https://bug334314.bugzilla.mozilla.org/attachment.cgi?id=218642

“nelson”. However, this is not always true; for example, “matt” is
a developer ID found in log files and there is more than one devel-
oper whose name or ID contain “matt”, e.g., “matthewgertner” and
“mattyisageek”. We currently use a Perl script to find out IDs and
names which are contained in each other and then manually check
for false positives. In the future we plan to use automated integra-
tion heuristics (similar to Fischer et al. [7]) to increase scalability
and accuracy.

3.3 Storage

As shown in Figure 1, we collect information from three sources:
(1) source code repositories—size, location, source code dependen-
cies from the static function call graph, etc., (2) bug repositories—
who reported the bug, what is the present status of the bug, bug
dependency data, etc., and (3) interaction between developers—
who tossed bugs to whom, which two developers worked on same
files, etc. Note how function calls, bugs and developer interactions
induce dependency graphs. We integrate information from these
three sources and store it into a database, so that our framework
can answer cross-source queries, as demonstrated in Section 4. The
schema for our database is presented in Table 1. We now proceed
to describing the database schema, contents, and updates.

Source code. The source code data is stored in three tables: ba-
sic source code information, source code changes and source code

dependencies. The basic source code information table (Sourcebasic)

stores, for each module (file): its location, the list of functions it
defines, complexity metrics, defect density information, and a cor-
responding date. Note that a file can have multiple entries in the
database due to multiple releases, hence when a file is not changed
in arelease, all values but the release timestamp remain unchanged.
These entries are important for tracking changes between releases.
In the source change table (sourcechange), we store details of all
revisions that have been made to a file, either as feature enhance-
ments or bug fixes: the date the change was made, the revision ID,
the bug ID (if the change was due to a bug fix) and the developer
who committed it, and number of lines added. For a source change
entry in the database, we also store the number of days since the
first commit® the current activity took place.* In the source depen-
dency table (sourcedepend), we store information about which
other entities a given module or function depends on directly, i.e.,

3The first commit found in the log files we used was July 23, 1998.
“This is done to answer queries involving time intervals.

| Natural Language Query | DES Clause
Q3: Given a developer ID B, return a list of activity (B,D,F) :— sourcechange(F,D,B,_,_, ,).
all activities (fixes F or source code changes activity (B,D,F) :— bugs(F,_,D,B,_, , , , , ,).
C) associated with D
0Q4: Given a developer D, return all the bugs bugs_fixed(B,D,R) :— bugs(B,_,D,Fixed’,_, , , , , ,).
that he has fixed.
Q5: Return the list of bugs developer D has | bugs_fixed_bydate(B,D,DT) :— bugs(B,_,D,'Assigned’,_,DT,_, , , ,).
been assigned on date DT
06: f?eturn the list of bugs developer D could | bugs_not_fixed(B,D) :— bugs(B,_,D, Assigned’, , , , , , ,).
not fix
Q7: Return the list of bugs developer D re- | bugs fixed_D_E(B,D,E) :— bugs(B,_,D,Reported’, , , , , , .,),

ported and was eventually fixed by E

08: Return the list of files modified by devel-
oper D on date DT

source_modified_bydate(F,D,R,DT) :— sourcechange(F,D,_,R,DT,_,).

Q9: Return the list of files modified by de-
veloper D for which more than 10 lines were
added

source_modified_bylines(F,D,B,R,L) :— sourcechange(F,D,B,R,_, ,L), L>10.

Q10: Return all source file changes

all_src_changes(B,R,F,DT,D) :— sourcechange(F,D,B,R,DT,_,_).

dates D1 and D2

Q11: Return the list of bugs reported and fixed | pbugs_fixed D _D(B,D) :— bugs(B,_,D, Reported’, , , , , , ,)

by the same developer D bugs(B,_,D,Fixed’, _, , , , , ,).

Q12: Return the tossing history of bug B bugs_toss(B,D,R) :— bugs(B,_,D,R,_, , , ., .,)

Q13: Return the source files that have been | common_modified(D,E,R) :— sourcechange(R,D,_,_, , ,),

modified by two developers D and E sourcechange(R,E,_, , , ,).

Q14: Return the list of bugs reported between | bugs_reported_bydate(B,D,DT) :— bugs(B,_,D, Reported’, , , , , ,DT,)
two dates D1 and D2 DT<D2, DT>D1.

Q1I5: Return the list of bugs fixed between | bugs_fixed bydate(B,D,DT) :— bugs(B,_,D, Fixed’,_,_, , , ,DT,)

DT<D2, DT>D1.

Q16: Return the list of source files modified
by developer D before date D1

source_modified_bydate(F,D,R,DT,DY) :— sourcechange(F,D,_,R,DT,DY,_),
DY<D1, DY>O0.

Q17: Return the list of open (unresolved) bugs
in the database

bugs_new(B,D) :— bugs(B,_,D,_, , , , ., ,—1).

Table 3: Sample queries from our library.

file, module or function dependencies induced by the call graph.

Bugs. The bug table (bugs in Table 1) stores information related
to a bug: the date on which the bug was reported, list of devel-
opers associated with the bug and their roles (i.e., who reported
it, who the bug was assigned to at some point, who fixed it), the
severity of the bug, the present status of the bug, final resolution
of bug and list of bugs this bug depends on. To answer queries
about a time interval (e.g., how many bugs were fixed between July
2008 and May 2010), we add two attributes —DaysReported and
DaysFixed—that represent the number of days since the first re-
lease of the project that the bug was reported and fixed respectively.
If a bug has not been resolved at the time of database creation,

DaysFixed is set to —1.

Developer information. Although Figure 1 shows data depen-
dencies among three repositories, due to our source and bug table
schema design choice, having a developer database is redundant.

We now proceed to presenting use cases for our system—a va-
riety of frequent queries that arise in software development and
empirical research. In Table 3 we demonstrate how using Pro-
log improves expressiveness and allows arbitrary information re-
trieval, without the need for pre-computation or templates. For ex-
ample, query Q4 returns a list of bugs that developer D had been
assigned and could successfully fix. Similarly, Q5 computes the list
of bugs that developer D could not fix and were eventually fixed
by developer E. We envision these queries forming the kernel of
a query library that can be used by developers in their daily de-
velopment and maintenance activities; similarly, the library can be
useful to researchers for empirical analysis and hypothesis testing.
While Table 2 has showcased negation and recursion, Table 3 show-
cases quantification: since our query language is based on Prolog,
we support existential queries directly (variables in Prolog clause
heads are existentially quantified), and universal queries by rewrit-
ing, i.e., Vz Q(z) & —3Iz -~Q(x).

All the information for developers (e.g., tossing information, bug

fix information, code authorship information) can be extracted from

the source code and bug tables.

Updating the database. As software evolves, our database
needs to grow; note that the database is monotonically increasing

(we never retract facts).

4. EXAMPLES

S. RESULTS

We randomly selected 2128 C files and 58 C++ files from the
Firefox source code repository and extracted their complete change
log histories to populate our source change database. We extracted
the bugs associated with these source files, resulting into 932 bug
files for our bug database. We also added to our source dependency
table the 50 function call edges induced by the static call graph
between functions in these files. In total, our database contained

Query Resulting | Time
tuples (ms)
Q! | bugs_not_depend(B,wtc,R) 218 1,746
02 reach(’'main;nsinstall .c’, 1 4
’PK11_FreeSlot;pk11slot.c’)
reach(’PK11_FreeSlot;pk11slot.c’, 0 5
’main;nsinstall .c”)
03 | activity (B,wtc,F) 2,569 4,489
04 | bugs._fixed(B,wtc) 218 143
05 | bugs_assigned_bydate(B,wtc, 1 109
2006/02/02’)
06 | bugs_not_fixed(B,wtc) 558 287
Q7 | bugs._fixed_D_E(B,fabientassin,wtc) 1 127
08 | source_modified_bydate(F,nelson, 46 197
R,'2001/01/07’)
Q9 | source_modified_bylines(F,wtc,B,R,L) 1,312 695
QI0 | all_src_changes(B,R,F,DT,D) 39,866 733,566
Q11 | bugs_fixed_D_D(B,nelson) 126 25
Q12 | bugs_toss(236613,D,R) 18 143
QI3 | common_modified(nelson,wtc,R) 465 25,120
Q14 | pbugs_reported_bydate(B,D,DT), 50 875
2008/7/23<DT< 2008/10/23 .
Q15 | bugs_fixed_bydate(B,D,DT), 47 1,769
2008/7/23<DT< 2008/10/23 .
Q16 | source_modified_bydate(F,nelson, 1,275 1,282
R,DT,DY), DT=2008/7/23.
Q17 | bugs_new(B,D) 810 2,435

Table 4: Example queries for query declarations in Table 3.

63,142 tuples. In Table 4 we present the queries we used to test the
query definitions showed in Table 3. The first column shows the
query invocation, the second column shows the number of resulting
tuples, > and the third column shows the query execution time, in
milliseconds.

We found that the time taken to answer a query using DES in-
creases with the increase in number of resulting tuples, hence it can
be quite high for queries with large results, e.g., Q10; we plan to
address this scalability issue in future work.

6. FUTURE WORK

We are currently using DES, an open-source Prolog-based im-
plementation of deductive databases [15] as our framework’s en-
gine. In the future, we plan to use the bdddbddb framework to
speed up DES queries [17], as bdddbddb has been shown to be
able to handle Datalog-based static analyses for large, real-world
programs. We plan to use other software traits/trails, e.g., mailing
list information, to improve our data set for more accurate informa-
tion modeling and retrieval. As discussed in Section 3.2.3, similar
to Fischer et al. [7], we plan to design heuristics that can pinpoint
missing data and combine non-explicit co-evolved data from var-
ious sources (as demonstrated with an example in Section 3.2.3).
In our preliminary experiments as shown in Section 5, we did not
use the sourcebasic database or any queries related to it. In future,
we would like to extend our library to answer queries related to
the sourcebasic like: “which file exhibited the maximum increase
in complexity or defect density during a given time interval.” Ad-
ditionally, as shown in Figure 1, we would also like to track bug-

SIn query Q2 in Table 4, Func; Mod represents function Func
defined in module M od; the resulting tuple 1 denotes there is a
path from Fi; M to Fa; M2 while O denotes otherwise.

introducing changes using our framework—changes in the source
code that led to bugs. We would like to include code-ownership
information to indicate which developer owns which artifact of a
software system in our database using heuristics similar to Girba et
al. [9]. Finally, we plan to add a visualization layer [10] on top of
our current framework that will allow query results to be displayed
visually, rather than as text.

7. CONCLUSION

In this paper we show how using a Prolog-based framework we
can answer a broad range of queries on software evolution data that
cross multiple software repositories. We used several examples on
Firefox source and bug repositories to show how our framework is
efficient in querying large, real-world evolution data. In the future,
we would like to improve the scalability of our framework, increase
its precision, and add a visualization component.

8. REFERENCES
[1] A. Begel, K. Y. Phang, and T. Zimmermann. Codebook:

Discovering and exploiting relationships in software
repositories. In /CSE, 2010.

[2] P. Bhattacharya and I. Neamtiu. Assessing programming
language impact on development and maintenance: A study
on C and C++. In ICSE 2011.

[3] P. Bhattacharya and I. Neamtiu. Fine-grained incremental
learning and multi-feature tossing graphs to improve bug
triaging. In ICSM, 2010.

[4] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. 2nd edition, 2001.

[5] C.Demetrescu and G. Italiano. Fully dynamic transitive
closure: breaking through the o(n2) barrier. In FOCS’00.

[6] Firefox Statistics. http://www.computerworld.
com/s/article/9140819/1_in_4_now\
_use_Firefox_to_surf_the_Web.

[7]1 M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In /CSM, 2003.

[8] D. M. German. Using software trails to reconstruct the
evolution of software. JSME’04.

[9] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How
developers drive software evolution. In /WPSE, 2005.

[10] M. Goeminne and T. Mens. A framework for analysing and
visualising open source software ecosystems. In
EVOL/IWPSE, 2010.

[11] 1. Herraiz, G. Robles, and J. M. Gonzalez-Barahona.
Research friendly software repositories. In IWPSE-Evol,
2009.

[12] A. Hindle and D. M. German. SCQL: a formal model and a
query language for source control repositories. In MSR’05.

[13] A.Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Trans. Softw. Eng. Methodol., 11(3), 2002.

[14] L. Nussbaum and S. Zacchiroli. The ultimate debian
database: Consolidating bazaar metadata for quality
assurance and data mining. In MSR, 2010.

[15] F. Saenz-Perez. DES: A Deductive Database System. In
PROLE, 2010.

[16] J. Starke, C. Luce, and J. Sillito. Working with search results.
In SUITE, 20009.

[17] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
PLDI, 2004.

