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Abstract

Empirical studies indicate that automating the bug assignment process (also
known as bug triaging) has the potential to significantly reduce software evo-
lution effort and costs. Prior work has used machine learning techniques to
automate bug triaging but has employed a narrow band of tools which can be
ineffective in large, long-lived software projects. To redress this situation, in this
paper we employ a comprehensive set of machine learning tools and analyzes
that lead to very accurate predictions, and lay the foundation for the next gen-
eration of machine learning-based bug triaging. Our work is the first to exam-
ine the impact of multiple machine learning dimensions (classifiers, attributes,
and training history) on prediction accuracy in bug triaging. We employ four
classifiers and perform an ablative analysis to show the relative importance of
classifiers and various software process attributes on bug triaging accuracy. We
propose optimization techniques that achieve high prediction accuracy while
reducing training and prediction time. We validate our approach on Mozilla
and Eclipse, covering 856,259 bug reports and 21 cumulative years of develop-
ment. We demonstrate that our techniques can achieve up to 86.09% prediction
accuracy in bug triaging and significantly reduce tossing path lengths.
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1. Introduction

Software evolution has high associated costs and effort. A survey by the
National Institute of Standards and Technology estimated that the annual cost
of software bugs is about $59.5 billion [1]. Some software maintenance studies
indicate that maintenance costs are at least 50%, and sometimes more than
90%, of the total costs associated with a software product [2, 3|, while other
estimates place maintenance costs at several times the cost of the initial software
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version [4]. These surveys suggest that making the bug fixing process more
efficient would reduce evolution effort and lower software production costs.

Most software projects use bug trackers to organize the bug fixing process
and facilitate application maintenance. For instance, Bugzilla is a popular
bug tracker used by many large projects, such as Mozilla, Eclipse, KDE, and
Apache [5]. These applications receive hundreds of bug reports a day; ideally,
each bug gets assigned to a developer who can fix it in the least amount of time.
This process of assigning bugs, known as bug triaging, is complicated by several
factors: if done manually, triaging is labor-intensive, time-consuming and fault-
prone; moreover, for open source projects, it is difficult to keep track of active
developers and their expertise. Identifying the right developer for fixing a new
bug is further aggravated by growth, e.g., as projects add more components,
modules, developers and testers [6], the number of bug reports submitted daily
increases, and manually recommending developers based on their expertise be-
comes difficult. An empirical study by Jeong et al. [7] reports that, on average,
the Eclipse project takes about 40 days to assign a bug to the first developer,
and then it takes an additional 100 days or more to reassign the bug to the sec-
ond developer. Similarly, in the Mozilla project, on average, it takes 180 days
for the first assignment and then an additional 250 days if the first assigned
developer is unable to fix it. These numbers indicate that the lack of effective,
automatic triaging and toss reduction techniques results in considerably high
effort associated with bug resolution.

Effective and automatic bug triaging can be divided into two sub-goals: (1)
assigning a bug for the first time to a developer, and (2) reassigning it to another
promising developer if the first assignee is unable to resolve it, then repeating
this reassignment process (bug tossing) until the bug is fixed. Our findings
indicate that at least 93% of all “fixed” bugs in both Mozilla and Eclipse have
been tossed at least once (tossing path length > 1). Ideally, for any bug triage
event, the tossing length should be zero, i.e., the first person the bug is assigned
to should be able to fix it; if that is not possible, the bug should be resolved in
a minimum number of tosses.

In this paper, we explore the use of machine learning toward effective and
automatic bug triaging along three dimensions: the choice of classification al-
gorithms, the software process attributes that are instrumental to constructing
accurate prediction models, and the efficiency—precision trade-off. Our thor-
ough exploration along these dimensions have lead us to develop techniques
that achieve unprecedented levels of bug triaging accuracy and bug tossing re-
duction.

Wide range of classification algorithms. Machine learning is used for rec-
ommendation purposes in various areas such as climate prediction, stock market
analysis, or prediction of gene interaction in bioinformatics [8]. Machine learn-



ing techniques, in particular classifiers,’ have also been employed earlier for au-
tomating bug triaging. These automatic bug triaging approaches [9, 10, 11, 12]
use the history of bug reports and developers who fixed them to train a clas-
sifier. Later, when keywords from new bug reports are given as an input to
the classifier, it recommends a set of developers who have fixed similar classes
of bugs in the past and are hence considered potential bug-fixers for the new
bug. Prior work that has used machine learning techniques for prediction or
recommendation purposes has found that prediction accuracy depends on the
choice of classifier, i.e., a certain classifier outperforms other classifiers for a
specific kind of a problem [8]. Previous studies [9, 10, 11, 7] only used a subset
of text classifiers and did not aim at analyzing which is the best classifier for
this problem. Our work is the first to examine the impact of multiple machine
learning dimensions (classifiers, attributes, and training history) on prediction
accuracy in bug triaging and tossing. In particular, this is the first study in
the area of bug triaging to consider, and compare the performance of, a broad
range of classifiers:Naive Bayes Classifier, Bayesian Networks, C4.5 and Support
Vector Machines.

Ablative analysis for ensuring effective tossing graphs. Tossing graphs
have been introduced by Jeong et al. [7]; they proposed automating bug triaging
by building bug tossing graphs from bug tossing histories. While classifiers and
tossing graphs are effective in improving the prediction accuracy for triaging and
reducing tossing path lengths, their accuracy is threatened by several issues: out-
dated training sets, inactive developers, and imprecise, single-attribute tossing
graphs. Prior work [7] has trained a classifier with fixed bug histories; for each
new bug report, the classifier recommends a set of potential developers, and for
each potential developer, a tossing graph—whose edges contain tossing proba-
bilities among developers—is used to predict possible re-assignees. However, the
tossing probability alone is insufficient for recommending the most competent
active developer (see Section 4.6.3 for an example). In particular, in open source
projects it is difficult to keep track of active developers and their expertise. To
address this, in addition to tossing probabilities, we label tossing graph edges
with developer expertise and tossing graph nodes with developer activity, which
help reduce tossing path lengths significantly. We measure the importance of
additional attributes we use in tossing graphs by performing an ablative analysis
to determine how much each of them affects the prediction accuracy. We found
that each attribute is instrumental for achieving high prediction accuracy, and
overall they make pruning more efficient and improve prediction accuracy by up
to 22% when compared to prediction accuracy obtained in the absence of the
attributes.

LA classifier is a machine learning algorithm that can be trained using input attributes
(also called feature vectors) and desired output classes; after training, when presented with a
set of input attributes, the classifier predicts the most likely output class.



Accurate yet efficient classification. Prior works [9, 10, 11, 12, 7] have
used the entire bug history of projects for classification. On one hand, this ap-
proach helps in building accurate learning models but on the other hand, is very
time consuming. We propose optimization techniques for the time consuming
classification process by showing how a subset of bug reports can be used to
achieve high and stable prediction accuracy. As elaborated in Section 5.6 we
found that by using one third of all bug reports we could achieve prediction
accuracies similar to the best results of our original experiments where we used
the complete bug history Therefore, our third novel contribution in this paper
is that we show how by using a subset of bug reports we can achieve accurate
yet efficient bug classification that reduces the associated computational effort
significantly.

Similar to prior work, we test our approach on the fixed bug data sets for
Morzilla and Eclipse. Our techniques achieve a bug triaging prediction accuracy
of up to 85% for Mozilla and 86% for Eclipse. We also find that using our
approach reduces the length of tossing paths by up to 86% for correct predictions
and improves the prediction accuracy by up to 10.78% compared to previous
approaches.

Our paper is structured as follows. In Section 2 we discuss prior work and
how it relates to our approach. In Section 3 we define terms and techniques
used in bug triaging. In Section 4 we elaborate on our contributions, techniques
and implementation details. We present our experimental setup and results in
Section 5. Finally, we discuss threats to validity of our study in Section 6.

2. Related Work

2.1. Machine Learning and Information Retrieval Techniques

Cubranic et al. [10] were the first to propose the idea of using text classifica-
tion methods (similar to methods used in machine learning) to semi-automate
the process of bug triaging. The authors used keywords extracted from the title
and description of the bug report, as well as developer ID’s as attributes, and
trained a Naive Bayes classifier. With new bug reports, the classifier suggests
one or more potential developers for fixing the bug. Their method used bug
reports for Eclipse from January 1, 2002 to September 1, 2002 for training, and
reported a prediction accuracy of up to 30%. While we use classification as a
part of our approach, in addition, we employ incremental learning and tossing
graphs to reach higher accuracy. Moreover, our data sets are much larger, cov-
ering the entire lifespan of both Mozilla (from May 1998 to March 2010) and
Eclipse (from October 2001 to March 2010)..

Anvik et al. [9] improved the machine learning approach proposed by Cubranic
et al. by using filters when collecting training data: (1) filtering out bug reports
labeled invalid,” “wontfix,” or “worksforme,” (2) removing developers who no
longer work on the project or do not contribute significantly, and (3) filtering
developers who fixed less than 9 bugs. They used three classifiers, SVM, Naive



Bayes and C4.5. They observed that SVM (Support Vector Machines) performs
better than the other two classifiers and reported prediction accuracy of up to
64%. Our ranking function (as described in Section 4 obviates the need to filter
bugs. Similar to Anvik et al., we found that filtering bugs which are not “fixed”
but “verified” or “resolved” leads to higher accuracy. They report that their
initial investigation in incremental learning did not have a favorable outcome,
whereas incremental learning helps in our approach; in Section 5 we explain the
discrepancy between their findings and ours.

Canfora et al. used probabilistic text similarity [12] and indexing develop-
ers/modules changed due to bug fixes [13] to automate bug triaging. When
using information retrieval based bug triaging, they report up to 50% top 1 re-
call accuracy and when indexing source file changes with developers they achieve
30%-50% top 1 recall for KDE and 10%—20% top 1 recall for Mozilla.

Podgurski et al. [14] also used machine learning techniques to classify bug
reports but their study was not targeted at bug triaging; rather, their study
focused on classifying and prioritizing various kinds of software faults.

Lin et al. [15] conducted machine learning-based bug triaging on a propri-
etary project, SoftPM. Their experiments were based on 2,576 bug reports.
They report 77.64% average prediction accuracy when considering module ID
(the module a bug belongs to) as an attribute for training the classifier; the
accuracy drops to 63% when module ID is not used. Their finding is similar to
our observation that using product-component information for classifier training
improves prediction accuracy.

Lucca et al. [16] used information retrieval approaches to classify mainte-
nance requests via classifiers. However, the end goal of their approach is bug
classification, not bug triaging. They achieved up to 84% classification accuracy
by using both split-sample and cross-sample validation techniques.

Matter et al. [17] model a developer’s expertise using the vocabulary found
in the developer’s source code. They recommend potential developers by ex-
tracting information from new bug reports and looking it up in the vocabulary.
Their approach was tested on 130,769 Eclipse bug reports and reported predic-
tion accuracies of 33.6% for top 1 developers and 71% for top 10 developers.

2.2. Incremental Learning

Bettenburg et al. [11] demonstrate that duplicate bug reports are useful in
increasing the prediction accuracy of classifiers by including them in the training
set for the classifier along with the master reports of those duplicate bugs. They
use folding to constantly increase the training data set during classification, and
show how this incremental approach achieves prediction accuracies of up to 56%;
they do not need tossing graphs, because reducing tossing path lengths is not
one of their goals. We use the same general approach for the classification part,
though we improve it by using more attributes in the training data set, we use
multiple text classifiers and achieve higher prediction accuracies.



2.8. Tossing Graphs

Jeong et al. [7] introduced the idea of using bug tossing graphs to predict a
set of suitable developers for fixing a bug. The authors use classifiers and tossing
graphs (Markov-model based) to recommend potential developers. We use fine-
grained, intra-fold updates and extra attributes for classification; our tossing
graphs are similar to theirs, but we use additional attributes on edges and nodes
as explained in Section 4. The set of attributes we use help improve prediction
accuracy and further reduce tossing lengths, as described in Sections 5.2 and 5.3.
We also perform an ablative analysis to demonstrate the significance of our
attributes in the tossing graph and tossee ranking function.

3. Preliminaries

We first define several machine learning and bug triaging concepts that form
the basis of our approach.

8.1. Machine Learning for Bug Categorization

Classification is a supervised machine learning technique for deriving a gen-
eral trend from a training data set. The training data set (TDS) consists of
pairs of input objects (called feature vectors), and their respective target out-
puts. The task of the supervised learner (or classifier) is to predict the output
given a set of input objects, after being trained with the TDS. Feature vectors
for which the desired outputs are already known form the wvalidation data set
(VDS) that can be used to test the accuracy of the classifier. A bug report con-
tains a description of the bug and a list of developers that were associated with
a specific bug, which makes text classification applicable to bug triaging. Ma-
chine learning techniques were used by previous bug triaging works [9, 10, 11]:
archived bug reports form feature vectors, and the developers who fixed the bugs
are the outputs of the classifier. Therefore, when a new bug report is provided
to the classifier, it predicts potential developers who can fix the bug based on
their bug fixing history.

Feature vectors. The accuracy of a classifier is highly dependent on the feature
vectors in the TDS. Bug titles and summaries have been used earlier to extract
the keywords that form feature vectors. These keywords are extracted such that
they represent a specific class of bugs. For example, if a bug report contains
words like “icon,” “image,” or “display,” it can be inferred that the bug is
related to application layout, and is assigned to the “layout” class of bugs. We
used multiple text classification techniques (tf-idf, stemming, stop-word and
non-alphabetic word removal [18]) to extract relevant keywords from the actual
bug report; these relevant keywords constitute a subset of the attributes used
to train the classifier.

8.1.1. Text Classification Algorithms
We now briefly describe each classifier we used.



Naive Bayes Classifier. Naive Bayes is a probabilistic technique that uses Bayes’
rule of conditional probability to determine the probability that an instance
belongs to a certain class. Bayes’ rule states that “the probability of a class
conditioned on an observation is proportional to the prior probability of the
class times the probability of the observation conditioned on the class” and can
be denoted as follows:

P(observation|class) * P(class)

P(class|observation) = (1)

For example, if the word concurrency occurs more frequently in the reports
resolved by developer A than in the reports resolved by developer B, the clas-
sifier would predict A as a potential fixer for a new bug report containing the
word concurrency. The algorithm is called “Naive Bayes” as it makes the strong
assumption that features are independent of the label (the developer who re-
solved the bug). Even though this assumption does not always hold, it turns
out that in practice, Naive Bayes-based recommendation or prediction performs
well [19].

P(observation)

Bayesian Networks. A Bayesian Network [20] is a probabilistic model that is
used to represent a set of random variables and their conditional dependencies by
using a directed acyclic graph (DAG). Each node in the DAG denotes a variable,
and each edge corresponds to a potential direct dependence relationship between
a pair of variables. Each node is associated with a conditional probability table
(CPT) which gives the probability that the corresponding variable takes on a
particular value given the values of its parents.

C4.5. The C4.5 algorithm [21] builds a decision tree based on the attributes
of the instances in the training set. A prediction is made by following the
appropriate path through the decision tree based on the attribute values of
the new instance. C4.5 builds the tree recursively in a greedy fashion. Each
interior node of the tree is selected to maximize the information gain of the
decision at that node as estimated by the training data. The information gain
is a measure of the predictability of the target class (developer who will resolve
the bug report) from the decisions made along the path from the root to this
node in the tree. The sub-trees end in leaf nodes at which no further useful
distinctions can be made and thus a particular class is chosen.

Support Vector Machines. An SVM (Support Vector Machine [22]) is a su-
pervised classification algorithm that finds a decision surface that maximally
separates the classes of interest. That is, the closest points to the surface on
each side are as far as possible from the decision surface. It employs kernels
to represent non-linear mappings of the original input vectors. This allows it
to build highly non-linear decision surfaces without an explicit representation
of the non-linear mappings. Four kinds of kernel functions are commonly used:
Linear, Polynomial, Gaussian Radial Basis Function (RBF) and Sigmoid. In
our study we use Polynomial and RBF functions as they have been found to be
most effective in text classification.
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Figure 1: Folding techniques for classification as used by Bettenburg et al.

3.2. Folding

Early bug triaging approaches [7, 9, 10] divided the data set into two subsets:
80% for TDS and 20% for VDS. Bettenburg et al. [11] have used folding (sim-
ilar to split-sample validation techniques from machine learning [8]) to achieve
higher prediction accuracy. In a folding-based training and validation approach
(illustrated in Figure 1), the algorithm first collects all bug reports to be used
for TDS, sorts them in chronological order and then divides them into n folds.
In the first run, fold 1 is used to train the classifier and then to predict the
VDS. In the second run, fold 2 bug reports are added to TDS. In general, after
validating the VDS from fold n, that VDS is added to the TDS for validating
fold n+1. To reduce experimental bias [8], similar to Bettenburg et al., we chose
n = 11 and carried out 10 iterations of the validation process using incremental
learning.

Tossing paths
A—-B—-C—D
A—-FE—D-—C
A—-B—FE—D
C—FE—A—D
B—F—D—F

Developer | Total | Developers who fixed the bug
who tossed | tosses C D F
the bug # | Pr | # | Pr | # Pr
A 4 110253 |075]| 0 0
B 3 0 0 2 1067 | 1 0.33
C 2 - - 2 | 1.00]| O 0
D 2 11050 | - - 1 0.50
FE 4 025 | 2 | 050 | 1 0.25

Table 1: Tossing paths and probabilities as used by Jeong et al.



Figure 2: Tossing graph built using tossing paths in Table 1.

3.8. Goal-oriented Tossing Graphs

When a bug is assigned to a developer for the first time and she is unable
to fix it, the bug is assigned (tossed) to another developer. Thus a bug is
tossed from one developer to another until a developer is eventually able to fix
it. Based on these tossing paths, goal-oriented tossing graphs were proposed
by Jeong et al .[7]; for the rest of the paper, by “tossing graph” we refer to a
goal-oriented tossing graph. Tossing graphs are weighted directed graphs such
that each node represents a developer, and each directed edge from D; to D,
represents the fact that a bug assigned to developer Dy was tossed and eventually
fixed by developer Ds. The weight of an edge between two developers is the
probability of a toss between them, based on bug tossing history. The tossing
probability, also known as the transaction probability, from developer D to D;
(denoted as D < D;) is defined by the following equation:

>1"D < D;j : D, fixed the bug

Pr(D — D;) = b, (2)

In this equation, the numerator is the number m of tosses from developer D

to D; such that D; fixed the bug, while the denominator is the total number of
tosses from D to any other developer D; such that D; fixed the bug; n represents
the total number of developers D tossed a bug to. To illustrate this, in Table 1
we provide sample tossing paths and show how toss probabilities are computed.
For example, developer A has tossed four bugs in all, three to D and one to
C, hence Pr(A — D) = 0.75, Pr(A — () = 0.25, and Pr(A — F) = 0.
Note that developers who did not toss any bug (e.g., F) do not appear in the
first column, and developers who did not fix any bugs (e.g., A) do not have a
probability column. In Figure 2, we show the final tossing graph built using the
computed tossing probabilities. It is common in open source projects that when
a bug in a module is first reported, the developers associated with that module




are included in the list of assignees by default. The purpose of our automatic
bug triaging tool is, given a bug report, to predict developers who could be
potential fixers and email them, so that human intervention is reduced as much
as possible.

Prediction accuracy. If the first developer in our prediction list matches the
actual developer who fixed the bug, we have a hit for the Top 1 developer
count. Similarly, if the second developer in our prediction list matches the
actual developer who fixed the bug, we have a hit for the Top 2 developer
count. For example, if there are 100 bugs in the VDS and for 20 of those bugs
the actual developer is the first developer in our prediction list, the prediction
accuracy for Top 1 is 20%; similarly, if the actual developer is in our Top 2 for
60 bugs, the Top 2 prediction accuracy is 60%.

4. Methodology

4.1. Choosing Effective Classifiers and Features

In this section we discuss appropriate selection of machine learning algo-
rithms and feature vectors for improving the classification process.

4.1.1. Choosing the Right Classifier

Various problems that use machine learning techniques for prediction or
recommendation purposes have found that for a specific kind of a problem, one
classifier outperforms other

Prior work has found that prediction accuracy depends on the choice of clas-
sifier, i.e., for a specific kind of a problem, a certain classifier outperforms other
classifiers [8]. Previous bug classification and triaging studies [9, 10, 11, 7] only
used a subset of text classifiers and did not aim at analyzing which is the best
classifier for this problem. Our work is the first study to consider an extensive
set of classifiers which are commonly used for text classification: Nalve Bayes
Classifier, Bayesian Networks, C4.5 and two types of SVM classifiers (Polyno-
mial and RBF). We found that for bug triaging it is not possible to select one
classifier which is better than the rest, either for a specific project or for any
project in general. Since classifier performance is also heavily dependent on
the quality of bug reports, in general we could not propose choosing a specific
classifier a priori for a given project, and found that classifier preference might
change as the project evolves. Interestingly, computationally-intensive classifi-
cation algorithms such as C4.5 and SVM do not consistently outperform simpler
algorithms such as Naive Bayes and Bayesian Networks. We provide details of
our prediction accuracy using all five classifiers in Section 5.2.

4.1.2. Feature Selection

Classifier performance is heavily dependent on feature selection [8]. Prior
work [9, 10, 11] has used keywords from the bug report and developer name
or ID as features (attributes) for the training data sets; we also include the
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product and component the bug belongs to. For extracting relevant words from
bug reports, we employ tf-idf, stemming, stop-word and non-alphabetic word
removal [18]. We use the Weka toolkit [23] to remove stop words and form the
word vectors for the dictionary (via the StringtoWordVector class with tf-idf
enabled).

4.2. Incremental Learning

Prior work [7, 11] has used inter-fold updates, i.e., the classifier and tossing
graphs are updated after each fold validation, as shown in Figure 3(a). With
inter-fold updates, after validating the VDS from fold n, the VDS is added to
the TDS for validating fold n+1. However, consider the example when the TDS
contains bugs 1-100 and the VDS contains bugs 101-200. When validating bug
101, the classifier and tossing graph are trained based on bugs 1-100, but from
bug 102 onwards, the classifier and tossing graph are not up-to-date any more
because they do not incorporate the information from bug 101. As a result,
when the validation sets contain thousands of bugs, this incompleteness affects
prediction accuracy. Therefore, to achieve high accuracy, it is essential that
the classifier and tossing graphs be updated with the latest bug fix; we use a
fine-grained, intra-fold updating technique for this purpose.

We now proceed to describing intra-fold updating. After the first bug in the
validation fold has been used for prediction and accuracy has been measured,
we add it to the TDS and re-train the classifier as shown in Figure 9(b). We also
update the tossing graphs by adding the tossing path of the just-validated bug.
This guarantees that for each bug in the validation fold, the classifier and the
tossing graphs incorporate information about all preceding bugs. This approach
has first been used in the context of machine learning by Segal et al. [24].

4.83. Multi-featured Tossing Graphs

Tossing graphs are built using tossing probabilities derived by analyzing
bug tossing histories, as explained in Section 3.3. Jeong et al. [7] determined
potential tossees as follows: if developer A has tossed more bugs to developer B
than to developer D, in the future, when A cannot resolve a bug, the bug will be
tossed to B, i.e., tossing probabilities determine tossees. However, this approach
might be inaccurate in certain situations: suppose a new bug belonging to class
K is reported, and developer A was assigned to fix it, but he is unable to fix
it; developer B has never fixed any bug of type K7, while developer D has fixed
10 bugs of type K;. The prior approach would recommend B as the tossee,
although D is more likely to resolve the bug than B. Thus, although tossing
graphs reveal tossing probabilities among developers, they should also contain
information about which classes of bugs were passed from one developer to
another; we use multi-feature tossing graphs to capture this information.

Another problem with the classifier- and tossing graph-based approaches
is that it is difficult to identify retired or inactive developers. This issue is
aggravated in open source projects: when developers work voluntarily, it is
difficult to keep track of the current set of active developers associated with

11
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assume that, when within a short time span many




Product Component Tossing paths
P1 Ol A—B— C
P Cs F—-A—-B—FE
P Cy B—-A—-D-—-C
P Cs C—-FE—A—D
P 4 A—-B—-FE—-C
Py Cs B—-A—F—D
Developer Total Developers who fixed the bug
bug tosses C D E
assigned # | Pr| # | Pr | # Pr
A 6 3105 210331 0.17
Developer Last Activity
(in days)
A 20
C 70
D 50
E 450

Table 2: Example of tossing paths, associated tossing probabilities and developer activity.

50 Days 70 Days

Figure 4: Multi-feature tossing graph (partial) derived from data in Table 2.

bugs get tossed from a developer D to others, leading to an increase in the
number of outgoing edges in the tossing graph from D’s node, D is a potentially
retired developer. They suggest that this information can be used in real-world
scenarios by managers to identify potentially inactive developers. Therefore, in
their automatic bug triaging approach they still permit assignment of bugs to
inactive developers, which increases the length of the predicted tossing paths.
In contrast, we restrict potential assignees to active developers only, and do so
with a minimum number of tosses.

The tossing graphs we build have additional labels compared to Jeong et al.:
for each bug that contributes to an edge between two developers, we attach the
bug class (product and component)? to that edge; moreover, for each developer

2 Products are smaller projects within a large project. Components are sub-modules in
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in the tossing graph, we maintain an activity count, i.e., the difference between
the date of the bug being validated and the date of the last activity of that
developer.

4.3.1. Building Multi-feature Tossing Graphs

As discussed earlier in Section 4.3, tossing probabilities are a good start to-
ward indicating potential bug fixers, but they might not be appropriate at all
times. Therefore, the tossing graphs we generate have three labels in addition
to the tossing probability: bug product and bug component on each edge, and
number of days since a developer’s last activity on each node. For example,
consider three bugs that have been tossed from D; to Dy and belong to three
different product-component sets: {Pi, C1}, {P1, C3}, and {P,, C4}. There-
fore, in our tossing graph, the product-component set for the edge between
Dy and D is {{P1,C1},{P1,C3},{Ps,Cs}}. Maintaining these additional at-
tributes is also helpful when bugs are re-opened. Both developer expertise and
tossing histories change over time, hence it is important to identify the last fixer
for a bug and a potential tossee after the bug has been re-opened.

We now present three examples that demonstrate our approach and show
the importance of multi-feature tossing graphs. The examples are based on the
tossing paths, the product—component the bug belongs to, and the developer
activity, as shown in Table 2. Suppose that at some point in our recommendation
process for a specific bug, the classifier returns A as the best developer for fixing
the bug. However, if A is unable to resolve it, we need to use the tossing graph
to find the next developer. We will present three examples to illustrate which
neighbor of A to choose, and how the selection depends on factors like bug source
and developer activity, in addition to tossing probability. For the purpose of
these examples, we just show a part of the tossing graph built from the tossing
paths shown in Table 2; we show the node for developer A and its neighbors
in the tossing graph in Figure 4, as the tossee selection is dependent on these
nodes alone.

Example 1. Suppose we encounter a new bug B; belonging to product P;
and component Cy, and the classifier returns A as the best developer for fixing
the bug. If A is unable to fix it, by considering the tossing probability and
product—component match, we conclude that it should be tossed to C.

Example II. Consider a bug Bs belonging to product P; and component
Cjs. If A is unable to fix it, although C has a higher transaction probability than
D, because C has fixed bugs earlier from product P; and component C, he is
more likely to fix it than D. Hence in this case the bug gets tossed from A to D.

Example III. Based on the last active count for E in Figure 4, i.e., 450
days, it is likely that E is a retired developer. In our approach, if a developer
has been inactive for more than 100 days,® we choose the next potential neighbor

a product. For example, Firefox is a product in Mozilla and Bookmarks is a component of
Firefox.
3Choosing 100 days as the threshold was based on Anvik et al. [9]’s observation that
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(tossee) from the reference node A. For example, consider bug B3 which belongs
to product P; and component C3, which has been assigned to A and we need
to find a potential tossee when A is unable to resolve it. We should never
choose E as a tossee as he is a potential retired developer and hence, in this
particular case , we choose C as the next tossee. We also use activity counts
to prune inactive developers from classifier recommendations. For example, if
the classifier returns n recommendations and we find that the i** developer is
probably retired, we do not select him, and move on to the (i + 1)** developer.

4.3.2. Ranking Function

As explained with examples in Section 4.3.1, the selection of a tossee depends
on multiple factors. We thus use a ranking function to rank the tossees and
recommend potential bug-fixer. We first show an example of our developer
prediction technique for a real bug from Mozilla and then present the ranking
function we use for prediction.

Example (Mozilla bug 254967). For this particular bug, the first five
developers predicted by the Naive Bayes classifier are {bugzilla, fredbezies, myk,
tanstaafl, ben.bucksch}. However, since bryner is the developer who actually
fixed the bug, our classifier-only prediction is inaccurate in this case. If we
use the tossing graphs in addition to the classifier, we select the most likely
tossee for bugzilla, the first developer in the classifier ranked list. In Figure 5,
we present the node for bugzilla and its neighbors.* If we rank the outgoing
edges of bugzilla based on tossing probability alone, the bug should be tossed
to developer ddahl. Though bryner has lower probability, he has committed
patches to the product “Firefox” and component “General” that bug 254967
belong to. Therefore, our algorithm will choose bryner as the potential devel-
oper over ddahl, and our prediction matches the actual bug fixer. Our ranking
function also takes into account developer activity; in this example, however,
both developers ddahl and bryner are active, hence comparing their activities
is not required. To conclude, our ranking function increases prediction accu-
racy while reducing tossing lengths; the actual tossing length for this particular
Morzilla bug was 6, and our technique reduces it to 2.

We now describe our algorithm for ranking developers. Similar to Jeong et
al., we first use the classifier to predict a set of developers named CP (Classi-
fier Predicted). Using the last-activity information, we remove all developers
who have not been active for the past 100 days from CP. We then sort the
developers in CP using the fix counts from the developer profile (as described
in Section 4.6.1).

Suppose the CP is {D1, D2, D3, ..., D;}. For each D; in the sorted CP, we
rank its tossees T} (outgoing edges in the tossing graph) using the following
ranking function:

developers that have been inactive for three months or more are potentially retired.
4For clarity, we only present the nodes relevant to this example, and the labels at the point
of validating this bug; due to incremental learning, label values will change over time.
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Rank (T}) = Pr(D; — Ty)+
MatchedProduct(Ty,) +
MatchedComponent(Ty) +
Last Activity(T},)

The tossing probability, Pr(D; — T}), is computed using equation 2 (Sec-
tion 3). The function MatchedProduct(T})) returns 1 if the product the bug
belongs to exists in developer T}’s profile, and 0 otherwise. Similarly, the func-
tion MatchedComponent(T},) returns 1 if the component the bug belongs to
exists in developer Ty’s profile. The LastActivity function returns 1 if Ty’s last
activity was in the last 100 days from the date the bug was reported. As a
result, 0 < Rank(7}) < 4. We then sort the tossees T by rank, choose the de-
veloper T; with highest rank and add it to the new set of potential developers,
named ND. Thus after selecting T;, where ¢ = 1,2,..., 7, the set ND becomes
{Dy,T\,D5,T5,Ds3,Ts,...,D;,T;}. When measuring our prediction accuracy,
we use the first 5 developers in ND.

If two potential tossees T; and T have the same rank, and both are active
developers, and both have the same tossing probabilities for bug B (belonging
to product P and component C), we use developer profiles to further rank them.
There can be two cases in this tie: (1) both T; and T}’s profiles contain { P, C'}, or
(2) there is no match with either P or C. For the first case, consider the example
in Table 3: suppose a new bug B belongs to {P;,C1}. Assume T; and T are
the two potential tossees from developer D (where D has been predicted by the
classifier) and suppose both T; and T have the same tossing probabilities from
D. From developer profiles, we find that T} has fixed more bugs for {P;,C4}
than T;, hence we choose T; (case 1). If the developers have the same fix count,
or neither has P and/or C in their profile (case 2), we randomly choose one.

{Firefox,Bookmarks} {Firefox,Bookmarks }

{Firefox,General }

Figure 5: Actual multi-feature tossing graph extracted from Mozilla.

0.437 0.196

12 days 38 days
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Developer ID || Product-Component Fix
Count

T; {P1,Cr} 3
{P,Cr} 18

{Py,Cs} 7

T; {P,C1} 13
{Py,Cs} 11

Table 3: Sample developer profiles: developer IDs and number of bugs they fixed in each
product—component pair.

4.4. Ablative Analysis

As explained in Section 4.6.4, our ranking function for tossing graphs con-
tains additional attributes compared to the original tossing graphs by Jeong
et al. Therefore, we were interested in evaluating the importance of each at-
tribute; to measure this, we performed an ablative analysis. We choose only two
attributes out of three (product, component and developer activity) at a time
and compute the decrease in prediction accuracy in the absence of the other
attribute. For example, if we want to measure the significance of the “developer
activity” attribute, we use only product and component attributes in our rank-
ing function described in Section 4.6.4 and compute the decrease in prediction
accuracy. In Section 5.5 we discuss the results of our ablative analysis and argue
the importance of the attributes we propose.

4.5. Accurate Yet Efficient Classification

One of the primary disadvantages of fine-grained incremental learning is
that it is time consuming. Previous studies which used fine-grained incremental
learning for other purposes [25] found that using a part of the bug repository
history for classification might yield comparable and stable results to using the
entire bug history. Similarly, we intended to find how many past bug reports
we need to train the classifier on in order to achieve a prediction accuracy
comparable to the highest prediction accuracy attained when using fold 1-10 as
the TDS and fold 11 as the VDS.

We now present the procedure we used for finding how much history is
enough to yield high accuracy. We first built the tossing graphs using the TDS
until fold 10; building tossing graphs and using them to rank developers is not
a time consuming task, hence in our approach tossing graphs cover the entire
TDS. We then incrementally started using sets of 5000 bug reports from fold 10
downwards, in descending chronological order, as our TDS for the classifier, and
measured our prediction accuracy for bugs in fold 11 (VDS); we continued this
process until addition of bug reports did not improve the prediction accuracy
any more, implying stabilization. Note that by this method our VDS remains
constant. We present the results of our optimization in Section 5.6.
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Figure 6: Comparison of bug triaging techniques.

4.6. Implementation

In Figure 6 we compare our approach to previous techniques. Initial work
in this area (Figure 6(a)) used classifiers only [9, 10, 11, 12]; more recent work
by Jeong et al. [7] (Figure 6(b)) coupled classifiers with tossing graphs. Our
approach (Figure 6(c)) adds fine-grained incremental learning and multi-feature
tossing graphs. Our algorithm consists of four stages, as labeled in the figure: (1)
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initial classifier training and building the tossing graphs, (2) predicting potential
developers, using the classifier and tossing graphs, (3) measuring prediction
accuracy, (4) updating the training sets using the bugs which have been already
validated, re-running the classifier and updating the tossing graphs. We iterate
these four steps until all bugs have been validated.

4.6.1. Developer Profiles

Developer ID || Product-Component Fix
count

Dy {P,Cs} 3
{P,C7} 18

{Pg, 06} 7

Table 4: Sample developer profile.

We maintain a list of all developers and their history of bug fixes. Each
developer D has a list of product-component pairs {P,C} and their absolute
count attached to his or her profile. A sample developer profile is shown in
Table 4, e.g., developer D; has fixed 3 bugs associated with product P; and
component Cy. This information is useful beyond bug assignments; for example,
while choosing moderators for a specific product or component it is a common
practice to refer to the developer performance and familiarity with that product
or component.

4.6.2. Classification

Given a new bug report, the classifier produces a set of potential developers
who could fix the bug. We describe the classification process in the remainder
of this subsection.

Choosing fized bug reports. We use the same heuristics as Anvik et al. [9] for
obtaining fixed bug reports from all bug reports in Bugzilla. First, we extract
all bugs marked as “verified” or “resolved”; next, we remove all bugs marked as
“duplicate” or “works-for-me,” which leaves us with the correct set containing
fixed bugs only.

Accumulating training data. Prior work [9, 10, 11] has used keywords from the
bug report and developer name or ID as attributes for the training data sets;
we also include the product and component the bug belongs to. For extracting
relevant words from bug reports, we employ tf-idf, stemming, stop-word and
non-alphabetic word removal [18].

Filtering developers for classifier training. Anvik et al. refine the set of training
reports by using several heuristics. For example, they do not consider developers
who fixed a small number of bugs, which helps remove noise from the TDS.
Although this is an effective way to filter non-experts from the training data
and improve accuracy, in our approach filtering is unnecessary: the ranking
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function is designed such that, if there are two developers A and B who have
fixed bugs of the same class K, but the number of K-type bugs A has fixed
is greater than the number of K-type bugs B has fixed, a K-type bug will be
assigned to A.

4.6.3. Multi-feature Tossing Graphs

With the training data and classifier at hand, we proceed to constructing
tossing graphs as explained in Section 4.3.1. We use the same bug reports used
for classification to build the tossing graphs.

Filtering developers for building tossing graphs. We do not prune the tossing
graphs based on a pre-defined minimum support (frequency of contribution) for
a developer, or the minimum number of tosses between two developers. Jeong et
al. [7] discuss the significance of removing developers whose support is less than
10 and pruning edges between developers that have less than 15% transaction
probability. Since their approach uses the probability of tossing alone to rank
neighboring developers, they need the minimum support values to prune the
graph. In contrast, the multiple features in our tossing graphs coupled with
the ranking function (as explained in the Section 4.6.4) obviate the need for
pruning.

4.6.4. Predicting Developers

For each bug, we predict potential developers using two methods: (1) using
the classifier alone, to demonstrate the advantages of incremental learning, and
(2) using both the classifier and tossing graphs, to show the significance of multi-
feature tossing graphs. When using the classifier alone, the input consists of
bug keywords, and the classifier returns a list of developers ranked by relevance;
we select the top five from this list. When using the classifier in conjunction
with tossing graphs, we select the top three developers from this list, then for
developers ranked 1 and 2 we use the tossing graph to recommend a potential
tossee, similar to Jeong et al. For predicting potential tossees based on the
tossing graph, our tossee ranking function takes into account multiple factors,
in addition to the tossing probability as proposed by Jeong et al. In particular,
our ranking function is also dependent on (1) the product and component of
the bug, and (2) the last activity of a developer, to filter retired developers.
Thus our final list of predicted developers contains five developer id’s in both
methods (classifier alone and classifier + tossing graph).

4.6.5. Folding

After predicting developers, similar to the Bettenburg et al.’s folding tech-
nique [11], we iterate the training and validation for all folds. However, since
our classifier and tossing graph updates are already performed during valida-
tion, we do not have to update our training data sets after each fold validation.
To maintain consistency in comparing our prediction accuracies with previous
approaches, we measure the average prediction accuracy over each fold.
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5. Results

5.1. Experimental Setup

We used Mozilla and Eclipse bugs to measure the accuracy of our proposed
algorithm. We analyzed the entire life span of both applications. For Mozilla,
our data set ranges from bug number 37 to 549,999 (May 1998 to March 2010).
For Eclipse, we considered bugs numbers from 1 to 306,296 (October 2001 to
March 2010). Mozilla and Eclipse bug reports have been found to be of high
quality [7], which helps reduce noise when training the classifiers. We divided
our bug data sets into 11 folds and executed 10 iterations to cover all the folds.

5.2. Prediction Accuracy

In Tables 5 and 6 we show the results for predicting potential developers for
Mozilla and Eclipse using five classifiers: Naive Bayes, Bayesian Networks, C4.5,
and SVM using Polynomial and RBF kernel functions. For our experiments, we
used the classifier implementations in Weka [23] and WLSVM (for SVM) [26].

5

Classifier alone. To demonstrate the advantage of our fine-grained, incremen-
tal learning approach, we measure the prediction accuracy of the classifier alone;
column “ML only” contains the classifier-only average prediction accuracy rate.
We found that our approach increases accuracy by 8.91% on average compared
to the best previously-reported, no-incremental learning approach, by Anvik et
al. [9]. This confirms that incremental learning is instrumental for achieving a
high prediction accuracy. Anvik et al. report that their initial investigation of
incremental learning did not yield highly accurate predictions, though no details
are provided. We have two explanations for why our findings differ from theirs.
First, their experiments are based on 8,655 reports for Eclipse and 9,752 for
Firefox, while we use many more (306,297 reports for Eclipse and 549,962 re-
ports for Mozilla). Second, since anecdotal evidence [27] suggests that choosing
a meaningful feature set is more important than the choice of classifiers, our
additional attributes help improve prediction accuracy.

Classifier + tossing graphs. Columns “ML+Tossing Graphs” of Tables 5 6
contain the average accurate predictions for each fold (Top 2 to Top 5 develop-
ers) when using both the classifier and the tossing graph; the Top 1 developer
is predicted using the classifier only, hence rows 1, 6, 11, and 16 are empty for
columns 5-15. Consider row 2, which contains prediction accuracy results for
Top 2 in Mozilla using the Naive Bayes classifier: column 5 (value 39.14) rep-
resents the percentage of correct predictions for fold 1; column 6 (value 44.59)
represents the percentage of correct predictions for folds 1 and 2; column 15
(value 54.49) represents the average value for all iterations across all folds. Col-
umn 16 represents the percentage improvement of prediction accuracy obtained

5The details of the parameters used for the classifiers in the experiments can be found at:
http://www.cs.ucr.edu/~pamelab/param. pdf
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Figure 7: Original tossing length distribution for “fixed” bugs.

by our technique when compared to using tossing graphs with tossing probabil-
ities only. Our best average accuracy is reached using C4.5 (84.82% for Mozilla
and 86.09% for Eclipse). We found that this prediction accuracy is higher than
the prediction accuracy we obtained in our earlier work [28] where we used Naive
Bayes and Bayesian Networks only. When compared to prior work [7] (where
Naive Bayes and Bayesian Networks were used as ML algorithms and tossing
probabilities alone were used in the tossing graphs) our technique improved
prediction accuracy by up to 11.02%.

5.83. Tossing Length Reduction

We compute the original tossing path lengths for “fixed” bugs in Mozilla and
Eclipse, and present them in Figure 7; we observe that most bugs have tossing
length less than 13 for both applications. Note that tossing length is zero if
the first assigned developer is able to resolve the bug. Ideally, a bug triaging
model should be able to recommend bug fixers such that tossing lengths are
zero. However, this is unlikely to happen in practice due to the unique nature
of bugs. Though Jeong et al. measured tossing lengths for both “assigned”
and “verified” bugs, we ignore “assigned” bugs because they are still open,
hence we do not know the final tossing length yet. In Figure 8, we present
the average reduced tossing lengths of the bugs for which we could correctly
predict the developer. We find that the predicted tossing lengths are reduced
significantly, especially for bugs which have original tossing lengths less than 13.
Our approach reports reductions in tossing lengths by up to 86.67% in Mozilla
and 83.28% in Eclipse. For correctly-predicted bugs with original tossing length
less than 13, prior work [7] has reduced tossing path lengths to 2-4 tosses, while
our approach reduces them to an average of 1.5 tosses for Mozilla and 1.8 tosses
for Eclipse, hence multi-feature tossing graphs prove to be very effective.

5.4. Filtering Noise in Bug Reports
We found that when training sets comprise bugs with resolution “verified” or
“resolved” and arbitrary status, the noise is much higher than when considering

24



IN
IN

w
w

-

Predicted Tossing Length
N

Predicted Tossing Length
- N

o
(=)

o

10 20 30 5 10 15 20
Original Tossing Length Original Tossing Length

(a) Mozilla (b) Eclipse

o

Figure 8: Average reduction in tossing lengths for correctly predicted bugs when using ML +
Tossing Graphs (using both classifier).

bugs with resolution “verified” or “resolved” and status “fixed”. In fact, we
found that, when considering arbitrary-status bugs, the accuracy is on average
23% lower than the accuracy attained when considering fixed-status bugs only.
Jeong et al. considered all bugs with resolution “verified” and arbitrary-status
for their training and validation purposes. They found that tossing graphs are
noisy, hence they chose to prune developers with support less than 10 and edges
with transaction probability less than 15%.

Our analysis suggests that bugs whose status changes from “new” or “open”
to “fixed” are actual bugs which have been resolved, even though various other
kinds of bugs, such as “invalid,” “works-for-me,” “wontfix,” “incomplete” or
“duplicate” may be categorized as “verified” or “resolved.” We conjecture that
developers who submit patches are more competent than developers who only
verify the validity of a bug and mark them as “invalid” or developers who
find a temporary solution and change the bug status to “works-for-me.” An-
vik et al. made a similar distinction between message repliers and contrib-
utors/maintainers. They found that only a subset of those replying to bug
messages are actually submitting patches and contributing to the source code,
hence they only retain the contributing repliers for their TDS.

5.5. Ablative Analysis

Since our ranking function for tossing graphs contains additional attributes
compared to the original tossing graphs by Jeong et al., we were interested to
evaluate the importance of each attribute using ablative analysis as described in
Section 4.4. In Table 7 we show the maximum percentage reduction in prediction
accuracy when one of the attributes is removed from the ranking function. The
decrease in prediction accuracy shows that the removal of product attribute
affects the prediction accuracy the most, followed by the developer activity
label and component label respectively. These accuracy reductions underline the
importance of using all attributes in the ranking function, and more generally,
the advantage of the richer feature vectors our approach relies on.
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Attribute removed from | Maximum reduction
ranking function in prediction accuracy (%)
Mogzilla Eclipse
Product 16.44 22.07
Component 8.11 10.93
Developer activity 19.83 12.62

Table 7: Impact of individual ranking function attributes on prediction accuracy.
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Figure 9: Change in prediction accuracy when using subsets of bug reports using Naive Bayes
classifier.

5.6. Accurate Yet Efficient Classification

One of the primary disadvantages of fine-grained incremental learning is that
it is very time consuming. As described in Section 4.5, we performed a study
to find how many past bug reports we need to train the classifier to achieve
approximately similar prediction accuracy when compared to the highest pre-
diction accuracy attained when using folds 1-10 as the TDS and fold 11 as the
VDS. We used the Naive Bayes classifier as our ML algorithm in this case. We
present our results in Figure 9. We found that Firefox required approximately
14% and Eclipse required about 26% of all bug reports (in descending chrono-
logical order) to achieve prediction accuracies greater than 80%, i.e., similar to
the best results of our original experiments where we used the complete bug
history to train our classifier. Therefore, a practical way to reduce the compu-
tational effort associated with learning, yet maintain high prediction accuracy,
is to prune the bug report set and only use a recent subset (e.g., the most recent
14% to 26% of bug reports).

Computational effort. The intra-fold updates used in our approach are more
computationally-intensive than inter-fold updates. However, for practical pur-
poses this is not a concern because very few bugs get fixed the day they are
reported. Before we use the algorithm to predict developers, we will train it
with all fixed bug reports in the history. Whenever a new bug gets fixed, the
TDS needs to be updated and we need to re-train the classifier. However, while
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about one hundreds of bugs are reported every day for large projects like Mozilla
and Eclipse, less than 1% get fixed every day [7]. Since we use fixed bug reports
only, if we update the TDS overnight with the new fixed bug reports and retrain
the classifier, we can still achieve high prediction accuracies.

6. Threats To Validity
We now present possible threats to the validity of our study.

Generalization to other systems. The high quality of bug reports found in
Mozilla and Eclipse [7] facilitates the use of classification methods. However, we
cannot claim that our findings generalize to bug databases for other projects.
Additionally, we have validated our approach on open source projects only,
but commercial software might have different assignment policies and we might
require considering different attribute sets.

Small projects. We used two large and widely-used open source projects for
our experiments, Mozilla and Eclipse. Both projects have multiple products and
components, hence we could use this information as attributes for our classifier
and labels in our tossing graphs. For comparatively smaller projects which
do not have products or components, the lack of product-component labels on
edges would reduce accuracy. Nevertheless, fine-grained incremental learning
and pruning inactive developers would still be beneficial.

7. Conclusions

Machine learning and tossing graphs have proved to be promising for au-
tomating bug triaging. In this paper we lay the foundation for future work that
uses machine learning techniques to improve automatic bug triaging by exam-
ining the impact of multiple machine learning dimensions on triaging accuracy.

We used a broad range of text classifiers and found that unlike many prob-
lems which use specific machine learning algorithms, we could not select a spe-
cific classifier for the bug triaging problem. We show that, for bug triaging,
computationally-intensive classification algorithms such as C4.5 and SVM do
not always perform better than their simple counterparts such as Naive Bayes
and Bayesian Networks. We performed an ablative analysis to measure the rel-
ative importance of various software process attributes in prediction accuracy.
Our study indicates that to avoid the time-consuming classification process we
can use a subset of the bug reports from the bug databases and yet achieve
stable-high prediction accuracy.

We validated our approach on two large, long-lived open-source projects; in
the future, we plan to test how our current model generalizes to projects of
different scale and lifespan. We also intend to test our approach on proprietary
software.
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