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Abstract

This work rigorously explores the design of cluster-
preserving compression schemes for high-dimensional data.
We focus on the K-means algorithm and identify conditions
under which running the algorithm on the compressed data
yields the same clustering outcome as on the original. The
compression is performed using single and multi-bit mini-
mum mean square error quantization schemes as well as a
given clustering assignment of the original data. We provide
theoretical guarantees on post-quantization cluster preser-
vation under certain conditions on the cluster structure,
and propose an additional data transformation that can en-
sure cluster preservation unconditionally; this transforma-
tion is invertible and thus induces virtually no distortion on
the compressed data. In addition, we provide an efficient
scheme for multi-bit allocation, per cluster and data dimen-
sion, which enables a trade-off between high compression
efficiency and low data distortion. Our experimental stud-
ies highlight that the suggested scheme accurately preserved
the clusters formed in all cases, while incurring minimal dis-
tortion on the data shapes.

Our results can find many applications, e.g., in a) clus-
tering, analysis and distribution of massive datasets, where
the proposed data compression can boost performance while
providing provable guarantees on the clustering result, as
well as, in b) cloud computing services, as the optional trans-
formation provides a data-hiding functionality in addition to
preserving the K-means clustering outcome.

Keywords: Clustering, K-means, Compression, MMSE
quantization, Cluster preservation

1 Introduction

Data clustering is one of the most important operations
in the areas of data mining, machine learning and busi-
ness analytics. It is also one of the most computation-
ally challenging tasks, compounded also by the expo-
nentially increasing dataset sizes.

This work explores methods for cluster-aware data
compression. Specifically, we seek to address the follow-
ing question: Can we design quantization-based com-
pression schemes that yield in the same clustering out-
come before and after compression?

The focus of our analysis is on the K-means al-
gorithm, because of its widespread use in a variety of
settings and applications ranging from image segmen-
tation [1] to co-clustering [2], and even analysis of bio-
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logical datasets [3]. Recently, many alternative cluster-
ing algorithms with more desirable stability properties
(e.g., spectral methods [4]) have been derived. How-
ever, K-means is a widely used approach because of its
simplicity of implementation, amenity to parallelization
and speed of execution.

This work initiates a formal study for determining
when the outcome of K-means is preserved by compres-
sion / data-simplification methods. We show, both ana-
lytically and experimentally, that using 1-bit Minimum
Mean Square Error (MMSE) quantizers per dimension
and cluster is sufficient to preserve the clustering out-
come, provided that the clusters are ‘well-separated.’
When the latter does not hold, we devise an invertible
data transformation which can always assure preserva-
tion of the clustering outcome. Moreover, we consider
multi-bit quantization schemes that provide better bal-
ance between data compression and data reconstruc-
tion, while also ensuring cluster preservation. To that
regard, we provide an efficient greedy algorithm for bit
allocation that minimizes the mean squared compres-
sion error given storage constraints.

Applications and related work: Our work provides
analytical results with important insights for practical
applications in data mining such as:

a) Reducing space/time complexity of cluster oper-
ations based on K-means. This comes as a direct out-
come of our analysis, because the proposed methodol-
ogy provides guarantees for undistorted clustering re-
sults even when operating on the compressed domain.
In addition, storing the quantized dataset requires less
space than storing the original one. The level of com-
pression is tunable based on the number of bits allocated
to the scalar quantizers. Other approaches that inves-
tigate scaling-up the K-means algorithm include [5, 6];
they examine the problem either from a dimensionality
reduction or from a sampling perspective, whereas our
work views the problem from a quantizer design angle.
In addition, those techniques make no assertions with
regards to cluster preservation.

b) Enabling data-hiding. The proposed scheme pro-
vides an explicit encoding of the original dataset via
lossy (non-invertible) data compression based on quan-
tization, followed by a lossless (invertible) data trans-



Figure 1: Quantization scheme for K-means cluster preservation. Our main contributions are: a) cluster-aware
MMSE quantization, and b) an optional data-contraction component with provable cluster preservation guarantees
and additional data-hiding

formation based on cluster contraction, or vice versa,
because we prove that these two operations are inter-
changeable. The contractive transformation can be en-
coded in a scalar key which is then only revealed to
appropriate recipients, who will consequently be in the
position to revert back the data to their untransformed
quantized state. While we make no additional provi-
sions on the security aspect of such a protocol, our ana-
lytical derivations are novel and suggest a clear path for
supporting such functionality. Given this aspect, our
work contributes to the area of privacy-enabling data
mining. There exist privacy-preserving variations for
K-means that consider the scenario when data are seg-
regated either vertically [7] or horizontally [8]. In con-
trast, using our approach the data are not separated
but distributed as a whole. Similar in spirit to our work
are also the works of Parmeswaran and Blough [9], who
presented cluster preservation techniques through Near-
est Neighbor (NN) data substitution, and of Oliveira
and Zaane [10], who proposed rotation-based transfor-
mations (RBT) that retain the clustering outcome by
changing the object values while maintaining the pair-
wise object distances. Our approach has the additional
advantages of reduced storage requirements in addition
to guaranteed preservation and minimal distortion of
the original data structure.

c) Supporting high-quality data reconstruction. By
providing tunable preservation of the underlying struc-
tural properties of the original data in the compressed
domain, the compressed data can also be used for a va-
riety of other mining and visualization applications. In
this respect, our work overlaps with various simplifica-
tion techniques. Bagnall et al. [11] proposed a binary

clipping method for time series data, where the data
are converted into 0 and 1 if they lie above or below the
mean value baseline; this approach has been applied to
speed up the execution of the K-means algorithm. Rel-
evant is also the work of Aßfalg et al. [12] who proposed
threshold-based representations for querying and index-
ing time series data. Megalooikonomou et al. [13] pre-
sented a piecewise vector-quantization approximation
for time series data that preserves the shape of the orig-
inal sequences with high accuracy. Finally, approaches
such as wavelet or Fourier approximations have been
used extensively for time series simplification; however
none of these approaches are inherently designed for
providing guarantees on the clustering outcome, which
constitutes the key contribution of our work.

In [14], the authors proposed using 1-bit Moment
Preserving Quantization (MPQ) per cluster and dimen-
sion, and showed experimentally that clusters are accu-
rately preserved in some cases. The current work goes
well beyond that by providing a rigorous analysis and
theoretical guarantees: by using MMSE quantization
together with a contractive data transformation, we can
provide provable guarantees on cluster preservation. In
addition, this work also introduces the notion of multi-
bit quantization to support a fine-grained trade-off be-
tween compression and shape preservation.

An overview of the proposed methodology is sum-
marized in Figure 1. The remainder of this paper is
organized as follows: we briefly review the K-means
optimization problem in Section 2, and describe our ob-
jectives in Section 3. In Section 4, we introduce the
1-bit MMSE quantization scheme and study its proper-
ties. We describe one-bit and multiple-bit MMSE com-



pression with K-means preservation in Section 5, and
present results on real datasets in Section 6. We discuss
the outcome of our work and potential extensions of our
results in Section 7. We conclude the paper and propose
future work in Section 8.

2 K-means Clustering

Consider a set S of N vectors xj (1 ≤ j ≤ N),
each containing T dimensions xji (1≤i≤T ). K-means
clustering involves partitioning the N vectors into K
clusters, i.e., into N disjoint subsets Sk (1≤k≤K), with
∪kSk = S, such that the sum of intra-class variances

(2.1) V :=
K∑

k=1

∑

xj∈Sk

||xj − µk||
2,

is minimized, where µk := 1
|Sk|

∑
xj∈Sk

xj is the cen-

troid of the k-th cluster, and ||·|| represents the standard
Euclidean (L2) norm on RT . The objective function can
be expanded in terms of the individual dimensions xji

of each datapoint xj as

V =

K∑

k=1

T∑

i=1

∑

xj∈Sk

(xji − µki)
2(2.2)

=

K∑

k=1

T∑

i=1

[
∑

xj∈Sk

x2
ji −

1

|Sk|

( ∑

xj∈Sk

xji

)2
],(2.3)

where we have used the definition of µk.
Therefore, the objective function depends on the

first (
∑

xji) and the second data sample moment
(
∑

x2
ji) per cluster, as well as on the object to cluster

assignment.

3 Problem Description

Our goal is to design a quantization scheme that retains
the K-means clustering after quantization, i.e., one that
guarantees that using the K-means algorithm to cluster
the quantized data results in exactly the same clustering
assignment as for the original data. In order to achieve
this objective, we use the above derivation of the K-
Means to drive the design of our compression scheme.
We prove that when using 1-bit MMSE data quantizers,
per cluster and dimension the following hold:

The first moment is preserved for every cluster.
The second moment is reduced for every cluster.
The optimal cluster assignment does not change

for “well-behaved” clusters (to be defined later).

Therefore the above ensure the clustering on the
simplified dataset will result in identical clusters as on

the original dataset, under the mentioned conditions.
We tackle the case of non well-behaved clusters and
show that an additional linear transformation will result
in unconditional cluster preservation .

4 MMSE Quantization

Quantization schemes have been widely used for com-
pressing data in image and video processing [15]. Quan-
tization is a form of lossy compression. Therefore typ-
ically several quantization levels are needed to preserve
the quality and usability of the original objects. Here we
show that a proper single threshold (1-bit) quantization
is sufficient to retain the K-means outcome.

We consider MMSE quantization, in which the
threshold level is set equal to the mean value and each
data sample can be represented by a 0 or 1, indicating
whether it lies above or below the threshold value,
respectively. Formally, let us consider a dataset of
scalar values X = {xi}

N
i=1 with sample mean µ and

sample variance σ2. Let a, b denote the lower and
upper quantization values, respectively, whereas the
quantization threshold is set equal to µ. Selecting
a, b so as to minimize the Mean Square Error (MSE)
due to quantization amounts to solving the following
optimization problem:

min
a≤µ≤b

C(a, b) :=
1

N
[
∑

xi<µ

(xi − a)2(4.4)

+
∑

xi≥µ

(xi − b)2].

The solution is given by

(4.5) x̂i =






1
Ng

∑
xj≥µ

xj , xi ≥ µ

1
N−Ng

∑
xj<µ

xj , xi < µ

where Ng denotes the number of datapoints with values
greater than or equal to µ. We will use one such
quantizer per dimension and per cluster, i.e., to say we
quantize each dimension of all data belonging to the
same cluster using a separate 1-bit MMSE quantizer.

Let us define the upper and lower dataset extent
values dmax := maxj(xj − µ) and dmin := −minj(xj −
µ). Similarly, for the quantized data denoted by

X̂ = {x̂i}
N
i=1 let d̂max := maxj(x̂j − µ̂) and d̂min :=

−minj(x̂j − µ̂). For cluster preservation, it is desirable
that clusters “shrink” after quantization, in the sense
that the extent in each direction (below or above the
mean) is not increased. Formally, we require that

d̂max ≤ dmax and d̂min ≤ dmin.(4.6)

We prove that this always holds true for MMSE
quantization in Lemma 4.1. We illustrate the property



of dynamic range reduction for MMSE quantization in
Figure 2. In contrast, the MPQ used in [14] for cluster
preservation may violate this property when the cluster
is “ill-behaved,” e.g., when it contains a small number
of points that are far from the mean in one direction
of the mean, combined with a large number of points in
the other direction (see Figure 2.b). For “well-behaved”
clusters (see Figure 2.a), MPQ also satisfies property
(4.6), cf. [14].

Lemma 4.1. (Properties of 1-bit MMSE quantizer)
For the 1-bit MMSE quantizer the following holds true:

1. The mean (µ̂) and variance (σ̂2) of the quantized
dataset {x̂i}

N
i=1 satisfy

µ̂ = µ σ̂2 ≤ σ2,(4.7)

where the inequality is strict if and only if the
dataset contains more than two distinct points.

2. The Mean Square Error (MSE) due to quantiza-
tion satisfies

(4.8) MSE ≤ σ2,

where the inequality is strict if and only if σ2 > 0.

3. The extent of the quantized dataset is not increased
in each direction, i.e.,

d̂max ≤ dmax and d̂min ≤ dmin,(4.9)

where each inequality is strict if there are more than
one distinct samples in the original dataset above or
below the mean µ, respectively.

4. The 1-bit MMSE quantization scheme is a quasi-
linear1 operation on the dataset {xi}

N
i=1, in the

sense that for any a, b ∈ R:

âxi = ax̂i,(4.10)

x̂i + b = x̂i + b,(4.11)

̂[µ + a(xi − µ)] = µ + a(x̂i − µ).(4.12)

Proof. The fact that µ̂ = µ follows from the fact that the
means of the subsets {xi ≥ µ}, {xi < µ} are preserved,

1It is not generally true that quantizing the sum of two datasets

yields the same result as the sum of their quantized versions, i.e.,
for {xi}, {yi} we generally have x̂i + yi 6= x̂i + ŷi.
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Figure 3: Overview of the proposed quantizer design

cf. (4.5). To prove that the variance is not increased
note that

σ2 =
1

N
[
∑

xi<µ

(xi − µ)2 +
∑

xi≥µ

(xi − µ)2]

≥
1

N
[(N −Ng)(

1

N −Ng

∑

xi<µ

xi − µ)2 +

+Ng(
1

Ng

∑

xi≥µ

xi − µ)2](4.13)

=
1

N

N∑

i=1

(x̂i − µ̂)2 = σ̂2,

where we have used Jensen’s inequality [16]. As the
quadratic function f(x) = x2 is strictly convex, the
inequality is strict unless the dataset contains only two
distinct points. To prove the second part, note that
choosing a = b = µ is a feasible solution for (4.4)
and C(µ, µ) = σ2. This is suboptimal, unless xi = µ
for all i (or equivalently σ2 = 0). When σ2 > 0,
the strict convexity of the quadratic function yields a
unique solution with MSE < σ2. Now consider showing
d̂max ≤ dmax with strict inequality unless xi = b for all
xi ≥ µ,; the case d̂min ≤ dmin being analogous. This
follows from the fact that

d̂max =
1

Ng

∑

xj≥µ

(xj − µ)

≤
1

Ng

Ng max
xj≥µ

(xj − µ)

= dmax,(4.14)

and the inequality is strict unless as specified in the
statement of the lemma. To show quasi-linearity of
the 1-bit MMSE quantization scheme, consider first
the dataset {yi}

N
i=1 : yi = axi. For any a, we have

µy = aµ. For a = 0 the result is trivial. For a 6= 0,
let us denote the number of points above the mean by
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Figure 2: The proposed MMSE quantization always shrinks the cluster extent for both a) well-behaved, and b)
ill-behaved clusters

N
(a)
g ; for a > 0 we have N

(a)
g = Ng and from (4.5) we

plainly have ŷi = ax̂i, i = 1, . . . , N . For a < 0 we have

N
(a)
g = N −Ng and again the result follows from (4.5).

To establish (4.11) note that for {zi}
N
i=1 : zi = xi + b,

we have µz = µ + b, and Ng remains unaltered, hence
using again (4.5) the result follows. Finally (4.12) is a
simple application of (4.10), (4.11). �

We note, in passing, that one could also use a 1-
bit Minimum Absolute Error (MAE) quantizer [15] and
that it is not hard to show that analogous properties
hold, in particular that the dynamic range of the dataset
decreases.

5 K-means and MMSE Quantization

We now show how 1-bit MMSE quantization (per di-
mension and cluster) is sufficient to guarantee preser-
vation of the K-means clustering result. Given are: a)
a dataset X = {xi}

N
i=1 consisting of N datapoints in

T dimensions, and b) the clustering partition outcome
of K-means S := {Sk}

K
k=1. A requirement of the pro-

posed quantization scheme is pre-clustering of the data
so that cluster labels can be extracted. This is nec-

essary to properly determine where bits are allocated
during the quantization phase. Note also that other
cluster-preserving techniques that do not require pre-
clustering, e.g., [9], do not preserve the ‘original shape’
of the data at all, because they transform the data into
a new space.

We build T 1-bit scalar quantizers per cluster; each
scalar quantizer for cluster Sk operates on Nk := |Sk|
samples of the same dimension and appropriately maps
them into two distinct values via (4.5). Each datapoint
is consequently converted to a binary sequence of T
ones (1) and zeros (0). Each value corresponds to
different reconstruction levels at different dimensions
and clusters. This approach is illustrated in Figure 3,
where high-dimensional objects are plotted in 2D using
parallel coordinates: each point in the horizontal axis

corresponds to a different dimension.
In what follows, we focus on the standard Euclidean

distance, i.e., the L2-norm which is used in the K-means
objective function (2.1). However, the analysis can be
extended to hold for any Lq-norm, 1 ≤ q ≤ ∞.

5.1 Preservation of the K-means Clustering

Outcome

In the case of MMSE quantization, the first moment
per cluster is preserved, while cluster variances and
dynamic ranges decrease for each dimension, as was
shown in Lemma 4.1. This, in turn, implies that
the optimal clustering outcome (clusters and cluster
centroids) is intuitively expected to remain the same.
We also have that the optimal K-means value for the
quantized data, V̂ opt, satisfies V̂ opt ≤ V̂ ≤ V opt, where
V̂ is the value corresponding to the optimal assignment
for the original dataset applied to the quantized data,
and V opt is the optimal clustering value for the original
dataset. Note that the inequality V̂ ≤ V opt (and hence
the inequality V̂ opt ≤ V opt) is strict if at least one
cluster contains more than two distinct values for a
given dimension (cf. Lemma 4.1.3). For each cluster,
we consider the smallest box (hyper-rectangle) centered
at its centroid and containing all points of the cluster.

Definition 1. (Dynamic range box of a cluster)
Let a cluster S be represented by a finite set of points
{xi}

n
i=1 ⊂ RT belonging to it. The dynamic range box

BS of the cluster is defined as

(5.15)
BS := {y ∈ R

T : yj ∈ [ min
1≤i≤n

xij , max
1≤i≤n

xij ], 1 ≤ j ≤ T},

where yj is the j-th entry of the T -dimensional vector
y.

For an example of the dynamic range on two dimensions
see Figure 5. It follows from Lemma 4.1 that for



each cluster Sk the dynamic range box of its quantized
version, BŜk

, is a subset of its original dynamic range
box BSk

. It is natural to expect that the clustering
outcome will be preserved after quantization, at least
when the clusters are sufficiently “separated” from one
another. We now show that a simple (pre- or post-
) processing scheme is always sufficient to guarantee
cluster preservation with a minimal storage requirement
of one additional value for the entire dataset. The idea
is to contract clusters so that datapoints become more
concentrated around centroids; this achieves better
cluster “separation.”

Given a cluster partition {Sk}
K
k=1 with correspond-

ing centroids {ck}
K
k=1, consider a transformation of the

original data {xi}
N
i=1 so that xi ∈ Sk is transformed to

x̄i via

(5.16) x̄i := ck + α(xi − ck), α ∈ (0, 1].

For a given cluster, this transformation is an affine
contraction, i.e., it reduces the distance between two
points in the same cluster, as well as the distance
between a given point and the centroid of the cluster
it belongs to, by a factor of α. The dynamic range box
of the contracted cluster S̄k is BS̄k

= ck + α(BSk
− ck),

which is a proper subset of BSk
for α < 1; its inter-

cluster variance is σS̄k
= ασSk

≤ σSk
. The process is

schematically depicted in Figure 4.

a) Initial clusters b) Transformed clusters

Figure 4: Contractive cluster transformation

As α ↘ 0, it is evident that all points collapse
to their corresponding cluster centroids, therefore there
exists a critical (dataset-dependent) value αcrit, such
that the aforementioned transformation can guaran-
tee post-quantization preservation of the clustering out-
come. This is the essence of the following theorem:

Theorem 5.1. Given a dataset X = {xi}
N
i=1, there

exists a sufficiently small α ∈ (0, 1] such that performing
K-means clustering to the dataset obtained by applying

the transformation (5.16) to the quantized dataset
¯̂
X

yields the same optimal clustering as for the original
dataset X.

Proof. For a given dataset of N points in a Euclidean
space, let us denote the set of all different assignments

of the points into K clusters by S(K); this is a finite
set with atoms data partitions S = (S1, . . . , SK). The
set X := {¯̂xi(α)}α∈[0,1],1≤i≤N is a compact subset of
the hyper-rectangle BX because quantization does not
increase (decrease) the maximum (minimum) values of a
dataset (cf. Lemma 4.1.3). For a given α ∈ [0, 1], the K-
means clustering problem for the contracted quantized
data becomes
(5.17)

min
S∈S(K)

F (S, α) :=
K∑

k=1

∑

ˆ̄xj(α)∈Sk

||ˆ̄xj(α)−
1

|Sk|

∑

ˆ̄xi(α)∈Sk

ˆ̄xi(α)||2.

Let S∗ be the given optimal data partitioning corre-
sponding to the original dataset, which we use to per-
form both quantization and data transformation. For
a given α ∈ [0, 1], let the set of optimal cluster as-
signments for the transformed version of the quantized

dataset via (5.16) be denoted by S
(α)
opt ⊂ S

(K). For

α = 0, we have that S
(0)
opt = {S∗} is the unique op-

timal clustering assignment for the transformed quan-
tized dataset with F (S∗, 0) = 0, while F (S, 0) > 0 for
any S 6= S∗. Note that for a given S the function
g(α) := F (S, α) is a uniformly continuous function on
[0, 1], so there exists an α∗ > 0, such that S∗ is the
unique optimal clustering partition for each α ∈ [0, α∗).
�

The proposed transformation can be considered an
encoding-decoding procedure: first, a user (encoder)
clusters the original dataset using K-means. Given the
calculated cluster partition {Sk}

K
k=1, it quantizes the

data using 1-bit MMSE quantizers per cluster and di-
mension. After that, it selects an α ∈ (0, 1), which
can be considered as a coding key, and transforms the
quantized data via (5.16) 2. The transformed quantized

dataset,
¯̂
X = {¯̂xi}

N
i=1, is stored along with the value α

and can be transmitted to another user (decoder), who
can then run K-means on that. The result will be iden-
tical to performing K-means clustering on X. While the
clustering outcome is maintained, the distortion due to
applying the data transformation described above might
be significant; this scheme can be of interest for data-
hiding applications. To retrieve the quantized version of
the original dataset, the user (decoder) must have the
key α to apply the transformation:

(5.18) x̂i =
¯̂xi − (1− α)ck

α
.

Picking the contraction factor: We have seen that
a sufficiently small value of α ∈ (0, 1] is guaranteed to

2These two operations can also be carried out in reversed order,

i.e., transformation can precede quantization; the result is the
same, cf. (4.12).



preserve K-means clustering after quantization. The
question of practical interest is two-fold: a) is it neces-
sary to perform the transformation, and b) if so, how
small should α be?

The answer lies in how well clusters are “separated”
from one another. Let us consider the following sep-
aration property between clusters in an optimal data
partitioning S: for each 1 ≤ k ≤ K, each point in the
dynamic range box BSk

is closer to the centroid ck than
any other centroid cl, l 6= k, formally:
(5.19)
||x− ck|| = min

1≤l≤K
||x− cl||, ∀x ∈ BSk

, 1 ≤ k ≤ K.

Figure 5.a) depicts an example of two “well-
separated” clusters, whereas Figure 5.b) shows a case
where the clusters are not “well-separated”. Figure 5.c)
illustrates how the clusters can be made sufficiently sep-
arated using the proposed contraction operation.

a) Well-separated

clusters

b) Not well-separated

clusters

D2

D1 D1<D2

D4

D3 D3>D4

c) After contraction

D3<D4

transformed
D4

D3

Figure 5: The dashed rectangles depict dynamic range
boxes. a) Example of two clusters that are “well-
separated” according to our definition, b) Two clusters
that are not “well-separated”. c) Two clusters made
sufficiently separable after applying the contraction
transformation

Note that after quantization, each datapoint re-
mains in the dynamic range box of its corresponding
cluster, as it follows from Lemma 4.1.3 that BŜk

⊂ BSk
.

Therefore, property (5.19) guarantees that every point
remains, post-quantization, closer to its corresponding
cluster centroid than any other cluster centroid. This
is the notion of well-separateness among clusters, which
is actually a sufficient condition to guarantee preserva-
tion of (at least) local optimality with regard to Lloyd’s
algorithm. Furthermore, we can establish that this con-
dition cannot be relaxed. We skip the details of the
analysis for the sake of brevity, but show how to pick
a value for α to guarantee that property (5.19) holds
for the transformed dataset if it does not hold for the
original dataset. If this property is already satisfied,
then using 1-bit MMSE quantization can preserve the
clustering structure without the need to perform the
transformation.

For a given α ∈ (0, 1], consider the following set of
K(K−1) Quadratic Programs (QPs), Qkl, 1 ≤ k 6= l ≤
K:

min
x

||x− cl||(5.20)

s.t. x ∈ B
S

(α)
k

where B
S

(α)
k

:= ck + α(BSk
− ck) is the dynamic range

box corresponding to the α-contracted dataset S
(α)
k . For

ease of representation let us define the two extreme

points l
(α)
k ,u

(α)
k that fully characterize B

S
(α)
k

:

l
(α)
kj := (1− α)ckj + α min

xi∈Sk

xij(5.21)

u
(α)
kj := (1− α)ckj + α max

xi∈Sk

xij(5.22)

for each 1 ≤ j ≤ T . The unique solution x∗(k, l, α) to
(5.20) is given by

(5.23) x∗
j (k, l, α) =






clj , if clj ∈ [l
(α)
kj , u

(α)
kj ]

u
(α)
kj , if clj > u

(α)
kj

l
(α)
kj , if clj < l

(α)
kj

Calculating the critical value αcrit, i.e., the maximal
value for α such that property (5.19) holds for the α-
transformed dataset, can be done as follows: for each
Qkl, define αkl as the maximal value of α ∈ (0, 1] such
that ||x∗(k, l, α) − cl|| ≥ ||x

∗(k, l, α) − ck||, which can
be efficiently calculated using (5.23). Setting

(5.24) αcrit := min
k,l

αkl

and performing the transformation with αcrit is suffi-
cient to satisfy (5.19); we show in the experimental sec-
tion that performing the transformation using this value
did indeed preserve the clustering assignments in all test
cases. The above process is summarized in Figure 6.

5.2 Compression Efficiency

For a set of N objects with T dimensions clus-
tered into K clusters, let each unquantized sample be
represented by B bits per dimension; the total stor-
age requirement is BTN bits for the unquantized data.
Using a 1-bit quantizer we need only store a total of
log2(2TK)TN bits to represent the quantized data.
This is because there are only two possible values that
each of the T dimensions can take per cluster, and a
total of K clusters, i.e., at most 2TK values. A bet-
ter compression ratio can be achieved by noting that
because the quantization preserves the underlying clus-
tering structure, one does not explicitly need to store



Given is a dataset X = {xi}
N
i=1 ⊂ RT to be

partitioned into K clusters via K-means. Our
approach involves the following steps:

1. Numerically solve the K-means problem to par-
tition the dataset into K clusters, e.g., using
Lloyd’s algorithm [17]. The outcome is a parti-
tion S = {S1, . . . , SK}, with corresponding clus-
ter centroids {c1, . . . , cK}.

2. For each cluster Sk, quantize its elements using
1-bit MMSE quantizers per dimension via (4.5).
This results in a total storage requirement of
TN + 2BKT bits, B being the number of bits
used to represent unquantized data.

3. Calculate the value αcrit through (5.24), and set
α = αcrit. Transform the quantized dataset X̂

and store
¯̂
X, where x̂i ∈ Sk is transformed to ¯̂xi

via

(5.25) ¯̂xi := ck + α(x̂i − ck).

4. At the stored data, a user performing K-means
clustering obtains the same results (both cluster
assignments and centroids). If the user in addi-
tion knows α, he or she can retrieve the quan-
tized version of the original dataset, {x̂i}

N
i=1, by

calculating for each ˆ̄xi ∈ Sk

(5.26) x̂i =
¯̂xi − (1− α)ck

α
.

Figure 6: Algorithm for cluster-aware quantization and
contractive transformation

the cluster labels. Hence, it suffices to use TN bits
for all objects, along with 2BTK bits to store the
two reconstruction levels per dimension and per clus-
ter. The threshold does not need to be explicitly stored
as it can be deduced from the reconstructed samples,
since MMSE quantization (with or without contrac-
tion) does not distort the mean. The compression ra-
tio ρ := bytes quantized

bytes unquantized achieved by our quantization
scheme is

ρ = TN+2BTK
BTN

=
1

B
+

2K

N
.(5.27)

For the case of highest practical interest B > 1 and
N >> K, the compression ratio satisfies 1

B
< ρ < 1.

In the experimental part Section 6.3, we evaluate the
compression ratio of the quantization scheme on real
datasets.

5.3 Multi-bit Quantization

We have shown that a single-bit quantization scheme is
sufficient to maintain the optimal clustering structure.
We now consider a multi-bit extension that can provide
a better reconstruction of the original objects. This
may be useful when the user is interested in supporting
additional tasks, such as data visualization.

Let Q = 2q be the number of quantization levels,
with q ≥ 1 being the number of bits needed to represent
the dimension of each sample. The interesting case
is when Q < N . The proposed quantization scheme
amounts to sequentially breaking the dataset into Q
sub-datasets by recursively constructing a hierarchical
binary tree with at most Q leaves. The root represents
the entire dataset to be quantized. Then, at level (i.e.,
depth) i < q, each node represents a sub-dataset. For
each such node, if it contains two or more datapoints,
we calculate the mean of the corresponding sub-dataset
and further divide it into two subsets, one containing
the values greater than or equal to the mean, and the
other the values lower than the mean. The mean of
the sub-dataset is set as a threshold value. Finally,
when the node represents a singleton sub-dataset, we
set this as a leaf node and keep the data-point value
as is. At the final stage (i = q), for each resulting
sub-dataset n = 1, . . . , N̄ , N̄ ≤ Q, we perform 1-bit
MMSE quantization to quantize its values using (4.5).
Figure 7 presents an example of the proposed multi-bit
quantization scheme for q = 3 bits.

Figure 7: Multi-bit MMSE quantization (q = 3 bits).
Quantization levels are depicted by red marks at the
leaf nodes; threshold values are represented by dashed
lines at the non-leaf nodes

It is not difficult to verify that the proposed scheme
satisfies all the properties of Lemma 4.1, but we skip
the proof for space considerations. Note also that
because of the suggested design the mean is preserved
for every sub-dataset corresponding to a given node of
the binary tree. Therefore, the threshold levels need
not be stored as they can be reconstructed from the
quantized dataset.

Increasing Q improves the fidelity of the compressed



vectors so that we may use different values of Q for
different clusters based on the desired fidelity. We
present a Rate-Distortion Optimization problem and a
simple greedy algorithm for multi-bit allocation with the
goal of minimizing the mean square compression error,
given constraints on the available storage capacity.

Greedy algorithm for multi-bit allocation

Inputs: {{MSEk(Bk)}Uk

Bk=1}
K
k=1

Outputs: {Bk}
K
k=1,MSE := 1

N

∑K

k=1 NkMSEk(Bk)

1. For each cluster 1 ≤ k ≤ K, define the
relative MSE improvement attained when using
q instead of q−1 bits (q = 2, . . . , Uk) by Ik(q) =
MSEk(q)−MSEk(q − 1)

2. Set Bk ← 1 for all k, and set the unused budget:
R← B̄ −NT − 2BTK

3. If R ≤ 0 return {Bk}
K
k=1 and MSE

4. else define K = {1, . . . ,K}

5. Let k∗ = argmink∈KNkIk(Bk + 1)

6. If R− TNk∗ −BT2Bk∗ > 0
Bk∗ ← Bk∗ + 1;
R← R− TNk∗ −BT2Bk∗ ;
go to step 3;

7. else set K ← K \ k∗

8. If K == ∅ return {Bk}
K
k=1 and MSE

9. else go to step 5

10. endif

11. endif

12. endif

Figure 8: Algorithm for multi-bit quantization

Optimal bit allocation for multi-bit quantization:
We consider using different values of Q for different
clusters based on their relative importance or desired
fidelity. We focus on the case where there is a total
budget of B̄ bits and formulate the allocation problem
as one of minimizing the MSE due to quantization.
Denoting the number of bits allocated to cluster k
(per sample and dimension) by Bk, we need to have∑K

k=1(TBkNk + BT2Bk) ≤ B̄, and we trivially need to
assume that B̄ ≥ TN + 2BTK as we need at least one
bit per cluster and dimension. From this, it also follows

that Bk ≤ Uk, where
(5.28)
Uk := min{Bk : T (Bk−1)Nk+BT2Bk−1 ≤ B̄−TN−2BTK}.

For cluster k, we can perform multi-bit MMSE quanti-
zation with Bk = 1, . . . , Uk bits and calculate the corre-
sponding MSE. The hierarchical structure of the multi-
bit MSE quantizer guarantees linear complexity in all
T,Nk, Uk in calculating MSEk(Bk). Then the alloca-
tion problem becomes a combinatorial problem of the
form:

min
B1,...,BK

1
N

∑K

k=1 NkMSEk(Bk)(5.29)

s.t.
∑K

k=1(TBkNk + BT2Bk) ≤ B̄.(5.30)

An exhaustive search is intractable even for small values
of K for a large enough B̄. Therefore, we propose
a simple greedy algorithm with linear complexity in∑

k Uk and K. The idea is to sequentially allocate one
extra bit to the cluster that will decrease the objective
function the most until the storage constraints have
been reached. We provide a description of the greedy
algorithm in Figure 8.

6 Experiments

In this section, we validate the performance of the
proposed quantization schemes on real datasets: we
examine the effect on cluster preservation and assess
the distortion incurred to the original data due to
quantization. We compare 1-bit MMSE quantization
vs. 1-bit MPQ [14], and show that they both achieve
excellent cluster preservation when Lloyd’s algorithm
is used with the K-means++ centroid initialization
scheme [18], whereas MMSE quantization leads to lower
distortion. We further illustrate that the proposed
transformation (5.16) indeed preserves the clustering
outcome for all instances. We show that using multi-
bit MMSE quantization has the benefit of significantly
reducing object distortion while accurately preserving
the clustering outcome. For our experiments, we use
data from publicly available stock market time series
corresponding to 2169 stock symbols from companies
listed on NASDAQ, reporting the stock values for a
period of approximately three years.

6.1 Cluster Preservation

Because the exact solution for K-means is NP-hard,
we use the popular gradient-descent Lloyd’s algorithm
for computational efficiency, and experimentally eval-
uate the discrepancy between the clustering results.
We do not have the cluster labels for the aforemen-
tioned dataset, so we cluster the original time series



Table 1: Cluster preservation after quantization with optional contractive data transformation. We present the
fraction of data belonging to the same clusters as before quantization using a) MPQ, b) q-bit MMSE for q = 1, 2, 4
denoted by MMSE(q). The quantized version of the dataset after the contractive transformation is denoted by
a “ t” after the name of the quantization scheme. We also show the critical value for the contraction parameter
αcrit. Experiments are for K = 3, 5, 8 clusters. Note that the contraction indeed yields perfect cluster preservation
in all instances.

K MPQ MMSE(1) MMSE(2) MMSE(4) αcrit MPQ t MMSE t(1) MMSE t(2) MMSE t(4)
3 1 1 0.991 0.990 0.505 1 1 1 1
5 1 1 0.994 0.994 0.503 1 1 1 1
8 0.999 1 0.980 0.988 0.098 1 1 1 1

into K = 3, 5, 8 clusters using Lloyd’s algorithm with a
maximum number of 100 iterations. Because we would
like to have a near-optimal set of clusters, we repeat
Lloyd’s algorithm with multiple starting centroids and
select the set that achieves the smallest value for the K-
means objective function. We found that using 5 runs
of Lloyd’s algorithm with different starting points per-
formed well in all cases. We tested two alternatives for
choosing starting centroids: a) selecting K out of the
N datapoints uniformly at random, and b) using the
K-means++ [18] initialization scheme to select K out
of the N datapoints so as to achieve an initial estimate
that is expected to be a good approximation with prov-
able properties.

All results reported correspond to the K-means++
initialization, as it showed a uniformly better perfor-
mance and convergence speed in our experiments. In
executing Lloyd’s algorithm, it is quite common that a
cluster may become empty, i.e., that no points are closer
to its corresponding centroid than to any other given
centroid. In that case, we consider keeping the cen-
troid as a “singleton” cluster, and proceed with Lloyd’s
algorithm steps. In Figure 9, we consider K = 8 and il-
lustrate the clusters formed, along with the centroids
and upper and lower quantization values. After ob-
taining the clustering assignment via Lloyd’s algorithm,
we use it to quantize the time series using separate 1-
bit MMSE quantizers (one per cluster and dimension).
We also use MPQ quantizers for comparison with the
approach of [14], as well as multi-bit MMSE quantiz-
ers with q = 2, 4 bits. We then perform clustering on
the quantized dataset, and compare the resulting clus-
ter centroids and cluster assignments before and after
quantization. We also consider performing the transfor-
mation (5.16) after quantization, using the value αcrit

as defined in (5.24).
To quantify cluster preservation accuracy, we con-

sider matching clusters as follows: let us denote the
clusters formed in the original dataset by {Sk}

K
k=1 and

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 5 Cluster 6 Cluster 7 Cluster 8

Upper/lower

Quantization levels (red)

Stock Data (gray)

Cluster Center (green)

Figure 9: Stock data grouped into 8 clusters. Note that
the upper and lower quantization values (depicted in
red) accurately track the cluster trend, and that clusters
‘shrink’ after quantization

those formed in the quantized dataset by {S′
k}

K
k=1. De-

note the cardinality of the intersection of the quantized
datapoints of Sk with the members of S′

l by intk,l :=
|{xi : xi ∈ Sk, x̂i ∈ S′

l}|. After calculating intk,l, we
consider the permutation p(·) of {1, . . . ,K} such that∑K

k=1 intk,p(k) is maximized. The cumulative preserva-
tion metric cp taking values in [0, 1] is then defined as
the percentage of points that belong to the intersection
of the original and the matched clusters, namely

(6.31) cp :=
1

N

K∑

k=1

intk,p(k).

We present the values for the cumulative preserva-
tion metric for a) MPQ, b) q-bit MMSE for q = 1, 2, 4
denoted by MMSE(q) as well as the quantized ver-
sion of the transformed dataset, denoted by a “ t” af-
ter the name of quantization in Table 1; we considered
K = 3, 5, 8 clusters. We note that the quality of cluster
preservation is excellent: more than 98% of the sam-
ples belong to the same clusters before and after quan-
tization, whereas the transformation always yields per-



fect cluster preservation. Note also that the MMSE(2)
and MMSE(4) lead to slightly worse cluster preservation
than MMSE(1); this is attributed to Lloyd’s algorithm,
as a higher data resolution (more bits) typically leads
to a lower dynamic range reduction post-quantization.

6.2 Data Distortion

We study the distortion induced on the original data
by the proposed quantization schemes. We record the
normalized MSE per dimension, MSE/T in Table 2. It
is evident that using 1-bit MMSE quantization incurs
significantly less distortion than MPQ, namely 37% less
MSE on average in all cases.

Table 2: MSE due to quantization (per dimension)

K MPQ MMSE(1) MMSE(2) MMSE(4)

3 131.4 89.3 57.1 9.6

5 45.3 27.3 10.0 1.2

8 29.5 18.1 7.0 0.7

Using multi-bit quantization further reduces the
MSE substantially over 1-bit MPQ, by, on average,
70%and96%, on average, for q = 2 and q = 4 bits,
respectively. Furthermore, the MSE is decreased by
increasing the number of clusters. This is because
our quantization schemes are cluster-centric, whence in-
creasing K increases the number of quantizers, while
decreasing the number of datapoints to be jointly quan-
tized (those that belong to the same cluster).

We provide one visual example of how multi-bit
quantization reduces the data distortion in Figure 10.
We show a sample time series for the stock dataset and
its quantized version using 1-bit and 4-bit MMSE, as
well as the absolute error due to quantization.

Original

1−bit MMSE

Original

4−bit MMSE

MSE per dimension = 4.2 MSE per dimension = 0.6

Figure 10: Original and quantized time series for a
stock: on the left side we show the quantized time series
using 1-bit MMSE. On the right side we depict the
quantized time series using 4-bit MMSE. The bottom
panels capture the absolute quantization error

Table 3: Compression Efficiency

# of clusters # of bits (q) Compression (ρ)

K=3 1 0.128
2 0.256
4 0.522

K=5 1 0.13
2 0.259
4 0.537

K=8 1 0.132
2 0.265
4 0.559

6.3 Compression Efficiency

We have seen that increasing the number of bits to
represent each quantized datapoint and also increasing
the number of clusters helps better preserve the shape
of the time series while maintaining excellent cluster
preservation performance. This, however, comes at the
price of increased storage requirements. We quantify
this by calculating the compression ratio:

ρ = qTN+2qBTK
BTN

(6.32)

when we use q bits for each cluster and dimension. We
present the compression efficiency for all cases in Table
3, by assuming that the original (non-quantized) data
are represented using B = 8 bits.

As can be seen from the table, the compression can
result in a storage reduction of almost a factor of 8. The
compression ratio varies with the number of clusters
and bits, deteriorating as Kandq increase. Selecting
the optimal trade-off between compression, distortion,
and cluster label preservation is an important practical
consideration for the proposed scheme.

7 Discussion and Extensions

A key feature of the proposed scheme is that data have
to be pre-clustered and, consequently, that quantiza-
tion is performed separately for each cluster. This is
justified because that the original data is considered un-
labeled and cluster-unaware quantization schemes can-
not exploit the cluster structure for asserting post-
compression cluster preservation. In particular, it is
plain to see that applying quantization to the dataset
as a whole using a few bits will typically alter the data
topology to the extent that clustering will be vitally dis-
torted. In our approach, we can control the compression
granularity by allocating different numbers of bits per
cluster and dimension, so that the compressed data sam-



ples retain the original object structure and neighbor-
hood relationships. Therefore, the proposed compres-
sion method can also be used for driving other distance-
based mining operations, including, but not limited to:
hierarchical clustering, visualization, and approximate
search.

The result of Theorem 5.1 can be extended in two
directions of practical interest. First, it also applies to
any quantization scheme, not just MMSE quantization.
In particular, it applies to MPQ used in [14], which we
have tested in the experimental section. To see this,
note that in the proof of the theorem, x̂i is simply
a constant independent of α and there exists a small
enough α ∈ (0, 1) to guarantee preservation of K-
means clustering. Of course, in that case, α depends
on the quantization scheme and needs to be, in general,
smaller for schemes that do not guarantee dynamic
range reduction, such as MPQ. Second, the proof of
Theorem 5.1 also carries over for any given cluster
assignment S, not just the optimal assignment for K-
means clustering S∗; again α depends on S.

The latter extension is important for two reasons:
First, by using Lloyd’s algorithm, we typically acquire
a suboptimal assignment, whereas K-means++ is a
randomized algorithm that will yield a different outcome
in each realization. In both cases, it is desirable to
maintain the clustering outcome obtained, which is
guaranteed by our theory.

8 Conclusions and Future Work

We have showcased compression schemes for high-
dimensional datasets that preserve the outcome of K-
means clustering. Our analytical derivations indicate
that a single-bit MMSE quantizer, per cluster and di-
mension, is sufficient to preserve the optimal cluster
assignment if the clusters satisfy a certain “separa-
tion” property. We have presented a minimum-overhead
linear data transformation that can guarantee such a
property for the transformed data, and have further
proved that such a scheme can always guarantee post-
quantization cluster optimality. Finally, we have con-
sidered multi-bit quantization and proposed an efficient
greedy algorithm for bit allocation in order to minimize
the MSE due to quantization. Our experimental eval-
uations have shown that the quantization schemes de-
signed indeed preserve the clustering outcome, while in-
ducing only minimal distortion on the original data.
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