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Abstract

Most real-world data contain repeated or periodic pat-
terns. This suggests that they can be effectively represented
and compressed using only a few coefficients of an appro-
priate complete orthogonal basis (e.g., Fourier, Wavelets,
Karhunen-Loève expansion or Principal Components).

In the face of ever increasing data repositories and given
that most mining operations are distance-based, it is vital
to perform accurate distance estimation directly on the com-
pressed data. However, distance estimation when the data
are represented using different sets of coefficients is still a
largely unexplored area. This work studies the optimiza-
tion problems related to obtaining the tightest lower/upper
bound on the distance based on the available information.
In particular, we consider the problem where a distinct set
of coefficients is maintained for each sequence, and the L2-
norm of the compression error is recorded. We establish the
properties of optimal solutions, and leverage the theoretical
analysis to develop a fast algorithm to obtain an exact so-
lution to the problem. The suggested solution provides the
tightest provable estimation of the L2-norm or the correla-
tion, and executes at least two order of magnitudes faster
than a numerical solution based on convex optimization.
The contributions of this work extend beyond the purview of
periodic data, as our methods are applicable to any sequen-
tial or high-dimensional data as well as to any orthogonal
data transformation used for the underlying data compres-
sion scheme.
Keywords: Distance estimation, Compression, Orthogonal
bases, Time series, Fourier, Wavelets, KKT conditions,
Water-filling algorithm

1 Introduction

A perennial problem in data analysis is the increasing
dataset sizes. This trend dictates the need not only for
more efficient compression schemes, but also for analytic
operations that work directly on the compressed data.
Efficient compression schemes can be designed based
on exploiting inherent patterns and structures in the
data. Data periodicity is one such characteristic that
can significantly boost compression.

Periodic behavior is omnipresent; many types of col-
lected measurements exhibit periodic patterns, includ-
ing weblog data [1, 2], network measurements [3], en-
vironmental and natural processes [4, 5], medical and
physiological measurements (e.g., ECG data). The
aforementioned are only a few of the numerous scientific

∗Nikolaos M. Freris and Michail Vlachos are with the De-
partment of Mathematical and Computational Sciences, IBM
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and industrial fields that handle periodic data. Exam-
ples from these areas are displayed in Fig. 1.

Figure 1: Many scientific fields entail periodic data. Ex-
amples from medical, industrial, web and astronomical
measurements.

When data contain inherent structure, efficient
compression can be performed with minimal loss in data
quality (see Fig. 2 for an example). This is achievable
by encoding the data using only few high-energy coef-
ficients in a complete orthonormal basis representation,
e.g., Fourier, Wavelets, Principal Component Analysis
(PCA), etc. Our work focuses on the following prob-
lem: given data that are compressed in such a way, how
can we estimate distances among the original (uncom-
pressed) data with the highest possible fidelity?

Assuming two compressed objects, we address the
problem of providing the tightest possible upper and
lower bounds on the original distance between the un-
compressed objects. By tightest we mean that given
the information that we have no better estimate can be
derived. Distance estimation is fundamental for data
mining, because the majority of mining and learning
tasks are distance-based, including clustering (e.g. k-
Means or hierarchical), k-NN classification, outlier de-
tection, pattern matching, etc. This work focuses on
the case when the distance is the widely used Euclidean
distance (L2-norm of the difference), but makes further
assertions for applicability to other distances. Our main
contributions can be summarized as follows:
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Figure 2: Motivation for using the high-energy (best) coefficients for compression. Using the best 10 coefficients
(c) results in significantly better sequence approximation than when using the first coefficients (b). The goal of
this work is to provide the tightest possible lower and upper distance estimates.

- We formulate the problem of tight distance es-
timation as two optimization problems for obtaining
lower/upper bounds. We show that both problems can
be solved simultaneously by solving a single convex op-
timization program.

- We provide the necessary and sufficient Karush-
Kuhn-Tucker (KKT) conditions for an optimal solution
and study the properties of optimal solutions.

- We use the analysis to derive exact algorithms for
obtaining the optimal lower/upper bounds.

- We evaluate our analytical findings empirically;
we compare the proposed algorithms with prevalent dis-
tance estimation schemes, and demonstrate significant
improvements in terms of estimation accuracy. We fur-
ther compare the performance of our optimal algorithm
with that of a numerical scheme based on convex op-
timization, and show that our scheme is at least two
orders of magnitude faster, while also providing more
accurate results.

We emphasize that the estimated lower/upper
bounds on the distance are optimally tight, so as to
minimize the uncertainty on the distance estimation.
This implies in turn that our scheme will least impact
any distance-based mining operation operating directly
on the compressed data.

2 Related Work

The majority of data compression techniques for se-
quential data use the same set of low-energy coefficients
whether using Fourier [6, 7], Wavelets [8, 9] or Cheby-
shev polynomials [10] as the orthogonal basis for repre-
sentation and compression. Using the same set of or-
thogonal coefficients has several advantages: a) it is im-
mediate to compare the respective coefficients, b) space-

partitioning indexing structures (such as R-trees) can
be directly used on the compressed data, and c) there is
no need to store also the indices of the basis functions
that the stored coefficients correspond to. The disad-
vantage is that both object reconstruction and distance
estimation may be far from optimal for a given fixed
compression ratio.

One can also record side-information, such as the
energy of the discarded coefficients, to better approx-
imate the distance between compressed sequences by
exploiting the Cauchy-Schwartz inequality [13]. This is
shown in Figure 3a). In [11, 12], the authors advocated
the use of high-energy coefficients and side-information
on the discarded coefficients for weblog sequence repos-
itories; in that setting one of the sequences was com-
pressed, whereas the query was uncompressed, i.e., all
coefficients were available as illustrated in Figure 3b).
This work examines the most general and challenging
case when both series are compressed. In that case, we
record a (generally) different set of high-energy coeffi-
cients and also store aggregate side-information, such as
the energy of the omitted data; this is depicted in Fig-
ure 3c). We are not aware of any previous art address-
ing this problem to derive either optimal or suboptimal
bounds on distance estimation.

3 Searching Data Using Distance Estimates

We consider a database DB that stores sequences
as V high-dimensional complex vectors x(i) ∈ C

N , i =
1 . . . V . The search problem that we examine can be
abstracted as follows: a user is interested in finding
the k most ‘similar’ sequences to a given query se-
quence q ∈ DB, under a certain distance metric d(·, ·) :
C

N×N → R+. This is the most basic yet the most



e

ee

e
e

QXQX QX

a) b) c)

Figure 3: Comparison with previous work. Distance estimation between a compressed sequence (X) and a query
(Q) represented in any complete orthonormal basis. A compressed sequence is represented by a set of stored
coefficients (gray) as well as the error e incurred because of compression (yellow). a) Both X,Q are compressed
by storing the first coefficients. b) Using the highest-energy coefficients for X, whereas Q is uncompressed as in
[11, 12] , and c) the problem we address: both sequences are compressed using the highest-energy coefficients.
Note that in general for each object a different set of coefficients is used.

fundamental search and mining operation, known as k-
Nearest-Neighbor (k-NN) search. It is a core function
in database querying, as well as a fundamental opera-
tion in a variety of data-mining and machine-learning
algorithms including classification (NN-classifier), clus-
tering, etc. In this paper, we focus on the case where
d is the standard Euclidean distance, i.e., the L2 norm
on C

N . We note that other measures, for example time-
invariant matching, can be formulated as Euclidean dis-
tance on the periodogram [14]. Correlation r can also be
expressed as an instance of Euclidean distance on prop-
erly normalized sequences [15]. Therefore, our approach
is applicable on a wide range of distance measures with
little or no modification. However, for ease of exposi-
tion, we focus on the Euclidean distance which is the
most prevalent measure in the literature [16].

Search operations can be quite costly, especially for
cases where the dimension N of the sequences is high,
because sequences need to be retrieved from the disk
for comparison against the query q. An effective way to
mitigate this is to retain a compressed representation
of the sequences to be used as an initial pre-filtering
step. The set of compressed sequences could be small
enough to keep in-memory, hence enabling a significant
performance speedup. In essence, this is a multilevel fil-
tering mechanism. With only the compressed sequences
available, we obviously cannot infer the exact distance
between the query q and a sequence x(i) in the database.
However, it is still plausible to obtain under-estimates
and over-estimates of the distance, i.e., lower and up-
per bounds. Using these bounds, a superset of the k-NN
answers can be returned, which will be then verified us-
ing the uncompressed sequences that will need to be

fetched and compared with the query, so that the ex-
act distances can be computed. Such filtering ideas are
used in the majority of the data-mining literature for
speeding up search operations [6, 7, 17].

4 Notation

Consider a sequence x = {x1, x2, . . . , xN} ∈ R
N . For

compression purposes, x is projected onto a subset of
orthonormal bases {E1,E2, . . . ,EN} ⊂ S, where we
restrict attention to the cases with S = R

N or S = C
N

for most practical cases. We have

x =

N
∑

l=1

XlEl

The vector X := {X1,X2, · · · ,XN} ⊂ S is defined by

Xl =< x,El >= E∗
l x :=

N
∑

j=1

xkĒlj

where we use the notation < ·, · > to denote the stan-
dard inner product in C

N , “∗” for complex transpose
and “¯” for the conjugate of a complex number; Elj is
the j-entry of vector El. We denote the linear mapping
x → X given by (4) by F , and the inverse linear map
X → x given by (4) by F−1, i.e., we say X = F(x)
and x = F−1(X). Examples for the invertible lin-
ear transformation that are of practical interest include
e.g., Discrete Fourier Transform (DFT), PCA, Wavelets
Karhunen-Loève expansion, etc.

As a running example for this paper we assume
that a sequence is compressed using DFT. Therefore the
basis represent sinusoids of different frequencies, and the



corresponding orthonormal basis is given by

El =

{

1√
N

ei2πkj/N

}N−1

j=0

In such a case, the pair (x,X), where X = DFT (x) and
x = IDFT (X), the inverse DFT, satisfies

Xl = 1/
√

N
N
∑

k=1

xkei2π(k−1)(l−1)/N , l = 1, . . . , N

xk = 1/
√

N
N
∑

l=1

Xle
i2π(k−1)(l−1)/N , k = 1, . . . , N

where i is the imaginary unit i2 = −1. As distance
between two sequences x, q we assume the L2-norm,
which can easily be translated into distance in the
frequency domain because of Parseval’s theorem:

d(x,q) := ||x− q||2 = ||X−Q||2

5 Motivation

The choice of which coefficients to use has a direct
impact on the data approximation quality. Although it
has long been recognized that sequence approximation
when using high-energy (i.e., best) coefficients is indeed
superior [18, 11] - see also Figure 2 for an illustrative
example - a barrier still has to be overcome: efficiency
of solution for distance estimation.

Consider a sequence represented using its high-
energy coefficients. Therefore, the compressed sequence
X will be described by a set of Cx coefficients that hold
the largest energy. We denote the vector describing
the positions of those coefficients in X as p+

x , and
the positions of the remaining ones as p−x (that is
p+

x ∪ p−x = [1, . . . , N ]). For any sequence X, we store in
the database the vector X(p+

x ), which we denote simply
by X+ := {Xi}i∈p+

x
. We denote the vector of discarded

coefficients by X− := {Xi}i∈p−
x
.

In addition to the best coefficients of a sequence,
we can also record one additional value for the energy
of the compression error, ex = ||X−||22, i.e., the sum of
squared magnitudes of the omitted coefficients.

Then one needs to solve the following minimiza-
tion (maximization) problem for calculating the lower
(upper) bounds on the distance between two sequences
based on their compressed versions:

min(max) ||X − Q||2(5.1)

s.t. |Xl| ≤ min
j∈p+

x

|Xj |, ∀l ∈ p−
x

|Ql| ≤ min
j∈p+

q

|Qj |, ∀l ∈ p−
q

and
∑

l∈p−
x

|Xl|2 = ex,
∑

l∈p−
q

|Ql|2 = eq

X
− ∈ C

|p−

x |,Q− ∈ C
|p−

q |

where the decision variables are the vectors X−,Q−.
The constraints are due to the fact that we use the high-
energy components for the compression. Hence, any of
the omitted components must have energy lower than
the minimum energy of any kept component.

The optimization problem presented is a complex-
valued program: the minimization problem can easily
be recast as an equivalent convex program by relaxing
the equality constraints into ≤ inequality constraints,
as will be justified. Hence, it can be solved efficiently
with numerical methods [19], cf. Sec. 8.1. However,
as we show in the experimental section, evaluating an
instance of this problem just for a pair of sequences
is not efficient in practice: it requires approximately
one second on a modern CPU. Therefore, although
a solution can be found numerically, it is generally
costly and not tailored for large mining tasks where
we would like to evaluate thousands or millions of such
lower/upper bounds on compressed sequences. Here we
show how solve this problem analytically by exploiting
the derived optimality conditions. More importantly,
we show in our experiments that our approach is more
than two orders of magnitude faster than numerical
solutions.

We solve this problem as a ‘double water-filling’
instance. Vlachos et al. have shown how the optimal
lower and upper distance bounds between a compressed
and an uncompressed sequence can be relegated to
a single water-filling problem [11]. We revisit this
approach as it will be used as a building block for
our solution. In addition, we later derive optimality
properties for our solution.

6 An Equivalent Convex Optimization

Problem

For ease of notation, we consider the partition P =
{P0, P1, P2, P3} of {1, . . . , N} (see Fig. 4), where we
set the following:

• P0 = p+
x ∩ p+

q are the common known components
in two compressed sequences X,Q.

• P1 = p−x ∩ p+
q are the components unknown for X

but known for Q.

• P2 = p+
x ∩p−q are the components known for X but

unknown for Q.

• P3 = p−x ∩p−q are the components unknown for both
sequences.

Using the standard notation x∗ for the conjugate
transpose of a complex vector x, < to denote the real
part of a complex number, and considering all vectors
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Figure 4: Visual illustration of sets P0, P1, P2, P3 be-
tween two compressed objects.

as column vectors, we have that the squared Euclidean
distance is given by

||x− q||22 = ||X−Q||22 = (X−Q)∗(X−Q)

= ||X||22 + ||Q||22 − 2X∗Q

= ||X||22 + ||Q||22 − 4

N
∑

i=1

<{XiQi}

= ||X||22 + ||Q||22 − 4(
∑

l∈P0

<{XlQl}

+
∑

l∈P1

<{XlQl}+
∑

l∈P2

<{XlQl}

+
∑

l∈P3

<{XlQl}).

Note that ||X||2 , ||Q||2 can be inferred by summing
the squared magnitudes of the known coefficients with
the energy of the compression error. Also, the term
∑

l∈P0
<{XlQl} is known, whereas the last three sums

are unknown. Considering the polar form, i.e., absolute
value | · | and argument arg(·)

Xl = |Xl|eiarg(Xl), Ql = |Ql|eiarg(Ql)

we have that the decision variables are vectors
|Xl|, arg(Xl), l ∈ p−x as well as |Ql|, arg(Ql), l ∈ p−q . Ob-
serve that for x, y ∈ C with |x|, |y| known, we have that
−|x||y| ≤ <{xy} ≤ |x||y|, where the upper bound is at-
tained when arg(x) + arg(y) = 0 and the lower bound
when arg(x) + arg(y) = π. Therefore, both problems
(5.1) boil down to the real-valued optimization problem

min −
∑

l∈P1

albl −
∑

l∈P2

albl −
∑

l∈P3

albl(6.2)

s.t. 0 ≤ al ≤ A, ∀l ∈ p−x

0 ≤ bl ≤ B, ∀l ∈ p−q
∑

l∈p−
x

a2
l ≤ ex

∑

l∈p−
q

b2
l ≤ eq,

where al, bl represent |Xl|, |Ql|, respectively, and A :=
minj∈p+

q
|Xj |, B := minj∈p+

q
|Qj |. Note also that we

have relaxed the equality constraints to inequality con-
straints as the objective function of (6.2) is decreasing
in all ai, bi, so the optimum of (6.2) has to satisfy the
relaxed inequality constraints with equality, because of
the elementary property that |p−x |A2 ≥ ex, |p−q |B2 ≥ eq.
Recall that in the first sum only {ai} are known, in the
second only {bi} are known, and in the third all vari-
ables are unknown.

We have reduced the original problem to a single
optimization program, which is, however, not convex
unless p−x ∩ p−q = ∅. It is easy to check that the con-
straint set is convex and compact, however, the bilinear
function f(x, y) := xy is convex in each argument alone,
but not jointly. We consider the re-parametrization of
the decision variables zi = a2

i , for i ∈ p−x and yi = b2
i for

i ∈ p−q , we set Z := A2, Y := B2 and get the equivalent
problem:

min −
∑

i∈P1

bi

√
zi −

∑

i∈P2

ai
√

yi −
∑

i∈P3

√
zi

√
yi(6.3)

s.t. 0 ≤ zi ≤ Z, ∀i ∈ p−x

0 ≤ yi ≤ Y, ∀i ∈ p−q
∑

i∈p−
x

zi ≤ ex

∑

i∈p−
q

yi ≤ eq .

Existence of solutions and necessary and suffi-

cient conditions for optimality:

The constraint set is a compact convex set, in fact, a
compact polyhedron. The function g(x, y) := −√x

√
y is

convex but not strictly convex on R
2
+. To see this, note

that the Hessian exists for all x, y > 0 and equals

O
2g =

1

4

(

x− 3
2 y− 1

2 −x− 1
2 y− 1

2

−x− 1
2 y− 1

2 x− 1
2 y− 3

2

)

with eigenvalues 0, 1√
xy ( 1

x + 1
y ), and hence is positive

semi-definite, which in turn implies that g is convex
[19]. Furthermore, −√x is a strictly convex function
of x so that the objective function of (6.3) is convex,
and strictly convex only if p−x ∩ p−q = ∅. It is also a
continuous function so solutions exist, i.e., the optimal
value is bounded and is attained. It is easy to check that
the Slater condition holds, whence the problem satisfies
strong duality and there exist Lagrange multipliers [19].
We skip the technical details for simplicity, but we want
to highlight that this property is substantial because
it guarantees that the Karush-Kuhn-Tucker (KKT)
necessary conditions [19] for Lagrangian optimality are
also sufficient. Therefore, if we can find a solution to
satisfy the KKT conditions for the problem, we have



found an exact optimal solution and the exact optimal
value of the problem. The Lagrangian is

L(y, z, λ, µ, α, β) := −2
∑

i∈P1

bi

√
zi − 2

∑

i∈P2

ai
√

y
i
− 2
∑

i∈P3

√
zi

√
y

i

(6.4)

+ λ
(

∑

i∈p−
x

(zi − ex)
)

+ µ
(

∑

i∈p−
q

(yi − eq)
)

+
∑

i∈p−
x

αi(zi − Z) +
∑

i∈p−
q

βi(yi − Y ) .

The KKT conditions are as follows1:

0 ≤ zi ≤ Z, 0 ≤ yi ≤ Y, (PF)(6.5a)
∑

i∈p−
x

zi ≤ ex,
∑

i∈p−
x

zi ≤ eQ

λ, µ, αi, βi ≥ 0 (DF)(6.5b)

αi(zi − Z) = 0, βi(yi − Y ) = 0 (CS)(6.5c)

λ
(

∑

i∈p−
x

(zi − ex)
)

= 0, µ
(

∑

i∈p−
q

(yi − eq)
)

= 0

i ∈ P1 :
∂L

∂zi
= − bi√

zi
+ λ + αi = 0 (O)(6.5d)

i ∈ P2 :
∂L

∂yi
= − ai√

yi
+ µ + βi = 0

i ∈ P3 :
∂L

∂zi
= −

√
yi√
zi

+ λ + αi = 0

∂L

∂yi
= −

√
zi√
yi

+ µ + βi = 0 ,

where we use shorthand notation for Primal Feasibility
(PF), Dual Feasibility (DF), Complementary Slackness
(CS), and Optimality (O) [19].

Let us denote the optimal value of (6.3) by vopt ≤
0. Then the optimal lower bound (LB) and upper
bound (UB) for the distance estimation problem under
consideration are given by

LB =

√

D̂ + 4vopt(6.6)

UB =

√

D̂ − 4vopt(6.7)

D̂ := ||X||22 + ||Q||22 − 4
∑

l∈P0

<{XlQl} .

7 Exact Solutions

In this section, we study algorithms for obtaining exact
solutions for the optimization problem (6.3). By exact,
we mean that the optimal value is obtained in a finite
number of computations as opposed to when using
a numerical scheme for convex optimization. In the

1The condition (6.5d) excludes the cases that for some i zi = 0,
or yi = 0 which will be treated separately in the following.

latter case, an approximate solution is obtained by
means of an iterative scheme which converges with finite
precision. Before addressing the general problem, we
briefly recap a special case that was dealt with in [11],
where the sequence Q was assumed to be uncompressed.
In this case, an exact solution is provided via the
water-filling algorithm, which will constitute a key
building block for obtaining exact solutions to the
general problem later on. We then proceed to study the
properties of optimal solutions; our theoretical analysis
gives rise to an exact algorithm, cf. Sec. 8.2.

7.1 Water-filling Algorithm. The case that Q is
uncompressed is a special instance of our problem with
p−q = ∅, whence also P2 = P3 = ∅. The problem is
strictly convex, and (6.5d) yields

(7.8) zi =
( bi

λ + αi

)2 ⇔ ai =
bi

λ + αi

In such a case, the strict convexity guarantees the ex-
istence of a unique solution satisfying the KKT condi-
tions as given by the water-filling algorithm, cf. Fig.
5. The algorithm progressively increases the unknown
coefficients ai until saturation, i.e., until they reach A,
in which case they are fixed. The set C is the set of
non-saturated coefficients at the beginning of each it-
eration, while R denotes the “energy reserve,” i.e., the
energy that can be used to increase the non-saturated
coefficients; vopt denotes the optimal value.

As a shorthand notation, we write a =
waterfill(b, ex, A). Note that in this case the problem
(6.2) for P2 = P3 = ∅ is convex, so the solution can
be obtained via the KKT conditions to (6.2), which are
different from those for the re-parameterized problem
(6.3); this was done in [11]. The analysis and straight-
forward extensions are summarized in Lemma 7.1.

Lemma 7.1. (Exact solutions)

1. If either p−x = ∅ or p−q = ∅ (i.e., when at least one
of the sequences is uncompressed) we can obtain an
exact solution to the optimization problem (6.2) via
the water-filling algorithm.

2. If P3 = p−x ∩ p−q = ∅, i.e., when the two compressed
sequences do not have any common unknown co-
efficients, the problem is decoupled in a,b and the
water-filling algorithm can be used separately to ob-
tain exact solutions to both unknown vectors.

3. If P1 = P2 = ∅, i.e., when both compressed
sequences have the same discarded coefficients, the
optimal value is simply equal to −√ex

√
eq, but

there is no unique solution for a,b.



Water-filling algorithm

Inputs: {bi}i∈p−
x
, ex, A

Outputs: {ai}i∈p−
x
, λ, {αi}i∈p−

x
, vopt, R

1. Set R = ex, C = p−x

2. while R > 0 and C 6= ∅ do

3. set λ =

√

∑

i∈C b2
i

R , ai = bi

λ , i ∈ C

4. if for some i ∈ C, ai > A then

5. ai = A, C ← C − {i}

6. else break;

7. end if

8. R = ex − (|p−x | − |C|)A2

9. end while

10. Set vopt = −∑i∈p−
x

aibi and

αi =

{

0, if ai < A
bi

A − λ, if ai = A

Figure 5: Water-filling algorithm for optimal distance
estimation between a compressed and an uncompressed
sequence

Proof. The first two cases are obvious. For the third
one, note that it follows immediately from the Cauchy-
Schwartz inequality that −∑l∈P3

albl ≥ −
√

ex
√

eq and
in this is case this is also attainable, e.g., just consider

al =
√

ex

|P3| , bl =
√

eq

|P3| , which is feasible because

|p−x |A2 ≥ ex, |p−q |B2 ≥ eq, as follows by compression
with the high-energy coefficients. �

We have shown how to obtain exact optimal solu-
tions for special cases. To derive efficient algorithms
for the general case, we first study end establish some
properties of the optimal solution of (6.3).

Theorem 7.1. (Properties of optimal solutions)

Let an augmented optimal solution of (6.2) be de-
noted by (aopt,bopt); where aopt := {aopt

i }i∈p−
x ∪p−

q

denotes the optimal solution extended to include the
known values |Xl|l∈P2

, and bopt := {bopti }i∈p−
x ∪p−

q

denotes the optimal solution extended to include
the known values |Ql|l∈P1

. Let us further define
e′x = ex −

∑

l∈P1
a2

l , e
′
q = eq −

∑

l∈P2
b2
l . We then have

the following:

1. The optimal solution satisfies2

aopt = waterfill (bopt, ex, A)(7.9a)

bopt = waterfill (aopt, eq, B)(7.9b)

In particular, it follows that a
opt

i > 0 iff b
opt

i > 0
and that {aopt

i }, {bopti } have the same ordering. In
addition, minl∈P1

al ≥ maxl∈P3
al,minl∈P2

bl ≥
maxl∈P3

bl.

2. If at optimality it holds that e′xe′q > 0 there exists a
multitude of solutions. One solution (a,b) satisfies

al =
√

e′
x

|P3| , bl =
√

e′
q

|P3| for all l ∈ P3, whence

λ =

√

e′q
e′x

µ =

√

e′x
e′q

(7.10a)

αi = βi = 0 ∀i ∈ P3(7.10b)

In particular, λµ = 1 and the values e′x, e′q need
to be solutions to the following set of nonlinear
equations:

∑

l∈P1

min
(

b2
l

e′x
e′q

, A2
)

= ex − e′x(7.11a)

∑

l∈P2

min
(

a2
l

e′q
e′x

, B2
)

= eq − e′q(7.11b)

3. At optimality, it is not possible to have e′xe′q = 0
unless e′x = e′q = 0.

4. Consider the vectors a,b with al = |Xl|, l ∈
P2, al = |Xl|, l ∈ P1 and

{al}l∈P1
= waterfill ({bl}l∈P1

, ex, A)(7.12a)

{bl}l∈P2
= waterfill ({al}l∈P2

, eq, B)(7.12b)

If ex ≤ |P1|A2 and eq ≤ |P2|B2, whence e′x = e′q =
0, then by defining al = bl = 0 for l ∈ P3, we obtain
a globally optimal solution (a,b).

Proof. See Appendix.

Remark 7.1. One may be tempted to think that an op-
timal solution can be derived by water-filling for the co-
efficients of {al}l∈P1

, {bl}l∈P2
separately, and then allo-

cating the remaining energies e′x, e′q to the coefficients
in {al, bl}l∈P3

leveraging the Cauchy-Schwartz inequal-
ity, the value being −

√

e′x
√

e′q. However, the third and
fourth parts of Theorem 7.1 state that this is not opti-
mal unless e′x = e′q = 0.

2This has a natural interpretation as the Nash equilibrium of
a 2-player game [20] in which Player 1 seeks to minimize the

objective of (6.3) with respect to z, and Player 2 seeks to minimize
the same objective with respect to y.



We have shown that there are two possible cases
for an optimal solution of (6.2): either e′x = e′q = 0 or
e′x, e′q > 0. The first case is easy to identify by checking
whether (7.12) yields e′x = e′q = 0. If this is not the case,
we are in the latter case and need to find a solution to
the set of non linear equations (7.11).

Consider the mapping T : R
2
+ → R

2
+ defined by

(7.13)

T ((x1, x2)) :=

(

ex−
∑

l∈P1

min
(

b
2

l

x1

x2

, A
2
)

, eq−
∑

l∈P2

min
(

a
2

l

x2

x1

, B
2
)

)

The set of non linear equations of (7.11) corre-
sponds to a positive fixed point of T , i.e., (e′x, e′q) =
T (e′x, e′q), e

′
x, e′q > 0. As this problem is of interest only

if e′xe′q > 0 at optimality, we know that we are not in
the setup of Theorem 7.1.4, therefore we have the addi-
tional property that either ex > |P1|A2, eq > |P2|B2 or
both. Let us define

γa := min
{

γ ≥ 0 :
∑

l∈P2

min
(

a2
l
1

γ
, B2

)

≤ eq

}

(7.14)

γb := max
{

γ ≥ 0 :
∑

l∈P1

min
(

b2
l γ, A2

)

≤ ex

}

Clearly if ex > |P1|A2 then γb = +∞ and for any

γ ≥ maxl∈P1

A2

b2
l

we have
∑

l∈P1
min(b2

l γ,A2) = |P1|A2;

similarly, if eq > |P2|B2 then γa = 0, and for any γ ≤
minl∈P2

a2
l

B2 we have
∑

l∈P2
min(a2

l
1
γ , B2) = |P2|B2. If

γb < +∞, we can find the exact value of γb analytically

by sorting {γ(b)
l := A2

b2
l

}l∈P1
in increasing order and

considering

hb(γ) :=
∑

l∈P1

min(b2
l γ

(b)
i , A2)− ex

and vi := hb(γ
(b)
i ). In this case, v1 < . . . < v|P1|, and

v|P1| > 0, and there are two possibilities: 1) v1 > 0

whence γb < γ
(b)
1 , or 2) there exists some i such that

vi < 0 < vi+1 whence γ
(b)
i < γb < γ

(b)
i+1. For both

ranges of γ, the function h becomes linear and strictly
increasing, and it is elementary to compute its root γb.
A similar argument applies for calculating γa if γa is
strictly positive, by defining ha .

Theorem 7.2. (Exact solution of (7.11))
If either ex > |P1|A2, eq > |P2|B2 or both, then the non
linear mapping T has a unique fixed point (e′x, e′q) with
e′x, e′q > 0. The equation

(7.15)
ex −

∑

l∈P1
min(b2

l γ,A2)

eq −
∑

l∈P2
min(a2

l
1
γ , B2)

= γ

has a unique solution γ̄ with γa ≤ γ̄ and γa ≤ γb when
γb < +∞. The unique fixed point of T (solution of
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Figure 6: A plot of functions ha, hb, h; (top) ha is a
bounded decreasing function, which is piecewise linear
in 1

γ with non-increasing slope in 1
γ ; hb is a bounded

increasing piecewise linear function of γ with non-
increasing slope. (bottom) h is an increasing function;
the linear term γ dominates the fraction term which is
also increasing, see bottom right.

(7.11)) satisfies

e′x = ex −
∑

l∈P1

min
(

b2
l γ̄, A2

)

(7.16)

e′q = eq −
∑

l∈P2

min

(

a2
l

1

γ̄
, B2

)

Proof. Existence3 of a fixed point is guaranteed by
existence of solutions and Lagrange multiplies for (6.3),
as by assumption we are in the setup of Theorem

7.1.2. Define γ :=
e′

x

e′
q
; a fixed point (e′x, e′q) =

T ((e′x, e′q)), e
′
x, e′q > 0, corresponds to a root of

(7.17) h(γ) := −
ex −

∑

l∈P1
min(b2

l γ,A2)

eq −
∑

l∈P2
min(a2

l
1
γ , B2)

+ γ

For the range γ ≥ γa and γ ≤ γb, if γb < +∞, we have
that h(γ) is continuous and strictly increasing. The
facts that limγ↘γa

h(γ) < 0, limγ↗γb
h(γ) > 0 show

existence of a unique root γ̄ of h corresponding to a
unique fixed point of T , cf. (7.16). �

Remark 7.2. (Exact calculation of a root of h)
We seek to calculate the root of h exactly and effi-
ciently. In doing so, consider the points {γl}l∈P1∪P2

3An alternative and more direct approach of establishing
existence of a fixed point is by considering all possible cases and
defining an appropriate compact convex set E ⊂ R

2
+ \ (0, 0) so

that T (E) ⊂ E whence existence follows by the Brower’s fixed
point theorem [20], since T is continuous.



where γl := A
b2

l

, l ∈ P1, γl :=
a2

l

B , l ∈ P2. Then,

note that for any γ ≥ γl, l ∈ P1 we have that
min(b2

l γ,A2) = A2. Similarly, for any γ ≤ γl, l ∈ P2,
we have that min(a2

l
1
γ , B2) = B2. We order all such

points in increasing order, and consider the resulting
vector γ′ := {γ′

i} excluding any points below γa or above
γb. Let us define hi := h(γ′

i). If for some i, hi = 0
we are done. Otherwise there are three possibilities: 1)
there is an i such that hi < 0 < hi+1, 2) h1 > 0 or 3)
hN < 0. In all cases, the numerator (denominator) of
h is linear in γ ( 1

γ ) for the respective range of γ; γ̄ is
obtained by solving the linear equation
(7.18)

ex −
∑

l∈P1

min(b2
l γ,A2) = γ

(

eq −
∑

l∈P2

min

(

a2
l

1

γ
,B2

)

)

and using the elementary property that for a linear
function f on [x0, x1] with f(x0)f(x1) < 0 the unique
root is given by

x̄ = x0 −
x1 − x0

f(x1)− f(x0)
f(x0) .

8 Algorithm for Optimal Distance Estimation

In this section, we present an algorithm for obtaining
the exact optimal upper and lower bounds on the dis-
tance between the original sequences, when fully lever-
aging all information available given their compressed
counterparts. First, we present a simple numerical
scheme using a convex solver such as cvx [21] and then
use our theoretical findings to derive an analytical algo-
rithm which we call ‘double water-filling’.

8.1 Convex Programming

We let M := N −|P0|, and consider the non-trivial case
M > 0. Following the discussion in Sec. 6, we set the
2M×1 vector v = ({al}l∈P1∪P2∪P3

, {bl}l∈P1∪P2∪P3
) and

consider the following convex problem directly amenable
to a numerical solution via a solver such as cvx:

min
∑

l∈P1∪P2∪P3
(al − bl)

2

s.t. al ≤ A, ∀l ∈ p−x , bl ≤ B, ∀l ∈ p−q
∑

l∈p−
x

a2
l ≤ ex,

∑

l∈p−
q

b2
l ≤ eq

al = |Xl|, ∀l ∈ P2, bl = |Ql|, ∀l ∈ P1

The lower bound (LB) can be obtained by adding
D′ :=

∑

l∈P0
|Xl − Ql|2 to the optimal value of (5.1)

and taking the square root; then the upper bound is
given by UB =

√
2D′ − LB2, cf. (6.6).

8.2 Double Water-filling

Leveraging our theoretical analysis, we derive a sim-
ple efficient algorithm to obtain an exact solution to

Double water-filling algorithm

Inputs: {bi}i∈P1
, {ai}i∈P2

, ex, eq, A,B

Outputs: {ai, αi}i∈p−
x
, {bi, βi}i∈p−

q
, λ, µ, vopt

1. if p−x ∩ p−q = ∅ then use water-filling algorithm
(see Lemma 7.1 parts 1,2); return; endif

2. if p−x = p−q then set al =
√

ex

|P3| , bl =
√

eq

|P3| ,

αl = βl = 0 for all l ∈ p−x , vopt = −√ex
√

eq;
return; endif

3. if ex ≤ |P1|A2 and eq ≤ |P2|B2 then

{al}l∈P1
= waterfill ({bl}l∈P1

, ex, A)

{bl}l∈P2
= waterfill ({al}l∈P2

, eq, B)

with optimal values v
(a)
opt, v

(b)
opt, respectively.

4. Set al = bl = αl = βl = 0 for all l ∈ P3,

vopt = −v
(a)
opt − v

(b)
opt; return;

5. endif

6. Calculate the root γ̄ as in Remark 7.2 and define
e′x, e′q as in (7.16).

7. Set

{al}l∈P1
= waterfill ({bl}l∈P1

, ex − e′x, A)

{bl}l∈P2
= waterfill ({al}l∈P2

, eq − e′q, B)

with optimal values v
(a)
opt, v

(b)
opt, respectively.

8. Set al =
√

e′
x

|P3| , bl =
√

e′
q

|P3| , αl = βl = 0, l ∈ P3

and set vopt = −v
(a)
opt − v

(b)
opt −

√

e′x
√

e′q

Figure 7: Double water-filling algorithm for optimal
distance estimation between two compressed sequences

the problem of finding tight lower/upper bound on the
distance of two compressed sequences; we call this the
“double water-filling algorithm.” The idea is to obtain
an exact solution of (6.2) based on the results of The-
orems 7.1, 7.2, and Remark 7.2; then the lower/upper
bounds are given by (6.6), (6.7). The algorithm is de-
scribed in Fig. 7; its proof of optimality follows imme-
diately from the preceding theoretical analysis.

9 Experiments

Here we provide convincing experimental evidence on
both the tightness of the proposed bounds compared
with other approaches in the literature, and on the
speed compared with the numerical scheme based on
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Figure 8: Comparison the Lower- (LB) and Upper-Bounds (UB) of various approaches. LB and UB are shown
normalized by the original distance (vertical line) on the uncompressed data. Notice that the optimal bounds can
provide more than 20% tighter bounds. We also observe that the analytical solution using the Double Water-filling
approach always provides better estimates than the numerical solution.

convex optimization.
First, we recall a couple of approaches from the

literature which use the known coefficients and solely
apply the Cauchy-Schwartz inequality for the unknown
ones to update upper/lower bounds. One approach is to
compress all sequences using the same set of coefficients
and also store the compression error [13]. Another
option is to store only the highest-energy coefficients
as well as the compression error [22]. In both cases, if
we denote the set of common stored coefficients for two
sequences X,Q by Pxq, the bounds are given by

LB =

√

D̂ − 2
√

ēx

√

ēq

UB =

√

D̂ − 2
√

ēx

√

ēq

D̂ := ||X||22 + ||X||22 − 2<X(Pxq)
∗
Q(Pxq)

ēx := ||X(P \ Ppq)||22
ēq := ||X(Q \ Ppq)||22 ,

where for P̄ ⊂ P , X(P̄ ) denotes the vector containing
the entries of X in P . We refer to these two schemes
as “First Coeffs+Error” and “Best Coeffs+Error” in
what follows. We also refer to the numerical solution
obtained by cvx as “Optimal - Numerical”, whereas
the approach presented in this paper is referred to as
“Optimal - DoubleWaterfilling”.

We test all four algorithms using data using the
weblog traces in [11]. These are time-series that rep-
resent daily demand patterns (i.e., how many queries
were posed per day) at a search engine. We consider
time-series of length 1024. For a random subset, we
execute pairwise distance computations and compute
the true Euclidean distance on the uncompressed data
as well as the lower/upper bounds on the distance for
various compression ratios (i.e., number of retained co-
efficients). Note that for the approaches that record the
best coefficients, the position of the recorded coefficients

must be explicitly stored; but this is not necessary for
approaches that record the first coefficients. So, for rea-
sons of fair comparison, for all approaches we allocate
the same amount of space per compressed sequence. In
essence, the “First Coeffs + error” approach will even-
tually use a few more coefficients than the techniques
using the best coefficients. For a more in depth discus-
sion on these issue, the interested reader is directed to
[18, 11].

Tightness of distance bounds: The results on the
lower and upper bounds are shown in Fig. 8. We can
observe the both the Numerical and the Water-filling
solutions always provide better distance estimates than
existing state-of-the-art solution. Using the Double
Water-filling we can achieve an up to 22% tighter
distance estimation. We also conducted experiments
on other widely available periodic datasets (e.g. ECG,
sunspot) and we observed similar results. Due to space
restrictions these experiments are omitted.

Runtime: Even though both the Water-filling and
the Numerical solutions significantly decrease the un-
certainty with respect to the distance estimate, they
are not equally efficient. We present the runtime for
each approach in Fig. 9. The graph reports the aver-
age running time (in msec) for computing the distance
estimates between one pair of sequences. It is evident
that the proposed analytical solution based on Double
Water-filling presents a very lightweight solution for dis-
tance estimation: it is up to 300 times faster than the
numerical approach. More importantly, the optimal so-
lution through Water-filling is not computationally bur-
dening: competing approaches require 1-2 msec for com-
putation, whereas the Water-filling approach takes up
to 6 msec. The small additional time is attributed to
the fact that the algorithm distributes the currently re-
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Figure 9: We depict the runtime for all approaches for computing the upper/lower bounds on the distance given
a compressed representation with different number of coefficients. The optimal ‘double-waterfilling’ approach can
be more than 300 times faster than the numerical approach.

maining energy over two-three iterations, thus incurring
only minimal overhead. The numerical solution runs for
more than 1 second and is considered impractical for
large mining tasks.

10 Conclusions

In this work, we have presented an optimization ap-
proach for obtaining tight lower/upper bounds on the
L2 distance between objects that are compressed using
a (potentially) different set of high-energy orthonormal
coefficients. This problem has applications in a wide
range of data management scenarios involving com-
pression of sequential or high-dimensional data either
for storage or transmission purposes with subsequent
distance-based mining operations on the compressed do-
main. We have posed the problem as a convex optimiza-
tion problem and have studied the properties of optimal
solutions based on the KKT conditions. The proposed
methodology is highly efficient, in that it requires only
few iterations for termination and achieves significant
speed-up over a numerical solution.

A wide gamut of applications currently challenged
by storing and processing of large amounts of data can
benefit from the outcome of this work. For example,
web search behavior has been known to be periodic
[23]; search engines aggregate and store such temporal
patterns, e.g., Google Trends [24], to drive focused
advertising campaigns. Other areas that deal with the
storage and mining of massive periodic datasets can
be found in: a) the profiling and latency estimation
on large graphs of web/network hosts [3], b) large
stream databases created for astronomical applications,
such as the Low Frequency Array (LOFAR [25]) or the
upcoming Square Kilometer Array telescope (SKA [26]).
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APPENDIX: PROOF OF THEOREM 7.1
For the first part, note that the problem (6.3) is a double
minimization problem over {zi}i∈p−

x
and {yi}i∈p−

q
. If we fix

one vector in the objective function of (6.3), then the optimal
solution with respect to the other one is given by the Water-
filling algorithm. In fact, if we consider the KKT conditions
(6.5) or the KKT conditions to (6.2), they correspond exactly
to (7.9). The Water-filling algorithm has the property that if
a = waterfill (b, ex, A), then bi > 0 implies ai > 0. Furthermore,
it has a monotonicity property in the sense that bi ≤ bj implies
ai ≤ aj . Assume that, at optimality, al1 < al2 for some
l1 ∈ P1, l2 ∈ P3; because bl1 ≥ B ≥ bl3 we can swap
these two values to decrease the objective function, which is a
contradiction. The exact same argument applies for {bl}, so
minl∈P1

al ≥ maxl∈P3
al, minl∈P2

bl ≥ maxl∈P3
bl.

For the second part, note that −∑i∈P3

√
zi
√

yi ≥
−
√

e′x
√

e′q . If e′xe′q > 0, then at optimality this is attained with

equality for the particular choice of {al, bl}l∈P3
. It follows that

all entries of the optimal solution {al, bl}l∈p−
x ∪p−

q
are strictly pos-

itive, hence (6.5d) implies that

ai =
bi

λ + αi
, i ∈ P1(A-1a)

bi =
ai

µ + βi
, i ∈ P2(A-1b)

ai = (µ + βi)bi, i ∈ P3(A-1c)

bi = (λ + αi)ai, i ∈ P3

For the particular solution with all entries in P3 equal
(

al =
√

e′x/|P3|, bl =
√

e′q/|P3|
)

, (7.10a) is an immediate appli-

cation of A-1.c. The optimal entries {al}l∈P1
, {bl}l∈P2

are pro-
vided by Water-filling with available energies ex − e′x, eq − e′q ,

respectively, so (7.11) immediately follow.
For the third part, note that the cases that either e′x =

0, e′q > 0 or e′x > 0, e′q = 0 are excluded at optimality by the

first part, cf. (7.9).

For the last part, note that when e′x = e′q = 0, equivalently

al = bl = 0 for l ∈ P3, it is not possible to take derivatives

with respect to any coefficient in P3, so the last two equations of

(6.5) do not hold. In that case, we need to perform a standard

perturbation analysis. Let ε := {εl}l∈P1∪P2
be a sufficiently small

positive vector. As the constraint set of (6.3) is linear in zi, yi, any

feasible direction (of potential decrease of the objective function)

is of the form zi ← zi−εi, i ∈ P1, yi ← yi−εi, i ∈ P2, and zi, yi ≥
0, i ∈ P3 such that

∑

i∈P3
zi =

∑

i∈P1
εi,
∑

i∈P3
yi =

∑

i∈P2
εi.

The change in the objective function is then equal to (modulo an

o(||ε||2) term)

g(ε) ≈ 1

2

∑

i∈P1

bi√
zi

εi +
1

2

∑

i∈P2

ai√
y

i

εi −
∑

i∈P3

√
zi
√

yi

(A-2)

≥ 1

2

∑

i∈P1

bi√
zi

εi +
1

2

∑

i∈P2

ai√
y

i

εi −
√

∑

i∈P1

εi

√

∑

i∈P2

εi

≥ 1

2
min
i∈P1

bi√
zi

ε1 +
1

2
min
i∈P2

ai√
y

i

ε2 −
√

ε1ε2

where the first inequality follows from an application of Cauchy-

Schwartz inequality to the last term, and in the second one we

have defined εj =
∑

i∈Pj
εi, i = 1, 2. Let us define ε :=

√

ε1/ε2.

From the last expression, it suffices to test for any i ∈ P1, j ∈ P2:

g(ε1, ε2) =
1

2

bi√
zi

ε1 +
1

2

aj√
y

j

ε2 −
√

ε1
√

ε2 =
1

2

√
ε1
√

ε2g1(ε)

(A-3)

g1(ε) :=
bi√
zi

ε +
aj√
y

j

1

ε
− 2 ≥ 1

ε
g2(ε)

g2(ε) :=
bi

A
ε2 − 2ε +

ai

B

where the inequality above follows from the fact that
√

zi ≤ A, i ∈
P1 and

√
yi ≤ B, i ∈ P2. Note that h(ε) is a quadratic with a non-

positive discriminant ∆ := 4(1 − aibi
AB

) ≤ 0 since, by definition,
we have that B ≤ bi, i ∈ P1 and A ≤ ai, i ∈ P2. Therefore
g(ε1, ε2) ≥ 0 for any (ε1, ε2) both positive and sufficiently small,
which is a necessary condition for local optimality. By convexity,
the obtained vector pair (a,b) constitutes an optimal solution. �


