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Abstract sion and distance estimation on time-series data in general,

Most data mining operations include an integral search cofith specific focus in the efficient search of weblog time-
ponent at their core. For example, the performance of siggries. The temporal sequences that we consider capture the
ilarity search or classification based on Nearest Neighb8@aily demand of search queries/keywords.
is largely dependent on the underlying compression and
distance estimation techniques. As data repositories grow
larger, there is an explicit need not only for storing the data
in a compressed form, but also for facilitating mining operai—
tionsdirectly on the compressed data. Naturally, the quali@
or tightness of the estimated distances on the compressed:ob-
jects directly affects the search performance. - compag
We motivate our work within the setting of search en-
gine weblog repositories, where keyword demand trends
over time are represented and stored as compressed timesn period of 1 year Dec
series data. Search and analysis over such sequence data has
important applications for the search engines, including dis-
covery of important news events, keyword recommendation
and efficient keyword-to-advertisement mapping. E
We present new mechanisms for very fast search opeta-
tions over the compressed time-series data, with specific ‘go
cus on weblog data. An important contribution of this work
is the derivation of optimally tight bounds on the Euclidean
distance estimation between compressed sequences. Since
our methodology is applicable to sequential data in generfagiure 1. Query demand at a search engine for four keywords, over
the proposed technique is of independent interest. Additidf: period of one year.
ally, our distance estimation strategy is not tied to a specific
compression methodology, but can be applied on top of any Figure 1 depicts four such temporal sequences, where
orthonormal based compression technique (Fourier, Wave®ch point of the sequence describes the daily demand at
PCA, etc). The experimental results indicate that the new gp-Search engine for a particular keyword. The queries
timal bounds lead to a significant improvement in the pruf@ptured in our example ardBM, Compag, Fujitsuand
ing power of search compared to previous state-of-the-attémens. Each sequence contains 365 values, describing
in many cases eliminating more than 80% of the candid&¢ demand pattern for the specific keyword during the

fujitsu

siemens

search sequences. period of one year. In the past, similar datasets were
generally unavailable to the public, however, nowadays one
1 Introduction can search and download such data using websites like

1 s ;
Internet search engines collect vast amounts of data With.(rs(e)-ogI efrends °. This temporal representation of a query

. ) . - L%USGfUL because it visually captures important trends in the
gards to their usage, which can effectively assist in descrl|< - . Lo ; .

> . ) eg/word demand, but it also highlights important semantic
ing the evolution of user behavior and search preference

over time. The work presented here deals with the compres-
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Figure 2. 3 queries and other semantically related keywords, based on the similarity of demand patterns

characteristics. For the aforementioned example, one calated keywords to the advertisers. Secondly, seasonal
notice that the yearly demand for the keywdBiM is more query demand can help define in a more relevant way the
similar to the demand for the keywofdompagthan to the price of an advertisement by elevating the price during times
remaining keywords. This affinity in the demand trendsf greater demand for the keyword. This paradigm is similar
clearly suggests a semantic relation between the spedifiche pricing of the TV or radio advertisements, where
keywords. Generally speaking, as previous studies ndfgime-time’ commercials are valued more highly than the
“user behavior is deeply related to search keyword[s]” [Iemaining time-slots.

One can distill this behavior, which can prove beneficial in a

variety of applications: A common denominator in all of the above applications

(1) Search engine optimizatiortidnderstanding the se-is a set of operations that allow for the effective storage and
mantic similarity between keywords can assist in construcetrieval of the weblog data. Given the excessive amount of
ing more accurate keyword taxonomies and achieving betllected data, there is a pragmatic need for effective data
ter clustering of keywords [2]. This can serve in providingpopmpression. Popular search engines like Google, MSN and
better search results and ultimately help understand the tvabhoo! have data retention periods that lie in the range
relationship between web pages. A number of features ¢amtween 18-30 monthd However, data compression on
assist in this process, such as repetition in the search belitavewn has little to offer if it cannot be combined with a
ior [3], something that is easily conveyed by the temporfast search mechanism. This mechanism ideally should be
representation of the query demand. tailored to function over the compressed data.

(2) Keyword recommendatiofiRelated queries are man-  Since the weblog data exhibit distinct patterns and peri-
ifested as similar demand patterns. A search engine canaicities, they can be effectively compressed using orthonor-
ploit this characteristic for offering a “maybe you would alsmal transforms (such as Fourier, wavelets, etc) that effec-
be interested in this” functionality. As an illustrative extively capture the energy content of the sequence in just a
ample, Figure 2(a) shows some of the queries with simifew components. We will retain the components with the
demand patterns to the keyword ‘cinemas’. All the resuligghest energy, in order to accurately and concisely describe
are highly interpretable and include queries suchrasvie the inherent data variability. While this provides an excel-
guide’, ‘hollywood.com’and‘roger ebert'. lent compression technique, comparison between the com-

(3) Better spelling correction:No dictionary or ontol- pressed sequences is difficult since they are described by a
ogy can cover the wide range of keywords that appear @wossibly) diverse set of coefficients. In this work we present
the web. However, relationships between keywords cantbehniques that overcome this obstacle. A major contribution
deduced by the systematic study of the query logs [4]. FigFthis work is a technique for calculating ttegtimal dis-
ure 2(b) illustrates an instance of such an example, for ta@ce bounds that can be derived using the aforementioned
query ‘florida’ and the misspelled keywotfiordia’, which compressed representations. The algorithm is based on solid
exhibits an almost identical demand pattern. optimization principles and offers a significant boost in the

(4) Identification of news eventRQuery logs can help search performance compared to the current state-of-the-art.
understand and predict behavioral patterns [5]. Importdrte technique that we propose here is also of independent in-
events usually manifest themselves as bursts in the quiemest for general sequence data and is applicable using any
demand [6, 7]. News travel fast, and web queries travel evathonormal data transformation.
faster. By monitoring increasing demands in a query, search
engines can accurately pinpoint developing news events.

(5) Advertising impact:The financial aspect of search
engines is materialized by the carefully selected matching
of keywords to advertisements. Semantic clustering of

queries can, first, assist the search engine in recommendingit t p: // googl ebl og. bl ogspot . cont 2007/ 06/
how | ong- shoul d- googl e- renenber. ht m
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2 Related Work Generally speaking, search operations can be quite

Previous work considered various applications of temporg®stly. especially in cases where the cardinality of the
sequences on weblogs. [8] examines the discovery of cai@pbase sequences is quite extensive and the sequence
relationships across query logs by deploying an event caud@lgth .is also_sqbstantial (both statements are true for our
ity test. [9], [10] study similarity search and clustering jgcenario). This is observed, because sequences need to be
query data based on metrics such as correlation and perl&§ieved from disk in order to be compared to the query
icity. While the above utilize linear metrics to quantify thé\n effective way to mitigate this cost, is to create a smaller,
similarity, [5] examines the use of non-linear metrics such 88Mpressed representation of the sequences, which will be
Time-Warping. Finally, in [11] the authors examine a sinised asan initial pre—filter!ng step. Therefore, each sequence
ilar application of search on temporal logs, but using cIich”-(Z)' will be transformed into some condensed representa-
through data. However, none of the above work examirfi@ X . Essentially, one is employingraultilevelfilter-
how to tailor search based on compressed representatiorl§@fmechanism. When examining the compressed sequences
the weblogs. Our work, in that sense, is complementary)&) we obviously cannot derive the exact distance between
all the above approaches, by allowing them to scale upt@ dueryq and any sequence”) in the database. Under-
even larger dataset sizes. estimates and over-estimates of the distance will be calcu-
In the data-mining community, search on time-serié&ed, which in the literature are also knowraser andup-
under the Euclidean metric has been studied extensivff boundsn the distance function. Using these bounds, a
[12, 13, 14] but, typically, compression using the first Fourigkperset of th&-NN answers will be returned, which will be
or wavelets are considered. [7] studies the use of dive¥&sified against the uncompressed disk-resident sequences.
sets of coefficients, but this is the first work that offers these will be fetched and compared with the query, so that
tightest possibldower/upper bounds. In the experimentdh€ exact distances can be computed. This methodology is
section we offer a thorough performance comparison of H&Y widely used in the data mining time-series field and it
approach across the most predominant methodologies inithé€ methodology also used in this work. The above steps
time-series literature. are summarized in Fig. 3.

3 Searching temporal log data simpified Answer original Final

Superset DB Answer
We consider a databage3 that stores the temporal weblog —— set
sequences”, i = 1...M. The general problem that we »
examine can be abstracted as follows: A user is interest .
in finding thek most similar sequences to a given query s orlginal
quencey, under a certain distance meticThis operation is
also known as-Nearest-Neighbor (NN) search. Itis a cor
function in database search and also a fundamental operation .
in many data-mining and machine-learning algorithms, in- P et
cluding classification (NN-classifier), clustering, and so on. keyword
Therefore, the provision of such functionality is important
for any system that attempts to analyze the data or make use-
ful deductions. The distance functianthat we consider in Figure 3. General framework for speeding up Nearest-Neighbor
this work is the Euclidean distance. More flexible measuré&garch operations
such as time-invariant distances [15] (essentially a euclidean
distance on the periodogram) could also be used with little
to no modifications of our main algorithm. However, foB.1 Use of upper and lower bounds.Lower/upper
ease of exposition here we focus on the Euclidean distaboeinds on the distance function serve three purposes: (1)
3, which is also the distance measure of preference in mEiminate from examination candidate sequences that are
of the related work [9, 10]. provably worse than the current best match during the search
In Figure 2 we plot some of the nearest neighbors ofpBocedure; (2) dictate a search order of the disk-resident se-
queries; ‘cinemas’, ‘florida’ and ‘citigroup’. We observe thajuences, so that more promising candidates are examined
the results have a high semantic affinity with the posed qudfsst, hence providing at an early stage of the search a good
For example, the query ‘citigroup’ (Fig. 2(c)) returns otherandidate match. This will help eliminate subsequent dis-
financial or insurance companies. tance sequences from examination; (3) provide guarantees
that the initial data filtering using the compressed data will
" 3Note that correlation is also an instance of Euclidean distance B&tUrN the same outcome as when scanning sequentially the
properly normalized sequences. original, uncompressed data.

A =
i

keyword 1
keyword 2
keyword 3
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Consider that we are seeking the 1-NN match of tiiee underlying components/bases, and describe (compress)
queryq. By swiftly scanning the compressed representatiotige data using only those few components.
lower and upper bounds af against all sequences in the

database can be derived. We extract the MinNiMuM UL cscto  cozat, cosfisrs  ogh mmiscto oo 195, contors . on 154, conioss
boundsU B,,,;, and all sequences that have lower bou([] ‘ L ‘ ‘
greater thai/ B,,,;,, can be safely discarded, since obvious| ‘ \ i .l / W
a better match can be found (in the form of the sequel 5
with upper bound equal {0 B,,,;,,). Next, the uncompresset- Query = Sking _ _
sequences are retrieved from disk in the order suggeste‘e:P AAsz, coeffs=10 eipcﬁa. coetis=s o ZQY?.hcegeﬁs:1o Zgu;;e.zt.«éféf?gfgs) Feozugsra(b coetecs
the lower bounds (LB’s), since sequences with smaller LI
are more likely to be closer to the queryThe true distance|  { \J' m hds M | M\wﬂ A \W A

” 1 1

of each sequence to the query is evaluated and the best-s ' '
match is potentially updated. Once the LB of the currentIFy _  vari . hni
retrieved sequence is greater than the (true) distance ofv\t)jére 4 iﬂmpar'son.o various compression techniques on query
. \ 0ogs. e apprOX|mat|on error e Is very low when using the
best-so-far match, then the search can be terminated, Sigfer coefficients with the highest energy.
all the remaining sequences are guaranteed to have greater
distance than the best-so-far candidate sequence. Figure 4 depicts that much of the data variability is re-
In the general case, where one is searching for thetiined even when highly compressing the data. We utilize
Nearest-Neighbors (k >1), the only change introduced intwo query examples and depict their approximation under
the above process is the introduction of a priority queue thakious compression techniques, such as Piecewise Aggre-
holds thek best results, and the algorithm prunes the seaigdte Approximation (PAA) [18], Adaptive Piecewise Con-
space based on the distance of khh best-so-far match.  stant Approximation (APCA) [19] (high energy Haar coef-
Many optimized methodologies can be built upon tHtients), Chybechev Polynomials [20], first Fourier coeffi-
above procedure to further reduce the search space (e.gctégts [12] and high energy Fourier coefficients ([7]). We
creation of an index on the compressed features). Howewtsserve, that the sequence reconstruction eri@generally
the steps that we described are rudimentary in the majotyer when using techniques that utilize the highest energy
of search and indexing techniques [16, 17]. Additionallgpefficients. This result is not surprising given the observed
the aforementioned search procedure constitutes a bias-fiegracteristics of the weblog data. The choice of which
approach to evaluating the search performance of a teghnsform to use is not crucial to our technique. For the re-
nigue, since it does not depend on any implementation @eainder of the paper (and for the experiments), we assume
tails. We utilize such a search procedure in the experimehat the Fourier transform will be utilized for compressing
tal section, in order to provide an unbiased performance g data, since this scenario corresponds to the most elabo-
timator between various lower/upper bounding techniqueste case, because the Fourier coefficients are complex num-
since it does not depend on the inherent implementation, bets (capturing both magnitude and phase). However, any-
merely relies on the tightness of the derived bounds. thing that we describe henceforth is applicableamy or-
Obviously, techniques that provide tighter bounds withonormal transform without modification.
be able to offer better pruning power and enhanced search Initially, each weblog sequence z =
performance. Later on, we will provide an algorithm thatzg, zo,..., 251} will be represented in the trans-
computes théightest possibléower and upper bounds, wherformed domain by a vectak. In the case of the Fourier
utilizing the high-energy coefficients of weblog (and otheransform X is:
temporal) sequences. In the upcoming section we describe

. . . . N-1
how this compression is achieved. X(fopw) = 1N Z s(m)e= 2N o1 N -1
n=0

Query = Greece

3.2 Compressing weblogsQuery demand patterns do not
exhibit a random behavior; rather, they have inherent, mean- Each compressed sequernewill be described by a set
ingful and interpretable trends. Looking, for example, af c coefficients that hold the largest energy. The remaining
the demand for the quer\Compaq’ in Fig. 1, there are (low energy) coefficients can be discarded. The cardinality
underlying low frequency components which describe tioé retained coefficients can either be a fixed number per
long-term seasonal changes, in addition to high frequersgquence (if there are specific space constraints that need to
components that correspond to the more short-term trebésadhered to), or it can be as many so f§atof the original

(e.g. weekly demand) and news events (e.g. bursts). Gigeguence energy is retained. Notice that for each sequence
these data characteristics, the weblog data can be very efieewill store a possibly diverse set of coefficients.

tively compressed using widely used orthonormal decompo- In order to record also some information about the
sitions (such Fourier, Wavelets, PCA, etc), that can identifyscarded coefficients, we will also retain the total energy
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of the discarded coefficients:x = ||.X~||?, whichis the to establish the lower-bound distance:

sum of squares of the omitted coefficients. This quantity

represents a measure of the error in the compressed sequent& ™ — Q7 ||” + min X7 — QP <X -QJ*and
representation. This additional information we will allow us 9 i L2 _ 9

to provide a tighter bound on the distance approximation. IX —@Ql” < | X7 -7 JrH}(EEX”X - QI

Notation: The vector describing the positions of the high- Since X* and Q* are known, we need to solve the
energy coefficients ifX is denoted ag™*, while the positions following optimization problems:

of the remaining ones as™ (thatisp™,p~ C [1,..., N]). B o

So, what we need to store is the vecidfp+) or equivalently (3-2) max || X~ — Q7| such that

X™T. In order to simplify notation, ifQ is a search query (3.3) X% = e

in the transformed domain over all sequencé$), then X
Q(p™*) (or Q™) describes a sequence holding the equivaléﬁt4) X, || < minPower,
coefficients as the vectdf (p™). Similarly, Q(p~) = Q™ is

the vector holding the analogous element@p~) = x—. and
Example: Suppose that a sequengein the database is(3-5) T}?_HHX_ — Q7 ||* such that
transformed using Fourier decomposition akid= {(1 + (3.6) 1X |2 = ex

2i), (2 + 2i), (1 +4), (5 + ¢)}. The magnitude vector oX

is: || X| = {2.23,2.82,1.41,5.09}, so if we retain the 2 (3.7) [ X; || < minPower,

high-energy coefficientyy™ = {2, 4}, then, for a sequence .

Q = {(2+2),(1+1),3+1),(1+2)} XpH) = whereX; is theith component ofX —.

{(2+20),(5+4)} andQ(pT) = {(1 +14), (1 + 2i)}. The algorithm that we provide igptimal, that is, the
bounds that we compute are the tightest possible to the

3.3 Searching compressed weblog€onsidering the Original distance, given thatof the high energy coefficients

above, we have all the elements for describing our probléf¢ stored. To the best of our knowledge, this is the

Setting_ Given an uncompressed querye need to find the first work that offers such bounds. FiI’St, we prOVide an

closest sequencesin the database based on the Euclidedfuition regarding our solution to the problem, initially on

distance (5-Norm). Parseval's theorem dictates that the Eg=dimensions and then ordimensions.

clidean distance is the same whether computed in the time or

in the frequency domain. The preservation of energy hotfis Optimal Distance Bounds

for any orthonormal transform (wavelets, PCA, etc), so tdel Algorithm Intuition on 2D. We demonstrate the op-

following derivations are applicable on all those data trarngmal solution with a simple example. For this example we

forms. The distance can be decomposed as follows: assume thatl and @ are 2-dimensional real vectors. We
first find the optimal upper bound and later the optimal lower
D(z,9)* = D(X,Q)* (Parseval) bound. For the optimal upper bound calculatip@,” — X * ||
3.1) — D(X*,Q%)? + D(X~,Q7)? is known and we want to find
= [XT-QFIP+IX” - Q7| (4.8) max || X~ — Q||
Since, X ~ is unknown, the exact value ¢ — Q|2 cannot
be calculated. However, the computation of the first part®fch thatex = /(X7)?+(X5)? and [|X; | <
the distance is trivial since we have all the required data. FainPower,i =1, 2.
the second part we are missing the tekim, the discarded Intuitively, given the query@—, the vector which will
coefficients. Because we have compressed each sequemdmize||Q~ — X ~||? should be on the opposite direction
X using the best coefficients, we know that the magnitude@—, i.e., X~ = —a@Q)~ for somex > 0, as seen in Figure

of each of the coefficients iX ~ is less than the smallest5(a). Let’s also plot on the same figure the two constraints
magnitude inX . We useninPower = || X,}. || to denote that we have:
the magnitude of the smallest coefficientin’.

We can estimate the range of values within which 1) Notice that the constraint on the total available energy
| X~ — Q~|? lies, by expressing it as an optimization prob=x geometrically translates into a circle on the 2D plane
lem, specifically as two optimization sub-problems. As (&igure 5(b)). Therefore, the unknown vect&r should
maximization problem when considering the upper-bouativays lie within this circle, otherwise the energy constraints
distance, and as a minimization problem when attemptingl be violated.
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d, dy d, d,

o @ JQ' | JQ'

€ e e

minPower minPower

/ d, d, d; d
X =-aQ" X X ‘ X !
R minPowe . minPower
Boundary condition on total energy: Boundary condition Final Position of X~
2 on each dimension:
d2+d?<é?
d; < minPower, d, < minPower
(a) (b) © (C))

Figure 5. lllustration of the intuition behind our algorithm on 2-dimensions.

2) The constraint on the coefficients &f —, requiring
that each cannot exceedinPower, translates into addi-
tional constraints indicated by the dotted vertical and h¢
izontal lines at positionminPower on the two dimen-
sions/axesd; andd, (Figure 5(c)).

// Q is uncompressed

// X is compressed + eX is the error
// of omitted components

//

The algorithm proceeds as follows; we begin to sce
X~ in the opposite direction of the know~ by increasing
@, SO0 as to maximize the distanf€®~ — X —||2. Now, one
of two things may happen. Either we hit on thén Power
boundary on one of the axes or we pass the circle indicat
the total energy (whichever is violated first). As indicate
in Figure 5(c), suppose that we encounter first the bound
condition on one of the axes, e.g., on a¥s Then we keep
the corresponding dimension fixed|gt5 || = minPower,
i.e. X = —minPower, and only scale the vectaX —
on the remaining dimensions until we use all the remaini
energy or until we encounter another boundary conditic
So, now we start increasing — along thed; dimension. We
can only scale it up to a certain point, because we are fa
with the total energy boundary (the circle). At that poin
the search stops because all conditions of the maximizat
problem have been satisfied.

In a similar fashion, if we want to find tHewer bound,
we have to solve:

e = O 00 <IN L L N =

— e —
00 N\ NER LW N —O O 001\ B WR—O\O 00~ N A WIN —O

violations = find(Xnew > minPower);

// iterate until no energy is left
while (lisempty(violations))

{

Xnew(violations) = minPower; // fix dimensions

remainingCoeff= find(Xnew < minPower);

delta = sqrt(eX - |Xnew| - |remainingCoeff|) *
(minPower"2))/sum(directions(dest)."2));

Xnew(remainingCoeff) = delta * directions(remainingCoeff);

violations = find(Xnew > minPower);
}

LB distSq + sum((Q - Xnew)."2); // updated LB

U2 LILILILILY LI LI D DI B DI — —

UB distSq + sum((Q + Xnew)."2); // updated UB
: - -2
I}r(l,l_n HX Q H LB = sqrt(LB);
UB = sqrt(UB);

such thakex = || X~ | and||X; || < minPower, i = 1,2.
However, intuitively, given the quer§)—, the vector which Figure 6. An implementation of the solution to the optimization
will minimize ||Q~ — X ~||? should be on the same directiomroblem.
of @, i.e.,, X = a@~ for somea > 0. Since, the
boundary conditions are symmetric, if we proceed as the
maximization problem, we observe that the vectoX —* 4.2 Algorithm on n-Dimensions. We now show how the
yields the minimizer solution wher& —* is the solution to algorithm operates im-dimensions to allow better exposi-
the maximization problem. tion of our ideas. We depict the maximization problem.

We note, that we don't have to solve the optimization Figure 7(a) shows the known vectQ~ and the (un-
problem twice, but only once, since the two problems akaown yet) vectorX — which we attempt to estimate. On
identical. the right side of the Figure we also depict a bucket indicat-
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Figure 7. Various steps of the optimization (water-filling) algorithm in n-dimensional space. The unknown vector X — is rescaled (opposite
Q™) until all energy is used (a),(b). Coefficients exceeding the given constraints are fixed (c), and the process is repeated for the remaining
coefficients until all energy is used up (d),(e),(f).

ing the available energy that we can allocateXon. In the
previous example, we mentioned that vecXor needs to be
on the opposite direction of vect@}~, which translates to iy | X~ — Q7 ||?(or max || X~ — @ ||?) such that
creating a rescaled vector @f along that directionX ~ is X X
rescaled until all the energy is used up (Figure 7(b)). If cer- || X~ || = ex
tain coefficients exceed theinPower constraint, they are X7 || < Xnins k=1

. . . k — mns —
truncated/fixed tenin Power (Figure 7(c)). The energy that
is alloted for the coefficients that are now fixed is subtracte(?1 C .

: : Where the minimization problem discovers the lower bound

from the total available energy (Figure 7(c)). For the remain- L .
. L . and the maximization the upper bound. By expansion we get
ing coefficients we repeat the same process, as shown in Eig- .
ures 7(d),(e) and (f), until all the available energy is used,
or all the unknown coefficients are approximated (fixed). In
Figure 6 we provide a pseudocode of the algorithm thatwe || X~ —Q | =X ||? - 2X—- Q™ + ||Q~ |

just described.

.,m

_ _ . _ therefore we need to maximize (or minimize) only the un-
L_e_mma: T_he confl_ggratlon described abo_ve |svm'_ter- known middle inner product term, (X- Q). We will only
filling solution and it is guaranteed to provide the tighteglxplain how to solve the maximization problem, since the

possible distance bounds. minimization is identical. First, for compactness, we define
rr = || X, || ands, = [|Q || for k = 1,...,m and the an-
Proof (sketch): Our setting can be formulated as the followgles betweenX,” and @, asf,. Now, we can rewrite the
ing set of optimization problems: maximization as:
115 Copyright © by SIAM.

Unauthorized reproduction of this article is prohibited.



bias. In this way we are reverting the distance into a mea-
surement of correlation and can discover more flexible pat-

m
max e% — Z rieskcos(0x) + |Q7 | terns. Finally, the sequences were compressed using the high
T Tm 01 Om =1 energy Fourier coefficients.
such that
m Query: "deutsche bank"
2 2
> i =k
k=1
0<re<r,k=1,...,m.
by selecting eacld,, = =, cos(w) = —1, to provide the
largest difference, the maximization equation is formed as: KNN Results:
2 m.o —112 "goldman sachs", "london stock exchange", "bloomberg",
MaXr, .. vy €x + Zk:l TkSk + ”Q H "stock”, "jp morgan", "foreign exchange rates", "nasdaq"

To solve the new re-parametrized maximization prob-

lem, we form the corresponding Lagrangian. Query: "usps.com”
L()\7/817 cee 7ﬁ’m) =
(X + D mesk + QI + Ak =D _ri) + Y Belr — i),
k=1 =1 k=1
where 5, > 0, k = 1,...,m. Taking the derivatives KN Results:
of the Lagrangian with respect to unknown variablas, "united states postal service", "us post office", "ups”,
Be, T, Vields the following Kuhn-Tucker conditions, for LaiCiiE e e S Aol S5
k=1,....m
Figure 8. kNN search results on the compressed weblog repositories
(49) Sk — 2>\7'k — ﬂk = 07
(4.10) Br(r—ry) =0, Before evaluating any performance aspects of our ap-
m proach, we depict some of the Nearest-Neighbor (NN)
(4.11) dori=ek matches that resulted from the search procedure for various
k=1 gueries. Due to space restrictions, in Fig. 8 we illustrate NN-
_ matches for only 2 queriesdeutsche bank, andsps.com.
wheref, > 0, k = 1,...,m. Observe that Equation (4.9\we can observe that the returned matches hold a seman-
can also be written as, = 5% k=1,...,m, i.e., each affinity to the posed query. For example, the outcome

ry is directly proportional t, except a bias terftl. There- of the querydeutsche bankesulted in keywords relating to
fore, the unknown vectak ~ needs to be a rescaled versiofinancial companies and stocks. In general, search on the
of the known vecto)™, which directly corresponds to thegery logs returns highly interpretable and useful matches,

solution provided by our main algorithm. Hence, the pr@pmething that was also attested in other relevant publica-
posed solution satisfies the necessary Kuhn-Tucker congins [9, 5, 7, 15].

tions, and yields the desired optimal minimizer/maximizer

solution. 5.1 Convergence RateThe proposed water-filling algo-
) rithm iteratively rescales subsets of the unknown coeffi-
S Experiments cients, in order to utilize the known total signal energy. A

We evaluate various parameters of our algorithm; the canumber of iterations are required until convergence. Here,
vergence rate, the tightness of the estimated bounds, andtbeempirically demonstrate that the algorithm reaches the
additional pruning power that is achieved when using tkelution in very few iterations (typicall to 3), therefore
presented optimal algorithm. As our testbed we use seapehformance of the algorithm is not adversely impacted. The
engine logs spanning a period &fyears (3x 365 points experiment is conducted by computih@0 distance calcu-

per sequence), which we trim down 1624 points in order lations (lower and upper bounds) from a pool of randomly
to simplify calculations and exposition of ideas. The anaelected query logs. We repeat the experiment for various
lyzed data were gathered from a major search engine. Toepressed representations, retaining oo 64 coeffi-
sequences were studentized (mean value was subtracteccamds per sequence, or in other words for compression rates
sequences normalized by the std), so as to remove any sofatlé:f—8 to % The histograms of the number of iterations
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are depicted in Figure 9. We observe that the algorithm con- approach, this technique exploits the coefficients with

verges very fast, typically il to 4 iterations, with the ma- the highest energy plus the approximation error in order
jority of the cases being — 3 iterations. to bound the distance [7].
# Coefficients = 8 # Coefficients = 16 # Coefficients = 24 # Coefficients = 32 We Compare the dIStance bounds returned by these a'p_

proaches and we juxtapose them with the bounds returned
by our methodology which utilizes the highest energy coef-
ficients in conjunction with the optimal distance estimation.
However, in order to compare all these approaches we need
to properly allocate the storage space for each approach, so
as not to favor any of the competing techniques. This is the
topic of the next section.
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V¥ ofteratons "7 7 " adifferent amount of storage space. We need to compare all
Figure 9. Number of iterations for convergence on the optimization approaches under the same memory/space requirements.
algorithm. The algorithm converges very fast, typically in 2 — 3 The storage of the firgtFourier coefficients requirex:
iterations. doubles (o2c x 8 bytes). However, when utilizing thebest

Notice, that most search operations are 1/0 bound,
the small additional cost that our algorithm incurs is on
CPU-based. However, as we will show, our algorith
achieves much tighter distance bounds which ultimate
leads to a great reduction on the uncompressed sequen
that are fetched from the disk.

itions in the original DFT vector. That is, the compressed
%presentation with thelargest coefficients is stored as pairs
[position-coefficient].
Y For our experiments, the sequences are composed of
%2 points, which means that we need to store 512 posi-
tions, if we consider the symmetric property of the Fourier

coefficients. 9 bits would be sufficient to describe any of the

5.2 Bound Tightness.Here, we undertake a systematlg o icjent positions, however, since on disk we can write

comparison and evalua_te the tightnes_s of our bpunds ag%ﬁy multiples of bytes, recording each position requires 2
previously proposed distance bounding technigues, wh '}es. Therefore, each approach that utilizes the best co-

have appr)]eartc,;d tm the data mln!?r? Ilte.rature. The straw cients allocated6 + 2 bytes per coefficient. In other
approaches that we compare with are- words, if an approach storing the first coefficients uses-

1. First Coefficients: Techniques that compute boundgfficients, then our method will us6¢/18| = |¢/1.125]
on the distance using the first coefficients, inherenfipefficients.
make the assumption that the underlying signal con- g—=
tai . iiv low f t h as th First Coeffs st Coeffs dd
amf pmr?a” yr ow regléengyrcsvmro?e? i,zsu%daRS p el First Coeffs + error | GIEiE@0Sii=ploisioe
approaches proposed by Agrawal et al.[12] a Bl Best Coeffs + error ¢/ 1.125] Best Coeffs + Error
et al.[13]. These approaches perform well on random Onti 5 2

. . ptimal ¢/ 1.125] Best Coeffs + Error

walk signals, such as stock market data, but in general - -
do not adapt well for generic signals. Additionally, Suctuble 1. Requirements for usage of same storage for each approach
approaches only estimate lower bounds on the distance
function, therefore in general cannot match the prun-

ing performance that the combination of lower/upper For some distance measures we also use one additional
bounds can achieve. double to record the error (sum of squares of the remaining

2. First Coefficients + error: This approach augmentscoefficients). For the measures that don’t use the approxi-

the aforementioned methodoloay by recording also tmeation error vye need to allqcate one qd_ditional number and
9y by 9 e choose this to be the middle coefficient of the full DFT

reconstruction error (or remaining energy of the omi S ) )
ted coefficients), which improves upon the previo ector, which is a real number (since we have real data with
bounds. This work, presented by Wang et al.[14] a _r_1gths power of two). If in some cases the middle coef-
ditionally utilizes upper bounds, which the previous a jclent ha_ppens to be one of thebest ones, then these se-
proaches did not consider guences just use 1 less double than all other approaches. The
' following table summarizes how the same amount of space is
3. Best Coefficients + error: Similar to the previous allocated for each compressed sequence of every approach.

coEfficients for each sequence, we also need to store their
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Memory = 2*(8)+1 doubles Memory = 2*(16)+1 doubles Memory = 2*(24)+1 doubles Memory = 2%(32)+1 doubles

LB-Opt improvement = 4.7612% LB-Opt improvement = 8.8507% LB-Opt improvement = 8.6044% LB-Opt improvement = 9.3534%
UB-Opt Improvement = 8.7154% UB-Opt Improvement = 11.0455% UB-Opt Improvement = 12.1786% UB-Opt Improvement = 13.1985%
UB-Optimal 1.40 1.34 1.30 1.28
UB-Best Coeffs + error 141 1.35 132 1.29
UB-First Coeffs + error 1.54 1.50 1.48 1.47
LBOptimal [—10.57 —/0.65 0.7 /073
LB-Best Coeffs + error [10.53 — XA I— 0 X<T¢ —/0.70
LB-First Coeffs + error [—"10.55 //70.60 —/0.64 /10.66
LB -First Coeffs [—"10.52 —/0.57 /061 /064
Full Euclidean 1.00 1.00 1.00 1.00
0 1 2 0 1 2 0 1 2 0 1 2
Relative Distance Relative Distance Relative Distance Relative Distance

Figure 10. Comparison of lower/upper bounds returned by various techniques, across different compression rates. The Euclidean distance
between the uncompressed sequences ('Full Euclidean’) is indicated as '1’ (one). Estimates closer to '1’, suggest better distance bounds.
We observe that the presented optimal algorithm exhibits the tightest possible bounds.

First Coeffs
I First Coeffs+Error
[ Best Coeffs+Error

Therefore, when in the following figures we mentior; s
space usage of [2*(32)+1] doubles, the number in parentize-

sis essentially denotes the coefficients used for the meth§c§§ S Optimel |
using the first coefficients (+ 1 for the middle coefficient of , ]
the error, respectively). For the same example, approacheg m L
using the best coefficients will use the 28 best coefficients ~ “©®* e por sequenca trdonlesy - 0O

but have the same space requirements. [ IFirst Coeffs

Optimal improvement over: | I First Coeffs+Error
I Best Coeffs+Error

t (%)

100

Results: We plot the lower and upper bounds derived b

each approach and we normalize the results against § e°
exact euclidean distance. Numbers closer to 1 indic@e50
tighter bounds. We observe that in all cases the optimal 25

algorithm returns the best distance estimates comparedgto o
. L 2%(8) +1 2%(16)+1 2%(24)+1 2%(32)+1
the other approaches, even though it uses fewer coefficiéhts Space per Sequence (in doubles)
than some of the _competlng metho_dOI_Og'es' On the t'HE}ure 11. Top: Ratio of uncompressed sequences retrieved from
of each graph of Figure 10 we also indicate how much thigk (smaller numbers are better). Bottom: Improvement of Optimal
optimal algorithm improves on the ‘First Coeffs + erroragainst all other approaches (higher numbers are better).
approach. The best improvement is achieved when using
32 coefficients and the improvement reaches approximately )
10% on the lower bounds ant% on the upper bounds. Asit Is an 1/O bound process. Figure .11 shows how many un-
we will demonstrate in the following section, this reductiofompressed sequences were retrieved for each search ap-

in the distance ambiguity can lead to very dramatic speedi@@ach, normalized by the total number of sequences. For

ment that is achieved by the optimal algorithm is also shown.

5.3 Pruning Power and Performance Improvement. When using [2*(32)+1] doubles per sequence we observe
For this experiment we assemble a large pool of query wWB€ largest improvement in performance; 80%, 50%, 30%
blogs consisting of 32000 temporal sequences. We pose §8@pared to the 3 other distance bounding methodologies.
random queries that don't have have exact matches in orfiBgrefore, we can achieve excellent performance compared
to offer more realistic performance metrics. We search 6 Previous state-of-the-art when utilizing the optimal dis-
the 1-Nearest-Neighbor of each query and we utilize bd@f1ce bounds.
Lower and Upper bounds. For the ‘First Coeffs’ approach [N conclusion, with these experiments we have seen that
we utilize only the lower-bounds, since no upper-bounds cii¢ Presented optimal distance estimation algorithm con-
be computed. verges fast, provides the tightest possible distance bounds,

We evaluate the performance of each technique badéd leads to significant benefits in the search performance.
on the search procedure presented in 3.1, which prunes the
search space and directs the search based on the lower/u@pdextending to other distance measures - Discussion
bounds derived from the compressed sequences. Ultimatélg, have seen so far the significant improvement in Eu-
we measure the amount of uncompressed sequences diide¢an distance estimation that can be accomplished when
each technique retrieved from disk. This essentially reflectdizing the proposed optimal distance bounding technique.
the most important bottleneck of a search performance, sifi¢ee Euclidean distance is probably the most prevalent of the
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Frequency Domain

sequence 1

dft . "
Euclidean distance

between magnitudes

gt

sequence 2

Figure 12. A Periodic Distance can discover pattern similarities under arbitrary time-shift. The Periodic Distance can be reverted into a
Euclidean computation of the magnitude components in the frequency domain

distance measures in the mining bibliography [21]. Here westances between a que€y and another sequenc as
illustrate briefly how our methodology can be applied onRTW;(Q, A). The computation of the tight bound consists
wider range of linear and even non-linear distance functiois forming the possible matching region (Minimum Bound-

We examine the applicability of the proposed techniqireg Envelope or MBE) and computing the distance between
under two distance functions; a periodic distance functitime resulting envelope and sequente Therefore, an in-
and the dynamic time warping (DTW). In the following secexpensive lower bound can be found by computing the eu-
tions we explain in more detail how our bounding techniqutidean distance between thig BE(Q) and any other se-
can be used in conjunction with the aforementioned distartpeenceA, or D(M BE;s(Q), A). This is shown in Figure
functions, allowing for an even tighter distance bound.  13.

The bounding envelope of the query and the data se-
6.1 Bounding the periodic distance measurePeriodic quences are rarely stored in their uncompressed format, but
distance measures such as the one presented in [15] tbay are approximated by some orthonormal transform. This
discover similar patterns under arbitrary time-shift. Peiis where is new bound comes into place, by allowing again
odic measures are very flexible, because they allow phathe-very tight computation between the compressed sequence
invariant matching, and have been used with great succ&sgiven any orthonormal compression technique) and the
for a multitude of difficult mining tasks, including the ro-MBE of the query.
tation invariant matching of shapes [22, 23]. They can be
used as an inexpensive substitute of DTW when speed is With the above examples we have only brushed upon
of essence. The periodic distance computes in its coréha surface of how the proposed optimal bound can be used
Euclidean distance in the frequency domain, therefore anirconjunction with various distance measures. Other dis-
bounding technique can be applied directly but in a trartance/similarity measures can also be expressed in a simi-
formed domain. Its computation is based on a Euclidean de- fashion and also similarly amenable for use under our
tance calculation just in the magnitude components of thhamework. Another similarity function could be for exam-
Fourier coefficients of a time-series, as shown in Figure Jfe the correlation between sequences, which can easily be
Since the technique that we proposed lower bounds the Expressed as a function of the Euclidean distance. Finally,
clidean distance it can be used unaltered, by applicationemen though we have shown that other linear and non-linear
the magnitude components of the recorded Fourier coeffistances can be reverted to a Euclidean distance computa-
cients. This will effectively compute the tightest bound otion, our technique can also be tailored to work undeaud:
the periodic distance, when the original sequences are caty-of linear functions, since these can be easily formulated
pressed using the high energy (Fourier or wavelet) coeffind solved under the same optimization umbrella.
cients.
7 Conclusions

6.2 Bounding the dynamic time warping. The Dynamic This work examined techniques that can boost the search
Time Warping (DTW) distance is a non-linear distanggsrformance on compressed time sequences, through intro-
function. However, recent work has shown that the timgction of optimally tight distance estimates. We examined
con.stramec.j version of t_he DTW can be bounded bY a 9§ applicability of our technique on temporal query weblogs
of linear distance functions [16], and as an extension B¥q we have shown that significant pruning in the search
our bounding technique. Let's assume that we denote ¥ifce can be achieved. This is the first work to present opti-
warping distance under constrained warping withitime maly tight lower and upper distance bounds, when working
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Figure 13. Time Warping distance and computation of lower bound using the Euclidean distance between the Bounding Envelope and any
other sequence
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