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Abstract

Most data mining operations include an integral search com-
ponent at their core. For example, the performance of sim-
ilarity search or classification based on Nearest Neighbors
is largely dependent on the underlying compression and
distance estimation techniques. As data repositories grow
larger, there is an explicit need not only for storing the data
in a compressed form, but also for facilitating mining opera-
tionsdirectly on the compressed data. Naturally, the quality
or tightness of the estimated distances on the compressed ob-
jects directly affects the search performance.

We motivate our work within the setting of search en-
gine weblog repositories, where keyword demand trends
over time are represented and stored as compressed time-
series data. Search and analysis over such sequence data has
important applications for the search engines, including dis-
covery of important news events, keyword recommendation
and efficient keyword-to-advertisement mapping.

We present new mechanisms for very fast search opera-
tions over the compressed time-series data, with specific fo-
cus on weblog data. An important contribution of this work
is the derivation of optimally tight bounds on the Euclidean
distance estimation between compressed sequences. Since
our methodology is applicable to sequential data in general,
the proposed technique is of independent interest. Addition-
ally, our distance estimation strategy is not tied to a specific
compression methodology, but can be applied on top of any
orthonormal based compression technique (Fourier, Wavelet,
PCA, etc). The experimental results indicate that the new op-
timal bounds lead to a significant improvement in the prun-
ing power of search compared to previous state-of-the-art,
in many cases eliminating more than 80% of the candidate
search sequences.

1 Introduction

Internet search engines collect vast amounts of data with re-
gards to their usage, which can effectively assist in describ-
ing the evolution of user behavior and search preferences
over time. The work presented here deals with the compres-

sion and distance estimation on time-series data in general,
with specific focus in the efficient search of weblog time-
series. The temporal sequences that we consider capture the
daily demand of search queries/keywords.
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Figure 1. Query demand at a search engine for four keywords, over
the period of one year.

Figure 1 depicts four such temporal sequences, where
each point of the sequence describes the daily demand at
a search engine for a particular keyword. The queries
captured in our example are:IBM, Compaq, Fujitsuand
Siemens. Each sequence contains 365 values, describing
the demand pattern for the specific keyword during the
period of one year. In the past, similar datasets were
generally unavailable to the public, however, nowadays one
can search and download such data using websites like
GoogleTrends 1. This temporal representation of a query
is useful, because it visually captures important trends in the
keyword demand, but it also highlights important semantic

1http://www.google.com/trends
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Figure 2. 3 queries and other semantically related keywords, based on the similarity of demand patterns

characteristics. For the aforementioned example, one can
notice that the yearly demand for the keywordIBM is more
similar to the demand for the keywordCompaqthan to the
remaining keywords. This affinity in the demand trends
clearly suggests a semantic relation between the specific
keywords. Generally speaking, as previous studies note:
“user behavior is deeply related to search keyword[s]” [1].
One can distill this behavior, which can prove beneficial in a
variety of applications:

(1) Search engine optimization:Understanding the se-
mantic similarity between keywords can assist in construct-
ing more accurate keyword taxonomies and achieving bet-
ter clustering of keywords [2]. This can serve in providing
better search results and ultimately help understand the true
relationship between web pages. A number of features can
assist in this process, such as repetition in the search behav-
ior [3], something that is easily conveyed by the temporal
representation of the query demand.

(2) Keyword recommendation:Related queries are man-
ifested as similar demand patterns. A search engine can ex-
ploit this characteristic for offering a “maybe you would also
be interested in this” functionality. As an illustrative ex-
ample, Figure 2(a) shows some of the queries with similar
demand patterns to the keyword ‘cinemas’. All the results
are highly interpretable and include queries such as‘movie
guide’, ‘hollywood.com’and‘roger ebert’.

(3) Better spelling correction:No dictionary or ontol-
ogy can cover the wide range of keywords that appear on
the web. However, relationships between keywords can be
deduced by the systematic study of the query logs [4]. Fig-
ure 2(b) illustrates an instance of such an example, for the
query ‘florida’ and the misspelled keyword‘flordia’, which
exhibits an almost identical demand pattern.

(4) Identification of news events:Query logs can help
understand and predict behavioral patterns [5]. Important
events usually manifest themselves as bursts in the query
demand [6, 7]. News travel fast, and web queries travel even
faster. By monitoring increasing demands in a query, search
engines can accurately pinpoint developing news events.

(5) Advertising impact:The financial aspect of search
engines is materialized by the carefully selected matching
of keywords to advertisements. Semantic clustering of
queries can, first, assist the search engine in recommending

related keywords to the advertisers. Secondly, seasonal
query demand can help define in a more relevant way the
price of an advertisement by elevating the price during times
of greater demand for the keyword. This paradigm is similar
to the pricing of the TV or radio advertisements, where
‘prime-time’ commercials are valued more highly than the
remaining time-slots.

A common denominator in all of the above applications
is a set of operations that allow for the effective storage and
retrieval of the weblog data. Given the excessive amount of
collected data, there is a pragmatic need for effective data
compression. Popular search engines like Google, MSN and
Yahoo! have data retention periods that lie in the range
between 18-30 months2. However, data compression on
its own has little to offer if it cannot be combined with a
fast search mechanism. This mechanism ideally should be
tailored to function over the compressed data.

Since the weblog data exhibit distinct patterns and peri-
odicities, they can be effectively compressed using orthonor-
mal transforms (such as Fourier, wavelets, etc) that effec-
tively capture the energy content of the sequence in just a
few components. We will retain the components with the
highest energy, in order to accurately and concisely describe
the inherent data variability. While this provides an excel-
lent compression technique, comparison between the com-
pressed sequences is difficult since they are described by a
(possibly) diverse set of coefficients. In this work we present
techniques that overcome this obstacle. A major contribution
of this work is a technique for calculating theoptimal dis-
tance bounds that can be derived using the aforementioned
compressed representations. The algorithm is based on solid
optimization principles and offers a significant boost in the
search performance compared to the current state-of-the-art.
The technique that we propose here is also of independent in-
terest for general sequence data and is applicable using any
orthonormal data transformation.

2http://googleblog.blogspot.com/2007/06/
how-long-should-google-remember.html
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2 Related Work

Previous work considered various applications of temporal
sequences on weblogs. [8] examines the discovery of causal
relationships across query logs by deploying an event causal-
ity test. [9], [10] study similarity search and clustering in
query data based on metrics such as correlation and period-
icity. While the above utilize linear metrics to quantify the
similarity, [5] examines the use of non-linear metrics such as
Time-Warping. Finally, in [11] the authors examine a sim-
ilar application of search on temporal logs, but using click-
through data. However, none of the above work examines
how to tailor search based on compressed representations of
the weblogs. Our work, in that sense, is complementary to
all the above approaches, by allowing them to scale up to
even larger dataset sizes.

In the data-mining community, search on time-series
under the Euclidean metric has been studied extensively
[12, 13, 14] but, typically, compression using the first Fourier
or wavelets are considered. [7] studies the use of diverse
sets of coefficients, but this is the first work that offers the
tightest possiblelower/upper bounds. In the experimental
section we offer a thorough performance comparison of our
approach across the most predominant methodologies in the
time-series literature.

3 Searching temporal log data

We consider a databaseDB that stores the temporal weblog
sequencesx(i), i = 1 . . . M . The general problem that we
examine can be abstracted as follows: A user is interested
in finding thek most similar sequences to a given query se-
quenceq, under a certain distance metricd. This operation is
also known ask-Nearest-Neighbor (NN) search. It is a core
function in database search and also a fundamental operation
in many data-mining and machine-learning algorithms, in-
cluding classification (NN-classifier), clustering, and so on.
Therefore, the provision of such functionality is important
for any system that attempts to analyze the data or make use-
ful deductions. The distance functiond that we consider in
this work is the Euclidean distance. More flexible measures,
such as time-invariant distances [15] (essentially a euclidean
distance on the periodogram) could also be used with little
to no modifications of our main algorithm. However, for
ease of exposition here we focus on the Euclidean distance
3, which is also the distance measure of preference in most
of the related work [9, 10].

In Figure 2 we plot some of the nearest neighbors of 3
queries; ‘cinemas’, ‘florida’ and ‘citigroup’. We observe that
the results have a high semantic affinity with the posed query.
For example, the query ‘citigroup’ (Fig. 2(c)) returns other
financial or insurance companies.

3Note that correlation is also an instance of Euclidean distance on
properly normalized sequences.

Generally speaking, search operations can be quite
costly, especially in cases where the cardinality of the
database sequences is quite extensive and the sequence
length is also substantial (both statements are true for our
scenario). This is observed, because sequences need to be
retrieved from disk in order to be compared to the queryq.
An effective way to mitigate this cost, is to create a smaller,
compressed representation of the sequences, which will be
used as an initial pre-filtering step. Therefore, each sequence
x(i), will be transformed into some condensed representa-
tion X(i). Essentially, one is employing amultilevelfilter-
ing mechanism. When examining the compressed sequences
X, we obviously cannot derive the exact distance between
the queryq and any sequencex(i) in the database. Under-
estimates and over-estimates of the distance will be calcu-
lated, which in the literature are also known aslowerandup-
per boundson the distance function. Using these bounds, a
superset of thek-NN answers will be returned, which will be
verified against the uncompressed disk-resident sequences.
These will be fetched and compared with the query, so that
the exact distances can be computed. This methodology is
very widely used in the data mining time-series field and it
is the methodology also used in this work. The above steps
are summarized in Fig. 3.
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Figure 3. General framework for speeding up Nearest-Neighbor
search operations

3.1 Use of upper and lower bounds.Lower/upper
bounds on the distance function serve three purposes: (1)
Eliminate from examination candidate sequences that are
provably worse than the current best match during the search
procedure; (2) dictate a search order of the disk-resident se-
quences, so that more promising candidates are examined
first, hence providing at an early stage of the search a good
candidate match. This will help eliminate subsequent dis-
tance sequences from examination; (3) provide guarantees
that the initial data filtering using the compressed data will
return the same outcome as when scanning sequentially the
original, uncompressed data.
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Consider that we are seeking the 1-NN match of the
queryq. By swiftly scanning the compressed representations
lower and upper bounds ofq against all sequences in the
database can be derived. We extract the minimum upper
boundsUBmin and all sequences that have lower bound
greater thanUBmin can be safely discarded, since obviously
a better match can be found (in the form of the sequence
with upper bound equal toUBmin). Next, the uncompressed
sequences are retrieved from disk in the order suggested by
the lower bounds (LB’s), since sequences with smaller LB’s
are more likely to be closer to the queryq. The true distance
of each sequence to the query is evaluated and the best-so-far
match is potentially updated. Once the LB of the currently
retrieved sequence is greater than the (true) distance of the
best-so-far match, then the search can be terminated, since
all the remaining sequences are guaranteed to have greater
distance than the best-so-far candidate sequence.

In the general case, where one is searching for the k-
Nearest-Neighbors (k >1), the only change introduced in
the above process is the introduction of a priority queue that
holds thek best results, and the algorithm prunes the search
space based on the distance of thek-th best-so-far match.

Many optimized methodologies can be built upon the
above procedure to further reduce the search space (e.g. the
creation of an index on the compressed features). However,
the steps that we described are rudimentary in the majority
of search and indexing techniques [16, 17]. Additionally,
the aforementioned search procedure constitutes a bias-free
approach to evaluating the search performance of a tech-
nique, since it does not depend on any implementation de-
tails. We utilize such a search procedure in the experimen-
tal section, in order to provide an unbiased performance es-
timator between various lower/upper bounding techniques,
since it does not depend on the inherent implementation, but
merely relies on the tightness of the derived bounds.

Obviously, techniques that provide tighter bounds will
be able to offer better pruning power and enhanced search
performance. Later on, we will provide an algorithm that
computes thetightest possiblelower and upper bounds, when
utilizing the high-energy coefficients of weblog (and other
temporal) sequences. In the upcoming section we describe
how this compression is achieved.

3.2 Compressing weblogs.Query demand patterns do not
exhibit a random behavior; rather, they have inherent, mean-
ingful and interpretable trends. Looking, for example, at
the demand for the query‘Compaq’ in Fig. 1, there are
underlying low frequency components which describe the
long-term seasonal changes, in addition to high frequency
components that correspond to the more short-term trends
(e.g. weekly demand) and news events (e.g. bursts). Given
these data characteristics, the weblog data can be very effec-
tively compressed using widely used orthonormal decompo-
sitions (such Fourier, Wavelets, PCA, etc), that can identify

the underlying components/bases, and describe (compress)
the data using only those few components.

PAA                
 e= 22.5, coeffs=10

APCA              
 e= 23.1, coeffs=5

Query = Skiing

Chebyshev          
 e= 19.2, coeffs=10

Fourier (first coeffs) 
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Fourier (best coeffs) 
 e= 15.4, coeffs=5    
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Fourier (best coeffs) 
 e= 29.3, coeffs=5    

Figure 4. Comparison of various compression techniques on query
weblogs. The approximation error e is very low when using the
Fourier coefficients with the highest energy.

Figure 4 depicts that much of the data variability is re-
tained even when highly compressing the data. We utilize
two query examples and depict their approximation under
various compression techniques, such as Piecewise Aggre-
gate Approximation (PAA) [18], Adaptive Piecewise Con-
stant Approximation (APCA) [19] (high energy Haar coef-
ficients), Chybechev Polynomials [20], first Fourier coeffi-
cients [12] and high energy Fourier coefficients ([7]). We
observe, that the sequence reconstruction errore is generally
lower when using techniques that utilize the highest energy
coefficients. This result is not surprising given the observed
characteristics of the weblog data. The choice of which
transform to use is not crucial to our technique. For the re-
mainder of the paper (and for the experiments), we assume
that the Fourier transform will be utilized for compressing
the data, since this scenario corresponds to the most elabo-
rate case, because the Fourier coefficients are complex num-
bers (capturing both magnitude and phase). However, any-
thing that we describe henceforth is applicable onany or-
thonormal transform without modification.

Initially, each weblog sequence x =
{x0, x2, . . . , xN−1} will be represented in the trans-
formed domain by a vectorX. In the case of the Fourier
transform,X is:

X(fn/N ) =
1√
N

N−1
∑

n=0

x(n)e−j2πkn/N
, n = 0, 1 . . . N − 1

Each compressed sequenceX will be described by a set
of c coefficients that hold the largest energy. The remaining
(low energy) coefficients can be discarded. The cardinality
of retained coefficientsc can either be a fixed number per
sequence (if there are specific space constraints that need to
be adhered to), or it can be as many so thatp% of the original
sequence energy is retained. Notice that for each sequence
we will store a possibly diverse set of coefficients.

In order to record also some information about the
discarded coefficients, we will also retain the total energy
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of the discarded coefficients:eX = ‖X−‖2, which is the
sum of squares of the omitted coefficients. This quantity
represents a measure of the error in the compressed sequence
representation. This additional information we will allow us
to provide a tighter bound on the distance approximation.

Notation: The vector describing the positions of the high-
energy coefficients inX is denoted asp+, while the positions
of the remaining ones asp− (that isp+, p− ⊂ [1, . . . , N ]).
So, what we need to store is the vectorX(p+) or equivalently
X+. In order to simplify notation, ifQ is a search query
in the transformed domain over all sequencesX(i), then
Q(p+) (or Q+) describes a sequence holding the equivalent
coefficients as the vectorX(p+). Similarly,Q(p−) ≡ Q− is
the vector holding the analogous elements ofX(p−) ≡ X−.

Example: Suppose that a sequencex in the database is
transformed using Fourier decomposition andX = {(1 +
2i), (2 + 2i), (1 + i), (5 + i)}. The magnitude vector ofX
is: ‖X‖ = {2.23, 2.82, 1.41, 5.09}, so if we retain the 2
high-energy coefficients,p+ = {2, 4}, then, for a sequence
Q = {(2 + 2i), (1 + i), (3 + i), (1 + 2i)}, X(p+) =
{(2 + 2i), (5 + i)} andQ(p+) = {(1 + i), (1 + 2i)}.

3.3 Searching compressed weblogs.Considering the
above, we have all the elements for describing our problem
setting. Given an uncompressed queryq, we need to find the
closest sequencesx in the database based on the Euclidean
distance (L2-Norm). Parseval’s theorem dictates that the Eu-
clidean distance is the same whether computed in the time or
in the frequency domain. The preservation of energy holds
for any orthonormal transform (wavelets, PCA, etc), so the
following derivations are applicable on all those data trans-
forms. The distance can be decomposed as follows:

(3.1)

D(x, q)2 = D(X,Q)2 (Parseval)

= D(X+, Q+)2 + D(X−, Q−)2

= ‖X+ − Q+‖2 + ‖X− − Q−‖2

Since,X− is unknown, the exact value of‖X −Q‖2 cannot
be calculated. However, the computation of the first part of
the distance is trivial since we have all the required data. For
the second part we are missing the termX−, the discarded
coefficients. Because we have compressed each sequence
X using the best coefficients, we know that the magnitude
of each of the coefficients inX− is less than the smallest
magnitude inX+. We useminPower = ‖X+

min‖ to denote
the magnitude of the smallest coefficient inX+.

We can estimate the range of values within which
‖X− −Q−‖2 lies, by expressing it as an optimization prob-
lem, specifically as two optimization sub-problems. As a
maximization problem when considering the upper-bound
distance, and as a minimization problem when attempting

to establish the lower-bound distance:

‖X+ − Q+‖2 + min
X−

‖X− − Q−‖2 ≤ ‖X − Q‖2 and

‖X − Q‖2 ≤ ‖X+ − Q+‖2 + max
X−

‖X− − Q−‖2.

SinceX+ and Q+ are known, we need to solve the
following optimization problems:

max
X−

‖X− − Q−‖2 such that(3.2)

‖X−‖2 = eX(3.3)

‖X−

i ‖ ≤ minPower,(3.4)

and

min
X−

‖X− − Q−‖2 such that(3.5)

‖X−‖2 = eX(3.6)

‖X−

i ‖ ≤ minPower,(3.7)

whereX−

i is theith component ofX−.
The algorithm that we provide isoptimal, that is, the

bounds that we compute are the tightest possible to the
original distance, given thatp of the high energy coefficients
are stored. To the best of our knowledge, this is the
first work that offers such bounds. First, we provide an
intuition regarding our solution to the problem, initially on
2-dimensions and then onn-dimensions.

4 Optimal Distance Bounds

4.1 Algorithm Intuition on 2D. We demonstrate the op-
timal solution with a simple example. For this example we
assume that~X and ~Q are 2-dimensional real vectors. We
first find the optimal upper bound and later the optimal lower
bound. For the optimal upper bound calculation,‖Q+−X+‖
is known and we want to find

(4.8) max
X−

‖X− − Q−‖2

such that eX =
√

(X−

1 )2 + (X−

2 )2 and ‖X−

i ‖ ≤

minPower, i = 1, 2.
Intuitively, given the queryQ−, the vector which will

maximize‖Q− −X−‖2 should be on the opposite direction
of Q−, i.e.,X− = −αQ− for someα > 0, as seen in Figure
5(a). Let’s also plot on the same figure the two constraints
that we have:

1) Notice that the constraint on the total available energy
eX geometrically translates into a circle on the 2D plane
(Figure 5(b)). Therefore, the unknown vectorX− should
always lie within this circle, otherwise the energy constraints
will be violated.
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Figure 5. Illustration of the intuition behind our algorithm on 2-dimensions.

2) The constraint on the coefficients ofX−, requiring
that each cannot exceedminPower, translates into addi-
tional constraints indicated by the dotted vertical and hor-
izontal lines at positionminPower on the two dimen-
sions/axes,d1 andd2 (Figure 5(c)).

The algorithm proceeds as follows; we begin to scale
X− in the opposite direction of the knownQ− by increasing
α, so as to maximize the distance‖Q− − X−‖2. Now, one
of two things may happen. Either we hit on theminPower
boundary on one of the axes or we pass the circle indicating
the total energy (whichever is violated first). As indicated
in Figure 5(c), suppose that we encounter first the boundary
condition on one of the axes, e.g., on axisd2. Then we keep
the corresponding dimension fixed at‖X−

2 ‖ = minPower,
i.e. X−

2 = −minPower, and only scale the vectorX−

on the remaining dimensions until we use all the remaining
energy or until we encounter another boundary condition.
So, now we start increasingX− along thed1 dimension. We
can only scale it up to a certain point, because we are faced
with the total energy boundary (the circle). At that point,
the search stops because all conditions of the maximization
problem have been satisfied.

In a similar fashion, if we want to find thelower bound,
we have to solve:

min
X−

‖X− − Q−‖2

such thateX = ‖X−‖ and‖X−

i ‖ ≤ minPower, i = 1, 2.
However, intuitively, given the queryQ−, the vector which
will minimize ‖Q−−X−‖2 should be on the same direction
of Q−, i.e., X− = αQ− for someα > 0. Since, the
boundary conditions are symmetric, if we proceed as the
maximization problem, we observe that the vector−X−,∗

yields the minimizer solution whereX−,∗ is the solution to
the maximization problem.

We note, that we don’t have to solve the optimization
problem twice, but only once, since the two problems are
identical.

// Q is uncompressed
// X is compressed + eX is the error
// of omitted components
//
function [LB, UB] = optimal(Q, [X, eX])
{

p+ =  nd(X.coe!s); // best coe"cients of X
minPower = min(abs(X(p+)));

// distance of known coe"cients
distSq = sum( abs( X(p+) - Q(p+) ).ˆ2);

// distance from the remaining coe"cients
p- = setdi!([1:N], p+); // discarded coe"cients

eY = sum(abs([Q(p-)].ˆ2); // eX is given

directions = Q ./ norm(Q); // extract direction
Xnew = directions . * norm(X); // rescale it

violations =  nd(Xnew > minPower);

// iterate until no energy is left
while (˜isempty(violations))
{

Xnew(violations) = minPower; //  x dimensions

remainingCoe!=  nd(Xnew < minPower);
delta = sqrt(eX - |Xnew| - |remainingCoe!|) *

(minPowerˆ2))/sum(directions(dest).ˆ2));

Xnew(remainingCoe!) = delta * directions(remainingCoe!);

violations =  nd(Xnew > minPower);
}

LB = distSq + sum((Q - Xnew).ˆ2); // updated LB
UB = distSq + sum((Q + Xnew).ˆ2); // updated UB

LB = sqrt(LB);
UB = sqrt(UB);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 }

Figure 6. An implementation of the solution to the optimization
problem.

4.2 Algorithm on n-Dimensions. We now show how the
algorithm operates inn-dimensions to allow better exposi-
tion of our ideas. We depict the maximization problem.

Figure 7(a) shows the known vectorQ− and the (un-
known yet) vectorX− which we attempt to estimate. On
the right side of the Figure we also depict a bucket indicat-
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Figure 7. Various steps of the optimization (water-filling) algorithm in n-dimensional space. The unknown vector X− is rescaled (opposite
Q−) until all energy is used (a),(b). Coefficients exceeding the given constraints are fixed (c), and the process is repeated for the remaining
coefficients until all energy is used up (d),(e),(f).

ing the available energy that we can allocate onX−. In the
previous example, we mentioned that vectorX− needs to be
on the opposite direction of vectorQ−, which translates to
creating a rescaled vector ofQ− along that direction.X− is
rescaled until all the energy is used up (Figure 7(b)). If cer-
tain coefficients exceed theminPower constraint, they are
truncated/fixed tominPower (Figure 7(c)). The energy that
is alloted for the coefficients that are now fixed is subtracted
from the total available energy (Figure 7(c)). For the remain-
ing coefficients we repeat the same process, as shown in Fig-
ures 7(d),(e) and (f), until all the available energy is used,
or all the unknown coefficients are approximated (fixed). In
Figure 6 we provide a pseudocode of the algorithm that we
just described.

Lemma: The configuration described above is awater-
filling solution and it is guaranteed to provide the tightest
possible distance bounds.

Proof (sketch): Our setting can be formulated as the follow-
ing set of optimization problems:

min
X−

‖X− − Q−‖2(or max
X−

‖X− − Q−‖2) such that

‖X−‖ = eX

‖X−

k ‖ ≤ Xmin, k = 1, . . . ,m

where the minimization problem discovers the lower bound
and the maximization the upper bound. By expansion we get
that:

‖X− − Q−‖2 = ‖X−‖2 − 2X− · Q− + ‖Q−‖2

therefore we need to maximize (or minimize) only the un-
known middle inner product term, (X− · Q−). We will only
explain how to solve the maximization problem, since the
minimization is identical. First, for compactness, we define
rk = ‖X−

k ‖ andsk = ‖Q−

k ‖ for k = 1, . . . ,m and the an-
gles betweenX−

k andQ−

k asθk. Now, we can rewrite the
maximization as:
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max
r1,...,rm,θ1,...,θm

e
2

X −
m

∑

k=1

rkskcos(θk) + ‖Q−‖2

such that
m

∑

k=1

r
2

k = e
2

X

0 ≤ rk ≤ r, k = 1, . . . , m.

by selecting eachθk = π, cos(π) = −1, to provide the
largest difference, the maximization equation is formed as:

maxr1,...,rm
e2
X +

∑m

k=1 rksk + ‖Q−‖2

To solve the new re-parametrized maximization prob-
lem, we form the corresponding Lagrangian.

L(λ, β1, . . . , βm) =

(e2

X +

m
∑

k=1

rksk + ‖Q−‖2) + λ(e2

X −
m

∑

k=1

r
2

k) +

m
∑

k=1

βk(r − rk),

where βk ≥ 0, k = 1, . . . ,m. Taking the derivatives
of the Lagrangian with respect to unknown variables,λ,
βk, rk, yields the following Kuhn-Tucker conditions, for
k = 1, . . . ,m

sk − 2λrk − βk = 0,(4.9)

βk(r − rk) = 0,(4.10)
m

∑

k=1

r
2

k = e
2

X(4.11)

whereβk ≥ 0, k = 1, . . . ,m. Observe that Equation (4.9)
can also be written asrk = sk−βk

2λ
, k = 1, . . . ,m, i.e., each

rk is directly proportional tosk except a bias termβk. There-
fore, the unknown vectorX− needs to be a rescaled version
of the known vectorQ−, which directly corresponds to the
solution provided by our main algorithm. Hence, the pro-
posed solution satisfies the necessary Kuhn-Tucker condi-
tions, and yields the desired optimal minimizer/maximizer
solution.

5 Experiments

We evaluate various parameters of our algorithm; the con-
vergence rate, the tightness of the estimated bounds, and the
additional pruning power that is achieved when using the
presented optimal algorithm. As our testbed we use search
engine logs spanning a period of3 years (3× 365 points
per sequence), which we trim down to1024 points in order
to simplify calculations and exposition of ideas. The ana-
lyzed data were gathered from a major search engine. The
sequences were studentized (mean value was subtracted and
sequences normalized by the std), so as to remove any scale

bias. In this way we are reverting the distance into a mea-
surement of correlation and can discover more flexible pat-
terns. Finally, the sequences were compressed using the high
energy Fourier coefficients.

 

kNN Results: 

  

"goldman sachs", "london stock exchange", "bloomberg",  

"stock", "jp morgan", "foreign exchange rates", "nasdaq"

kNN Results: 

"united states postal service", "us post office", "ups", 

"post office", "dhl",  "area code", "federal express", "kinkos"

Query: "deutsche bank" 

Query: "usps.com" 

Figure 8. kNN search results on the compressed weblog repositories

Before evaluating any performance aspects of our ap-
proach, we depict some of the Nearest-Neighbor (NN)
matches that resulted from the search procedure for various
queries. Due to space restrictions, in Fig. 8 we illustrate NN-
matches for only 2 queries:deutsche bank, andusps.com.
We can observe that the returned matches hold a seman-
tic affinity to the posed query. For example, the outcome
of the querydeutsche bankresulted in keywords relating to
financial companies and stocks. In general, search on the
query logs returns highly interpretable and useful matches,
something that was also attested in other relevant publica-
tions [9, 5, 7, 15].

5.1 Convergence Rate.The proposed water-filling algo-
rithm iteratively rescales subsets of the unknown coeffi-
cients, in order to utilize the known total signal energy. A
number of iterations are required until convergence. Here,
we empirically demonstrate that the algorithm reaches the
solution in very few iterations (typically2 to 3), therefore
performance of the algorithm is not adversely impacted. The
experiment is conducted by computing1000 distance calcu-
lations (lower and upper bounds) from a pool of randomly
selected query logs. We repeat the experiment for various
compressed representations, retaining from8 to 64 coeffi-
cients per sequence, or in other words for compression rates
of 128

1 to 16
1 . The histograms of the number of iterations
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are depicted in Figure 9. We observe that the algorithm con-
verges very fast, typically in1 to 4 iterations, with the ma-
jority of the cases being2 − 3 iterations.
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Figure 9. Number of iterations for convergence on the optimization
algorithm. The algorithm converges very fast, typically in 2 − 3

iterations.

Notice, that most search operations are I/O bound, and
the small additional cost that our algorithm incurs is only
CPU-based. However, as we will show, our algorithm
achieves much tighter distance bounds which ultimately
leads to a great reduction on the uncompressed sequences
that are fetched from the disk.

5.2 Bound Tightness.Here, we undertake a systematic
comparison and evaluate the tightness of our bounds against
previously proposed distance bounding techniques, which
have appeared in the data mining literature. The strawmen
approaches that we compare with are:

1. First Coefficients: Techniques that compute bounds
on the distance using the first coefficients, inherently
make the assumption that the underlying signal con-
tains primarily low frequency components, such as the
approaches proposed by Agrawal et al.[12] and Rafiei
et al.[13]. These approaches perform well on random
walk signals, such as stock market data, but in general
do not adapt well for generic signals. Additionally, such
approaches only estimate lower bounds on the distance
function, therefore in general cannot match the prun-
ing performance that the combination of lower/upper
bounds can achieve.

2. First Coefficients + error: This approach augments
the aforementioned methodology by recording also the
reconstruction error (or remaining energy of the omit-
ted coefficients), which improves upon the previous
bounds. This work, presented by Wang et al.[14] ad-
ditionally utilizes upper bounds, which the previous ap-
proaches did not consider.

3. Best Coefficients + error: Similar to the previous

approach, this technique exploits the coefficients with
the highest energy plus the approximation error in order
to bound the distance [7].

We compare the distance bounds returned by these ap-
proaches and we juxtapose them with the bounds returned
by our methodology which utilizes the highest energy coef-
ficients in conjunction with the optimal distance estimation.
However, in order to compare all these approaches we need
to properly allocate the storage space for each approach, so
as not to favor any of the competing techniques. This is the
topic of the next section.

Space Requirements: Notice that it is not meaningful
to directly compare the above approaches using the same
number of coefficients, because each technique may require
a different amount of storage space. We need to compare all
approaches under the same memory/space requirements.

The storage of the firstc Fourier coefficients requires2c
doubles (or2c ∗ 8 bytes). However, when utilizing thec best
coefficients for each sequence, we also need to store their
positions in the original DFT vector. That is, the compressed
representation with thec largest coefficients is stored as pairs
of [position-coefficient].

For our experiments, the sequences are composed of
1024 points, which means that we need to store 512 posi-
tions, if we consider the symmetric property of the Fourier
coefficients. 9 bits would be sufficient to describe any of the
coefficient positions, however, since on disk we can write
only multiples of bytes, recording each position requires 2
bytes. Therefore, each approach that utilizes the best co-
efficients allocates16 + 2 bytes per coefficient. In other
words, if an approach storing the first coefficients usesc co-
efficients, then our method will useb16c/18c = bc/1.125c
coefficients.

First Coeffs c First Coeffs + Middle Coeff

First Coeffs + error c First Coeffs + Error

Best Coeffs + error c/1.125 Best Coeffs + Error

Optimal c/1.125 Best Coeffs + Error

Table 1. Requirements for usage of same storage for each approach

For some distance measures we also use one additional
double to record the error (sum of squares of the remaining
coefficients). For the measures that don’t use the approxi-
mation error we need to allocate one additional number and
we choose this to be the middle coefficient of the full DFT
vector, which is a real number (since we have real data with
lengths power of two). If in some cases the middle coef-
ficient happens to be one of thec best ones, then these se-
quences just use 1 less double than all other approaches. The
following table summarizes how the same amount of space is
allocated for each compressed sequence of every approach.
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0 1 2

Full Euclidean
 LB -First Coe!s

LB-First Coe!s + error

LB-Best Coe!s + error
LBOptimal

UB-First Coe!s + error

UB-Best Coe!s + error
UB-Optimal

1.00
0.52

0.55

0.53
0.57

1.54

1.41
1.40

Relative Distance

Memory = 2*(8)+1 doubles
 LB-Opt improvement = 4.7612%
UB-Opt Improvement = 8.7154%

0 1 2

1.00
0.57

0.60

0.62
0.65

1.50

1.35
1.34

Relative Distance

Memory = 2*(16)+1 doubles
 LB-Opt improvement = 8.8507%

UB-Opt Improvement = 11.0455%

0 1 2

1.00
0.61

0.64

0.66
0.70

1.48

1.32
1.30

Relative Distance

Memory = 2*(24)+1 doubles
 LB-Opt improvement = 8.6044%

UB-Opt Improvement = 12.1786%

0 1 2

1.00
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0.73

1.47

1.29
1.28

Relative Distance

Memory = 2*(32)+1 doubles
 LB-Opt improvement = 9.3534%

UB-Opt Improvement = 13.1985%

Figure 10. Comparison of lower/upper bounds returned by various techniques, across different compression rates. The Euclidean distance
between the uncompressed sequences (’Full Euclidean’) is indicated as ’1’ (one). Estimates closer to ’1’, suggest better distance bounds.
We observe that the presented optimal algorithm exhibits the tightest possible bounds.

Therefore, when in the following figures we mention
space usage of [2*(32)+1] doubles, the number in parenthe-
sis essentially denotes the coefficients used for the methods
using the first coefficients (+ 1 for the middle coefficient or
the error, respectively). For the same example, approaches
using the best coefficients will use the 28 best coefficients
but have the same space requirements.

Results: We plot the lower and upper bounds derived by
each approach and we normalize the results against the
exact euclidean distance. Numbers closer to 1 indicate
tighter bounds. We observe that in all cases the optimal
algorithm returns the best distance estimates compared to
the other approaches, even though it uses fewer coefficients
than some of the competing methodologies. On the title
of each graph of Figure 10 we also indicate how much the
optimal algorithm improves on the ‘First Coeffs + error’
approach. The best improvement is achieved when using
32 coefficients and the improvement reaches approximately
10% on the lower bounds and13% on the upper bounds. As
we will demonstrate in the following section, this reduction
in the distance ambiguity can lead to very dramatic speedups
in the overall search performance.

5.3 Pruning Power and Performance Improvement.
For this experiment we assemble a large pool of query we-
blogs consisting of 32000 temporal sequences. We pose 100
random queries that don’t have have exact matches in order
to offer more realistic performance metrics. We search for
the 1-Nearest-Neighbor of each query and we utilize both
Lower and Upper bounds. For the ‘First Coeffs’ approach
we utilize only the lower-bounds, since no upper-bounds can
be computed.

We evaluate the performance of each technique based
on the search procedure presented in 3.1, which prunes the
search space and directs the search based on the lower/upper
bounds derived from the compressed sequences. Ultimately,
we measure the amount of uncompressed sequences that
each technique retrieved from disk. This essentially reflects
the most important bottleneck of a search performance, since
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Figure 11. Top: Ratio of uncompressed sequences retrieved from
disk (smaller numbers are better). Bottom: Improvement of Optimal
against all other approaches (higher numbers are better).

it is an I/O bound process. Figure 11 shows how many un-
compressed sequences were retrieved for each search ap-
proach, normalized by the total number of sequences. For
clarity, at the bottom side of the Figure, the relative improve-
ment that is achieved by the optimal algorithm is also shown.
When using [2*(32)+1] doubles per sequence we observe
the largest improvement in performance; 80%, 50%, 30%
compared to the 3 other distance bounding methodologies.
Therefore, we can achieve excellent performance compared
to previous state-of-the-art when utilizing the optimal dis-
tance bounds.

In conclusion, with these experiments we have seen that
the presented optimal distance estimation algorithm con-
verges fast, provides the tightest possible distance bounds,
and leads to significant benefits in the search performance.

6 Extending to other distance measures - Discussion

We have seen so far the significant improvement in Eu-
clidean distance estimation that can be accomplished when
utilizing the proposed optimal distance bounding technique.
The Euclidean distance is probably the most prevalent of the
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Figure 12. A Periodic Distance can discover pattern similarities under arbitrary time-shift. The Periodic Distance can be reverted into a
Euclidean computation of the magnitude components in the frequency domain

distance measures in the mining bibliography [21]. Here we
illustrate briefly how our methodology can be applied on a
wider range of linear and even non-linear distance functions.

We examine the applicability of the proposed technique
under two distance functions; a periodic distance function
and the dynamic time warping (DTW). In the following sec-
tions we explain in more detail how our bounding technique
can be used in conjunction with the aforementioned distance
functions, allowing for an even tighter distance bound.

6.1 Bounding the periodic distance measure.Periodic
distance measures such as the one presented in [15] can
discover similar patterns under arbitrary time-shift. Peri-
odic measures are very flexible, because they allow phase-
invariant matching, and have been used with great success
for a multitude of difficult mining tasks, including the ro-
tation invariant matching of shapes [22, 23]. They can be
used as an inexpensive substitute of DTW when speed is
of essence. The periodic distance computes in its core a
Euclidean distance in the frequency domain, therefore our
bounding technique can be applied directly but in a trans-
formed domain. Its computation is based on a Euclidean dis-
tance calculation just in the magnitude components of the
Fourier coefficients of a time-series, as shown in Figure 12.
Since the technique that we proposed lower bounds the Eu-
clidean distance it can be used unaltered, by application on
the magnitude components of the recorded Fourier coeffi-
cients. This will effectively compute the tightest bound on
the periodic distance, when the original sequences are com-
pressed using the high energy (Fourier or wavelet) coeffi-
cients.

6.2 Bounding the dynamic time warping. The Dynamic
Time Warping (DTW) distance is a non-linear distance
function. However, recent work has shown that the time-
constrained version of the DTW can be bounded by a set
of linear distance functions [16], and as an extension by
our bounding technique. Let’s assume that we denote the
warping distance under constrained warping withinδ time

instances between a queryQ and another sequenceA as
DTWδ(Q,A). The computation of the tight bound consists
in forming the possible matching region (Minimum Bound-
ing Envelope or MBE) and computing the distance between
the resulting envelope and sequenceA. Therefore, an in-
expensive lower bound can be found by computing the eu-
clidean distance between theMBE(Q) and any other se-
quenceA, or D(MBEδ(Q), A). This is shown in Figure
13.

The bounding envelope of the query and the data se-
quences are rarely stored in their uncompressed format, but
they are approximated by some orthonormal transform. This
is where is new bound comes into place, by allowing again
the very tight computation between the compressed sequence
A (given any orthonormal compression technique) and the
MBE of the query.

With the above examples we have only brushed upon
the surface of how the proposed optimal bound can be used
in conjunction with various distance measures. Other dis-
tance/similarity measures can also be expressed in a simi-
lar fashion and also similarly amenable for use under our
framework. Another similarity function could be for exam-
ple the correlation between sequences, which can easily be
expressed as a function of the Euclidean distance. Finally,
even though we have shown that other linear and non-linear
distances can be reverted to a Euclidean distance computa-
tion, our technique can also be tailored to work under avari-
ety of linear functions, since these can be easily formulated
and solved under the same optimization umbrella.

7 Conclusions

This work examined techniques that can boost the search
performance on compressed time sequences, through intro-
duction of optimally tight distance estimates. We examined
the applicability of our technique on temporal query weblogs
and we have shown that significant pruning in the search
space can be achieved. This is the first work to present opti-
mally tight lower and upper distance bounds, when working
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Figure 13. Time Warping distance and computation of lower bound using the Euclidean distance between the Bounding Envelope and any
other sequence

directly on the compressed data sequence data.
Although the focus of this work has been on providing

optimally tight bounds for the Euclidean distance, we have
shown that other linear and non-linear distance functions
can be bounded by the Euclidean distance in a transformed
domain. Therefore, the outcome of this work can be useful
for an extensive class of distance functions. As future work,
we plan to evaluate the actual gains that are realized by the
application of our technique on a diverse set of distance
functions.

Acknowledgements:We would like to thank Claudio Luc-
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