
Indexing Millions of Packets per Second using GPUs

Francesco Fusco
ETH Zurich

Michail Vlachos
IBM Research - Zurich

Xenofontas Dimitropoulos
ETH Zurich

Luca Deri
ntop.org

Abstract

Network traffic loggers are devices that record a recent
window of the entire traffic in one or more network links.
The traffic is stored in packet repositories that enable ret-
rospective analyses, e.g., for forensic investigation. Traf-
fic loggers deployed over very high-speed networks must
process and store millions of packets per second using
commodity hardware. To enable interactive explorations
of such large repositories, data indexing mechanisms are
required. Indexing packets at wire rates (10 Gbps and
above) on commodity hardware imposes unparalleled re-
quirements for high speed index creation. Such index-
ing speeds are presently untenable with modern index-
ing technologies and current processor architectures. In
this work, we propose to intelligently offload indexing
to commodity Graphical Processing Units (GPUs). We
introduce algorithms for building compressed bitmap in-
dexes in real time on GPUs and show that we can achieve
indexing speeds of up to 185 millions records per sec-
ond, which corresponds to multi-10-Gbps line rates and
an improvement by one order of magnitude compared to
the state-of-the-art.

1 Introduction

Traditional network monitoring and network security ap-
plications, such as Intrusion Detection Systems (IDS),
analyze the traffic flowing through an observation point
using a stream-processing approach. Therefore, network
traffic is analyzed on-the-fly without need to store it on
disk. However, several applications have emerged that
require the storage of network traffic, so as to enable post
mortem analyses, for example: to show the evidence of
a crime, to resolve disputes of network-related perfor-
mance issues (e.g., in trading environments), or to trou-
bleshoot network connectivity problems.

Network recording devices (traffic loggers) process
and store a recent window (e.g., the last week) of raw

network traffic data. When deployed on high-speed links
they must be able to store millions of packets per second
and several Terabytes of data per day, without losing a
single packet. In addition to storing incoming network
traffic, packet loggers must enable efficient search oper-
ations over the collected data. Implementing searches
as linear scans over a storage subsystem that is con-
stantly taxed by writing incoming new data, is not feasi-
ble. Therefore high-speed indexing technologies capable
to index packets in real-time are required.

Compressed bitmap indexes have been recognized as
a very effective indexing technology for network traf-
fic data [3, 8, 9]. They are more compact in size than
competitive approaches, such as tree-based indexes, and
provide significant speedup over complex multi-attribute
queries. In our previous work, we have shown that by
introducing bitmap indexing support into the de-facto
packet processing library, libpcap, packet searches can
be accelerated by up to 3 orders of magnitude [4].

Storing and indexing packets from 10 Gbps links using
commodity hardware is a major challenge as the maxi-
mum packet rates observed on a single 10 Gbps link is
14.88 million packets per second. Recent research has
shown that it is nowadays possible to process packets at
10 Gbps using commodity hardware [7]. However, the
maximum packet rate observed on a 10 Gbps link is an
order of magnitude higher than the maximum indexing
throughput reported by previous research [4, 5].

In this paper, we propose the adoption of GPUs as
indexing coprocessors to enable high-speed packet in-
dexing in the context of network traffic recording us-
ing commodity hardware. Our first contribution is that
we introduce novel algorithms to build two well-known
compressed bitmap indexes, namely WAH [10] and
PLWAH [2], entirely and at high-speed on GPUs, thereby
releasing precious CPU and memory resources for fetch-
ing, processing and storing packets on disk. Second, we
show that using a GPU we can accelerate the indexing
throughput of a CPU by one order of magnitude. In

our experiments we realize impressive indexing rates of
up to 185 million records per second. Third, we com-
pare WAH and PLWAH and show that the throughput
cost of additional operations for building a more com-
plex encoding (PLWAH) in a GPU is greatly overshad-
owed by the savings of the more compact compression.
Finally, we evaluate the indexing throughput using high-
entropy data, which can be observed during Distributed
Denial of Service (DDoS) attacks and other anomalous
conditions. We show that the GPU throughput is less af-
fected by the cardinality of the data, and, therefore, is
more suitable for a packet logging environment, where
high throughput has to be achieved not just in the aver-
age case, but also, and more importantly under adverse
conditions. Our work is opening the path to real-time in-
dexing at 10Gbps and above with commodity hardware.

2 Background and Motivation

A bitmap index is an indexing data structure for numer-
ical records. It provides expedient access to the row
positions matching a given value of an attribute. More
importantly, it can efficiently answer queries that in-
volve boolean operations over multiple attributes, e.g.
”SELECT * WHERE DstPort = 80 AND Proto = 17”. When
indexing an attribute that can assume n distinct values,
the corresponding bitmap index is a binary matrix with
n columns, and as many rows as the number of indexed
records (as shown in the example of Figure 1).

1

3

0

0

3

3

3

0

…

0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0

… … … …

0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0

… … … …

0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0

… … … …

2*0 1*1 8*0 1*0

2*1 7*0 … 1*1

3*0 … 2*0

1*1 3*1

… 1*0

…

2*0 1*1 8*0 1*0

2*1 7*0 … 1*1

3*0 … 2*0

1*1 3*1

… 1*0

…

Data Bitmap Index
RLE Compressed

Bitmap Index

0 1 32 0 1 32

Figure 1: A bitmap index of cardinality 4.

Bitmap indexes can become very large when the num-
ber of columns or rows grow. For this reason, com-
pressed bitmap indexes have been introduced to reduce
the index size while preserving, or even accelerating,
the index lookup time. Columns are compressed in-
dependently using light-weight compression techniques,
like Run Length Encoding (RLE), that typically enable
to perform boolean operations over multiple columns in
the compressed domain. Several variants of compressed
bitmap index encodings have been proposed. WAH and
its extension PLWAH are among the best-known com-
pressed bitmap indexes as they stand out for their lookup

performance. A thorough evaluation of the response
times and compression ratios achieved by WAH and
PLWAH in the context of indexing network traffic data
can be found in previous work [4, 5]. Both encodings
use compression symbols aligned to the word. In this
paper we focus on the 32-bit aligned version of these en-
codings, as 64-bit versions are known to produce twice
as big indexes [2] and we show that WAH- and PLWAH-
based indexes can be entirely built at very high-speed us-
ing modern GPUs.

Word Aligned Hybrid (WAH) uses a dictionary of two
compression symbols: a literal L stores a chunk of 31 het-
erogeneous bits, and a fill F encodes a sequence of homo-
geneous bits. A sequence of 31 or more consecutive 0’s
is compressed using a 0-Fill symbol (0F), and similarly
a sequence of 31 or more 1’s is converted into a 1-Fill
symbol (1F). The symbol type (1F and 0F) is given in a
2-bit header, and a number k is recorded in the remain-
ing 30-bits. k indicates how many (31× k) consecutive
bits of uncompressed 0’s or 1’s are encoded. Figure 2
provides an example of an uncompressed bitmap and its
WAH-compressed counterpart.

Position Lists Word Aligned Hybrid (PLWAH) is
an extension of WAH that aims at compressing sparse
bitmaps better. PLWAH has the same literal L symbol
with WAH, but introduces a different format for the 0-Fill
and 1-Fill symbols. In particular, the 30-bit payload of a
fill-word is used to store both the fill length k and a list of
positions. The list stores as 5-bit numbers the positions
of each 1 in the next literal. In this way a sparse literal
can be encoded within the fill word and then suppressed
to save space as shown in the bottom of Figure 2. There-
fore, the maximum length that can be encoded in each
fill is 31× (231−(5i)− 1), where i is the number of posi-
tions. In practice, a single 5-bit position makes PLWAH
indexes half the size of WAH indexes [2].

31 bits

1011101…..10100000000…..000000001000…..00000

31 x 4 bits 31 bits

32 bits Literal

1 1011101…..101 0000…000100 010000….00000

32 bits O-Fill 32 bits Literal

100

32 bits Literal

1 1011101…..101 00001…00100

32 bits O-Fill + Pos

0000001

Input:

PLWAH:

WAH:

Input

WAH

PLWAH

Figure 2: An uncompressed bitmap index (top) and
the corresponding WAH (middle) and PLWAH (bottom)
compressed bitmaps.

Given a list of input values of an attribute, the com-
pressed bitmap can be built incrementally, i.e., without
needing to create first the uncompressed bitmap, using
the algorithm described by Lemire [6]. Input values are
processed in chunks of 31 consecutive values. For each

2

chunk, up to 31 literals (each corresponding to a distinct
value) are created. The new literals are then appended at
the end of the corresponding bitmap columns. Before ap-
pending a literal, the current chunk identifier is compared
to the identifier of the last literal appended to the column.
If the difference delta between the current and the previ-
ous chunk identifier is greater than 1, then a 0-Fill word
whose length is exactly delta− 1 needs to be inserted
before the new literal. In this way, when an index is up-
dated with a new chunk it is not necessary to modify the
entire set of n columns but only d ≤ 31 columns, where
d is the number of distinct values in the chunk.

The indexing throughput provided by the algorithm is
largely influenced by the distribution of the input values.
The distribution dictates memory locality and therefore
the overall performance. Intuitively, the algorithm ex-
hibits poor locality when indexing data with many dis-
tinct values. For this reason, uniformly distributed values
represent a worst case scenario. Poor memory locality
prevents the parallelism offered by modern processors to
be fully exploited. In our experiments (and especially
in the case of high-entropy data), the rate of instructions
per cycle (IPC) observed during indexing on a CPU was
low due to cache misses, meaning that the CPU is under-
utilized. The problem is even worse in multi-threaded
implementations, as the amount of cache available per
thread decreases with the number of threads.

In a packet logging context, where the same memory
and cache hierarchies are constantly stressed for process-
ing packets, poor memory locality my deteriorate the
system performance to the extent that packets are lost.
In this paper, we propose the adoption of GPUs to en-
tirely offload the host from the data-intensive task of
building bitmap indexes, thereby saving precious com-
putational and memory resources for packet logging.

3 Bitmap Indexing on GPUs
Modern GPUs are advanced data-parallel architectures
providing hundreds of cores and an aggregated memory
bandwidth that is several times higher than the band-
width available to modern processors. In contrast to
CPUs, which rely on large caches to optimize memory
latencies, GPUs are optimized for throughput and exhibit
massive data-parallelism: hundreds of hardware threads
execute, in parallel, the same computation over distinct
data portions. The challenge is therefore turning com-
plex computations into sequences of simple, but highly-
parallel, computing steps. In this section, we describe
the steps of highly parallel computations that enable us
to build compressed bitmap indexes at very high speeds
directly on GPUs. Our approach is substantially differ-
ent from previous research on GPU-accelerated bitmap
indexes [1], where a GPU has been simply used to com-
press and decompress a single pre-built bitmap column,

but not on building high cardinality indexes in real-time.
A given batch of numerical values of a packet header

attribute (e.g., port numbers) is copied from the main
memory to the GPU (see Figure 3), which computes and
returns a serialized compressed bitmap index to the host
memory together with metadata required to access in-
dividual index columns. The metadata consists of two
parallel arrays called keys and offsets: keys[i] stores a
value (e.g., port 80) and offsets[i] stores the offset to the
corresponding bitmap column. The length of a bitmap
column, expressed in number of words, is calculated as
the difference between offsets[i+ 1] and offsets[i]. The
length of the keys and offsets arrays correspond to the
number of distinct values present in the input data, which
is smaller than the attribute cardinality (e.g., less than
65,536 for port numbers). The keys array is sorted.

keys
offsets

Host (CPU) GPU

Data

Index

keys

offsets

bitmaps

K1 K2 K3 K4 K5

Figure 3: Workflow for indexing data on GPUs

Overview: Exploiting the massive parallelism offered
by GPUs is not trivial; it requires a complete algorithm
redesign. Our algorithm starts with a step that associates
each input value with a row identifier (rid), which en-
codes the position of the value in the input batch. The
input values and the corresponding rids are stored in two
arrays, which are then sorted by the input values. Sorting
can be performed very efficiently on GPUs. In this way,
the array of rids is logically segmented into regions, one
for each distinct input value, containing monotonically
increasing identifiers. The rids array is used to produce
the literal (L) and 0-Fill compression symbols. The par-
allelism of the GPU is further exploited by processing
each individual rid on a different thread. Using a number
of highly parallel refinement steps that eliminate redun-
dant information by means of data reductions, the rids
are turned into symbols of the compressed bitmap index.

Algorithm 1 GPUIndexCreate(values, n)
Input: an array values storing n input values

1: input← copyFromCPUToGPU(values,n)
2: sortRidsByValue(rid, input);
3: (chIds, lit) = produceChunkIDLiteral(rids)
4: k = mergeLitByValChID(input, chIds, lit)
5: produceFills(input, chIds, k)
6: idxLen = fuseFillsLiterals(chIds, lit, index, k)
7: keyCount = computeColumnLen(chIds, input, k)
8: copyFromGPUToCPU(keyCount keys and offsets)
9: copyFromGPUToCPU(index, idxLen)

3

WAH indexing. Next, we explain the steps required to
build a WAH bitmap index on a GPU. Algorithm 1 shows
the pseudocode of our indexing algorithm. The algo-
rithm first copies the n input values to the array input
in the GPU memory. Next, in line 2, it builds a second
array rids with the raw identifiers where each value is en-
countered. rids is initialized to increasing row positions
0 to n−1. Subsequently, the input data and the row posi-
tions are reordered in such a way that: i) the input values
are sorted in ascending order, and, ii) rids contains the
positions corresponding to the values.

Afterwards (line 3), the algorithm builds two new ar-
rays of the same length as the input data, chIds and lit,
that contain the chunk identifiers and the partial literals
corresponding to the row identifiers. A partial literal is
a 32-bit word with a 1-bit header and a 31-bit payload.
The payload has one bit set to 1 as shown in Algorithm 2.

Algorithm 2 produceChunkIDLiteral(rid, n)
Input: an array rid of n row identifiers
Output: two parallel arrays of chunk identifiers and partial literals

1: for i = 0→ n−1 do in parallel
2: setBit(lit[i], rid[i] mod 31)
3: setBit(lit[i], 31) //mark header as literal
4: chIds[i]← rid[i] mod 31
5: end for

Next, in line 4, literals are created by merging the par-
tial literals corresponding to the same input value and the
chunk identifier. This operation, described in Algorithm
3, is a segmented parallel reduction. In fact, the input and
chIds arrays divide lit into logical segments correspond-
ing to each distinct tuple (input[i],chIds[i]). The logical
segments carry the partial literals that need to be encoded
in a single complete literal. Within each segment the val-
ues are reduced using a bitwise OR (see Figure 4). The
result of this is that the three arrays (chIds, input, lit) are
compacted and their length reduces from n to k, where k
is the number of distinct (input[i],chIds[i]) pairs.

Figure 4: Literals are created by reducing partial literals.

Algorithm 3 mergeLitByValChID(input, lit, chIds, n)
Input: three arrays input, lit and chIds of size n
Output: lit stores complete literal symbols instead of partial literals

1: for i = 0→ n−1 do in parallel
2: key[i] = (chIds[i], input[i])
3: end for
4: // Merge the partial literals
5: k← reduceByKey(key, lit, OP::bitwiseOR)
6: return k

The chIds array stores the chunk identifier correspond-
ing to a given literal. The next step (line 5) is to turn the
chIds[i] word into the O-Fill symbol that precedes the
literal lit[i]. This can be obtained by taking the difference
between consecutive positions of chIds. If two adjacent
literals belonging to the same input value are consecu-
tive (i.e., chIds[i] = 1+ chIds[i− 1]), the length of the
0-Fill between the two will be zero (i.e., there will not be
a 0-Fill between them in the final index). It is worth to re-
mark that this operation can be performed, in parallel, for
all chIds, which correspond to multiple keys. A corner
case is represented by the first chId of each key. In or-
der to distinguish this case, a parallel array called heads
that marks the beginning of each key has to be created.
In particular, heads[i] is greater than 0 if chIds[i] is the
first chdId of a key and 0 otherwise. The array heads
can be efficiently computed in parallel by performing an
adjacent difference over the elements of the input array.
These operations are described in Algorithm 4.

Algorithm 4 produceFills(keys, chIds, n)
Input: the array chIds of chunk indentifier

the array keys of values
Output: the chIds array stores 0-Fill symbols

1: heads← createHeads(keys)
2: for i = 1→ n−1 do in parallel
3: if heads[i] 6= 0 then
4: chIds[i]← chIds[i]− chIds[i−1]−1
5: else
6: if chIds[i] 6= 0 then
7: chIds[i]← chIds[i]−1
8: end if
9: end if

10: end for

Finally (line 6 of Algorithm 1), the final compressed
bitmap index is created as a concatenation of bitmap in-
dex columns. 0-Fill words and literal words are con-
tained in the two parallel arrays chIds and lit. The out-
put index is created by interleaving the chIds and lit ar-
rays. This is accomplished by a scatter operation within
each array in even and odd positions. There is still
one step remaining: removing from the index the zero-
values that are present whenever two consecutive literals
are encountered. This operation is referred to as stream
compaction. The pseudocode describing the process is
shown in Algorithm 5.

Algorithm 5 fuseFillsLiterals(chIds, lit, outindex, n)
Input: the array chIds of chunk identifiers

the array lit of literals
Output: the array outidx stores the index

1: for i = 0→ n−1 do in parallel
2: outIndex[2∗ i] = chIds[i]
3: end for
4: for i = 0→ n−1 do in parallel
5: outIndex[2∗ i+1] = literals[i]
6: end for
7: // Remove the zeros from the output
8: idxLen← streamCompaction(outindex, 0)
9: return idxLen

4

Once the index is created we prepare the metadata, that
is, the two distinct arrays keys and offsets. Recall that
the input data have been sorted and compacted via the
mergeLitByValChID step. We use a segmented reduc-
tion to find for a given key the length of the correspond-
ing bitmap column. The length is computed by counting
literals and fills, which are present in the GPU memory.
The only consideration to be taken into account is that
the zero elements in chIds have been removed from the
final index and therefore do not have to be included in the
bitmap column length. For that, we compute in-memory
a temporary array tmpArray such that tmpArray[i] is 1
when chIds[i] == 0 and 2 otherwise. Finally, since we
would like to compute the offsets instead of the lengths
for each key, we perform an inclusive scan. This process
is described in Algorithm 6. At this stage the index, the
keys and the offsets are ready to be copied from the GPU
to the host memory.

Algorithm 6 computeColumnLen(chIds, input, n)
Input: the two paralell arrays input and chIds of size n
Output: the array lengths stores the offsets

1: // Prepare an array for the lengths
2: for i = 0→ n−1 do in parallel
3: tmpArray[i]← (1 + (chId[i] == 0 ? 0 : 1)
4: end for
5: // Compute the length of each bitmap index column
6: keycnt← reduceByKey(input, tmpArray, OP::Sum)
7: // Transform the lengths in offsets
8: offsets← inclusiveScan(tmpArray)
9: return keycnt

PLWAH indexing. PLWAH is a variant of WAH
that uses an additional compression step, called
mergeFillLiteral (Algorithm 7), which merges
sparse literals with the previous 0-Fill word. This ad-
ditional step is executed just after step 5 of Algorithm 1
and leverages the popc and clz instructions offered by
NVIDIA GPUs to count the number of bits set to one and
the leading zeros, respectively. Additionally, PLWAH re-
quires the line 3 of Algorithm 6 to be slightly modified
in order to consider the case of sparse literals that have
been merged into their corresponding 0-Fill.

Algorithm 7 mergeFillLiteral(chIds, lit, n)
Input: the two parallel arrays chIds and lit of length n
Output: literals with a single bit set are merged with the previous 0-

Fill
1: for i = 0→ n−1 do in parallel
2: if chIds[i] 6= 0 then
3: popcnt = populationCount(lit[i])
4: freeBits = leadingZero(chIds[i])
5: if popcnt == 1 AND f reeBits ≥ 7 then
6: encodePosition(chIds[i], leadingZero(lit[i]))
7: lit[i]← 0
8: end if
9: end if

10: end for

Limitations and considerations. WAH and PLWAH are
double-sided, meaning that they can compress both se-

quences of 0’s and sequences of 1’s by using 0-Fill and
1-Fill words, respectively. In our implementation we
do not include 1-Fill words in our dictionary because
this pattern, as we have shown in our previous work, is
extremely uncommon in network traffic data [5]. This
makes the implementation simpler and more efficient.

The number of values that our GPU-implementation
can index in a single batch is limited by two parameters:
the maximum fill length that can be encoded by a single
0-Fill symbol and the memory of the GPU. Our algo-
rithm cannot create two consecutive 0-Fill words, and,
therefore, the maximum number of input values must
be smaller than 31× ((231− 1)− 1) (more than 60 bil-
lions of numbers) for WAH. In a packet logging context,
this number is not a practical limitation as packet traces
are customarily stored in batches of Millions of pack-
ets, which corresponds to multi-gigabyte packet traces.
A more important consideration is the available mem-
ory on the GPU. Our algorithm requires four arrays to
be resident in the GPU memory for storing: the input
values, the literals, the chunk identifiers, and the tempo-
rary buffers for sorting. In practice, a modern GPU with
4Gb of RAM is more than capable of indexing up to 50
Million records, which translates to traces of several Gi-
gabytes (more than 3Gb considering 64-byte packets).

4 Evaluation
We implemented our algorithms using Thrust, which is a
C++ library provided by the NVIDIA SDK designed to
enhance code productivity and more importantly porta-
bility across NVIDIA GPUs. Thrust provides efficient
data-parallel implementations of sorting and other prim-
itives, including scan, reduce, scatter, and gather. To
evaluate the performance of our solution we used a
3.4Ghz Intel i7-2600K processor with 8 Mb of cache and
an NVIDIA GTX-670 GPU fitted in a PCI-e Gen 2.0 slot.

Figure 5: Indexing throughput vs cardinality for WAH
on a CPU, WAH on a GPU, and PLWAH on a GPU.

Our main design goal is to enable high-speed packet
indexing in the context of a network traffic recorder.

5

Therefore, indexing should be able to operate flawlessly
under very diverse traffic distributions, like high-entropy
distributions that result from DDoS attacks. With this
in mind, we evaluate how the cardinality of the index
affects the indexing speed under uniformly distributed
data, which is the most pessimistic scenario. We use in-
dexes of increasing column cardinality (from 256 up to
65,536 columns) and we compare the performance ob-
tained when indexing on a GPU using our algorithms and
on a CPU using the online indexing algorithm for WAH
of [6], which is the only previous work on index creation.

In Figure 5 we show the indexing throughput of WAH
on a CPU and of WAH and PLWAH on a GPU. We
first find that using a GPU we achieve up to a 20-fold
speedup over indexing on a CPU. In addition, for a
cardinality of 256, we reach with PLWAH a maximum
speed of 185 Million records per second. Assuming a
worst case scenario of 64-byte packets, this means that
on a GPU we can, for example, index more than 12 at-
tributes per packet at a sustained packet rate of 10 Gbps
or fewer attributes per packet at multi-10-Gbps rates.

Moreover, we observe that while on the CPU the
throughput decreases rapidly with the cardinality of the
index, on a GPU the throughput exhibits a much bet-
ter scaling behavior. In particular, on the CPU the
throughput incurs a 4.5-fold decrease when the cardinal-
ity increases from 256 to 65,536. In sharp contrast, the
throughput on the GPU decreases only by a factor of 1.13
as we can effectively exploit the available parallelism.
The reason for this small decrease is that the complexity
of the sorting algorithm of Thrust depends on the actual
length (in bits) of the values to be sorted.

Figure 6: Time spent in different steps of our algorithm
for building the WAH and PLWAH indexes on a GPU.

Furthermore, PLWAH, despite being a more complex
encoding than WAH, can provide substantially higher
throughputs. To better understand this point, in Fig-
ure 6 we illustrate the time spent in each step of PLWAH
and WAH when indexing 20 Million random 16 bit
numbers (65,536 cardinality). Recall that, compared to

WAH, PLWAH uses an additional step that merges sparse
literals with the previous 0-Fill word. This step, which
is indicated as 5.1 in Figure 6, is extremely fast and al-
lows the time required to copy the index from the GPU
to the host memory to be drastically reduced due to the
smaller index size. From this measurement we learn that
the cost of the additional operations for building a
more complex encoding in a GPU is greatly overshad-
owed by the savings of the more compact compres-
sion.

5 Conclusion
Indexing high-speed streams of network measurement
data in real-time poses significant performance chal-
lenges, especially in the context of network traffic
recording, where the system has to process packets at
wire-rate without experiencing any packet loss. We have
shown that GPUs can provide indexing throughput that
are one order of magnitude higher than those achieved
by CPUs. Therefore, we believe that this work is open-
ing the path to wire-rate multi-10 Gbps packet indexing
using commodity hardware.

References
[1] ANDRZEJEWSKI, W., AND WREMBEL, R. GPU-WAH: apply-

ing GPUs to compressing bitmap indexes with word aligned hy-
brid. In Proc. of the 21st Int. Conf. on Database and expert sys-
tems applications: Part II (2010), DEXA’10, pp. 315–329.

[2] DELIÈGE, F., AND PEDERSEN, T. B. Position list word
aligned hybrid: optimizing space and performance for com-
pressed bitmaps. In Proc. of the 13th Int. Conf. on Extending
Database Technology (2010), EDBT ’10, pp. 228–239.

[3] DERI, L., LORENZETTI, V., AND MORTIMER, S. Collec-
tion and exploration of large data monitoring sets using bitmap
databases. In Proc. of the 2nd Int. Workshop on Traffic Monitor-
ing and Analysis (2010), pp. 73–86.

[4] FUSCO, F., DIMITROPOULOS, X., VLACHOS, M., AND DERI,
L. pcapIndex: an index for network packet traces with legacy
compatibility. SIGCOMM Comput. Commun. Rev. 42, 1 (Jan.
2012), 47–53.

[5] FUSCO, F., VLACHOS, M., AND STOECKLIN, M. Real-time
creation of bitmap indexes on streaming network data. The VLDB
Journal 21 (2012), 287–307.

[6] LEMIRE, D., KASER, O., AND AOUICHE, K. Sorting improves
word-aligned bitmap indexes. CoRR abs/0901.3751 (2009).

[7] RIZZO, L. Netmap: a novel framework for fast packet I/O. In
Proc. of the 2012 USENIX Annual Technical Conf. (2012).

[8] STOCKINGER, K., , ET AL. Network traffic analysis with query
driven visualization sc 2005 hpc analytics results. In Proc. of the
ACM/IEEE Conf. on Supercomputing (2005), pp. 72–.

[9] TAYLOR, T., COULL, S. E., MONROSE, F., AND MCHUGH,
J. Toward efcient querying of compressed network payloads. In
Proc. of the 2012 Usenix Annual Technical Conf. (2012).

[10] WU, K., OTOO, E. J., AND SHOSHANI, A. Optimizing bitmap
indices with efficient compression. ACM Trans. Database Syst.
31 (March 2006), 1–38.

6

