
Non-Linear Dimensionality Reduction Techniques for
Classification and Visualization

Michail Vlachos
UC Riverside

mvlachos@cs.ucr.edu

Carlotta Domeniconi
UC Riverside

carlotta@cs.ucr.edu

Dimitrios Gunopulos �

UC Riverside
dg@cs.ucr.edu

George Kollios y

Boston University
gkollios@cs.bu.edu

Nick Koudas
AT&T Labs Research

koudas@research.att.com

ABSTRACT
In this paper we address the issue of using local embeddings

for data visualization in two and three dimensions, and for

classi�cation. We advocate their use on the basis that they

provide an eÆcient mapping procedure from the original di-

mension of the data, to a lower intrinsic dimension. We

depict how they can accurately capture the user's perception

of similarity in high-dimensional data for visualization pur-

poses. Moreover, we exploit the low-dimensional mapping

provided by these embeddings, to develop new classi�cation

techniques, and we show experimentally that the classi�ca-

tion accuracy is comparable (albeit using fewer dimensions)

to a number of other classi�cation procedures.

1. INTRODUCTION
During the last few years we have experienced an explo-

sive growth in the amount of data that is being collected,
leading to the creation of very large databases, such as com-
mercial data warehouses. New applications have emerged
that require the storage and retrieval of massive amounts
of data; for example: protein matching in biomedical appli-
cations, �ngerprint recognition, meteorological predictions,

and satellite image repositories.
Most problems of interest in data mining involve data with

a large number of measurements (or dimensions). The re-
duction of dimensionality can lead to an increased capability
of extracting knowledge from the data by means of visual-

ization, and to new possibilities in designing eÆcient and
possibly more e�ective classi�cation schemes. Dimension-
ality reduction can be performed by keeping only the most
important dimensions, i.e. the ones that hold the most infor-
mation for the task at hand, and/or by projecting some di-
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mensions onto others. These steps will improve signi�cantly
our ability to visualize the data (by mapping them in two
or three dimensions), and facilitate an improved query time,
by refraining from examining the original multi-dimensional
data and scanning instead their lower-dimensional "sum-
maries".

For visualization, the challenge is to embed a set of ob-
servations into a Euclidean feature-space, that preserves as
closely as possible their intrinsic metric structure. For clas-
si�cation, we desire to map the data into a space whose di-
mensions clearly separate members from di�erent classes.

Recently, two new dimensionality reduction techniques
have been introduced, namely Isomap [26] and LLE [24].
These methods attempt to best preserve the local neighbor-
hood of each object, while preserving the global distances
"through" the rest of the objects. They have been used for
visualization purposes, by mapping data into two or three di-

mensions. Both methods perform well when the data belong
to a single well sampled cluster, and fail to nicely visualize
the data when the points are spread among multiple clus-
ters. In this paper we propose a mechanism to avoid this
limitation.
Furthermore, we show how these methods could be used

for classi�cation purposes. Classi�cation is a key step for
many tasks in data mining, whose aim is to discover un-
known relationships and/or patterns from large set of data.
A variety of methods has been proposed to address the prob-
lem. A simple and appealing approach to classi�cation is
the K-nearest neighbor method [19]: it �nds the K-nearest

neighbors of the query point x0 in the dataset, and then
predicts the class label of x0 as the most frequent one oc-
curing in the K neighbors. However, when applied on large
datasets in high dimensions, the time required to compute
the neighborhoods (i.e., the distances of the query from the
points in the dataset) becomes prohibitive, making answers

intractable. Moreover, the curse-of-dimensionality, that af-
fects any problem in high dimensions, causes highly biased
estimates, thereby reducing the accuracy of predictions.
One way to tackle the curse-of-dimensionality-problem for

classi�cation is to consider locally adaptive metric techniques,

with the objective of producing modi�ed local neighbor-
hoods in which the posterior probabilities are approximately
constant ([10, 11, 7]). A major drawback of locally adap-
tive metric techniques for nearest neighbor classi�cation is
the fact that they all perform the K-NN procedure multi-



ple times in a feature space that is tranformed by means

of weightings, but has the same number of dimensions as
the original one. Thus, in high dimensional spaces these
techniques become very costly.
Here, we propose to overcome this limitation by applying

K-NN classi�cation in the reduced space provided by locally
linear dimensionality reduction techniques such as Isomap

and LLE. In the reduced space, we can construct and use
eÆcient index structures (such as [2]), thereby improving the
performance of the K-NN technique. However, in order to
use this approach, we need to compute an explicit mapping
function of the query point from the original space to the
reduced dimensionality space.

1.1 Our Contribution
Our contributions can be summarized as follows:

� We analyze the LLE and Isomap visualization power
through an experiment, and show that they perform well
only when the data are comprised of one, well sampled, clus-
ter. The mapping gets signi�cantly worse when the data
are organized in multiple clusters. We propose to overcome

this limitation by modifying the mapping procedure, and
keeping distances to both closest and farthest objects. We
demonstrate the enhanced visualization results.

� To tackle with the curse-of-dimensionality problem for
classi�cation we combine the Isomap procedure with locally
adaptive metric techniques for nearest neighbor classi�ca-

tion. In particular, we introduce two new techniques, Weighte-
dIso and Iso+Ada. By modifying the transformation per-
formed by the Isomap technique to take into considera-
tion the labelling of the data, we can produce homogeneous
neighborhoods in the reduced space, where better classi�ca-
tion accuracy can be achieved.

� Through extensive experiments using real data sets we
demonstrate the eÆcacy of our methods, against a number
of other classi�cation techniques. The experimental �ndings
corroborate the following conclusions:

1. WeightedIso and Iso+Ada achieve performance results

competitive to other classi�cation techniques but in
signi�cantly lower dimensional space;

2. WeightedIso and Iso+Ada allow to considerably re-
duce the dimensionality of the original feature space,
thereby allowing the application of indexing data struc-
tures to perform eÆcient nearest neighbor search [2].

2. RELATED WORK
Numerous approaches have been proposed for dimension-

ality reduction. The main idea behind all of them is to keep
a lossy representation of the initial dataset, which nonethe-
less retains as much of the original structure as possible.
We could distinguish two general categories:

1. Local or Shape preserving

2. Global or Topology preserving

In the �rst category we could place methods that do not
try to exploit the global properties of the dataset, but rather
attempt to 'simplify' the representation of each object re-

gardless of the rest of the dataset. If we are referring to

time-series, the selection of the k-features should be such

that the selected features retain most of the information
("energy") of the original signal. For example, these fea-
tures could be either the �rst coeÆcients of the Fourier de-
composition ([1, 9]), or the wavelet decomposition ([5]), or
even some piecewise constant approximation of the sequence
([16]).

The second category of methods has mostly been used
for visualization purposes, with the objective of discover-
ing a parsimonious spatial representation for the dataset.
The most widely used methods are Principal Component
Analysis (PCA) [15], Multidimensional Scaling (MDS), and
Singular Value Decomposition (SVD). MDS focuses on the

preservation of the original high-dimensional distances, for a
2-dimensional representation of objects. The only assump-
tion made by MDS is the existence of a monotonic relation-
ship between the original and projected pairwise distances.
Finally, SVD can be used for dimensionality reduction by
�nding the projection that restores the largest possible orig-

inal variance, and ignoring those axes of projection which
contribute the least to the total variance.
Other methods that enhance the user's visualization abil-

ities have been proposed in [17, 8, 4, 14].
Lately, another category of dimensionality reduction tech-

niques has appeared, namely Isomap [26] and LLE [24]. In

this paper we will refer to such category of techniques as
Local Embeddings (LE). These methods attempt to preserve
as well as possible the local neighborhood of each object,
while preserving the global distances "through" the rest of
the objects (by means of a minimum spanning tree).
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Figure 1: Mapping in 2-dimensions of the SCURVE

dataset using SVD, LLE and ISOMAP.

3. LOCAL EMBEDDINGS
Most of the dimensionality reduction techniques fail to

capture the neighborhood of data, when points lie on a man-
ifold (manifolds are fundamental to human perception [25]).
Local Embeddings attempt to tackle this problem.
Isomap is a procedure that maps high-dimensional objects

into a lower dimensional space (usually 2-3 for visualization



purposes), while preserving as well as possible the neigh-

borhood of each object, as well as the 'geodesic' distances
between all pairs of objects. Isomap works as follows:

1. Calculate the K closest neighbors of each object

2. Create the Minimum Spanning Tree (MST) distances

of the updated distance matrix

3. Run MDS on the new distance matrix.

4. Depict points on some lower dimension.

Locally Linear Embedding (LLE) also attempts to recon-
struct as close as possible the neighborhood of each object,
from some high dimension (q) into a lower dimension. How-

ever, while ISOMAP tries to minimize the least square error
of the geodesic distances, LLE aims at minimizing the least
squares error, in the low dimension, of the neighbors' weights
for every object.
We depict the potential power of the above methods with

an example. Suppose that we have data that lie on a man-
ifold in three dimensions (�gure 1). For visualizations pur-
poses we would like to identify the fact that the data could
be placed on a 2D plane, by 'unfolding' or 'stretching' the
manifold. Locally linear methods provide us with this abil-
ity. However, by using some global method, such as SVD,

the results are non-intuitive, and neighboring points get pro-
jected on top of each other (�gure 1).

4. DATASET VISUALIZATION USING
ISOMAP AND LLE

Both LLE and ISOMAP present a meaningful mapping
in a lower dimension when the data are comprised of one,
well sampled, cluster. When our dataset consists of many

well separated clusters, the mapping provided is signi�cantly
worse. We depict this with an example. We have con-
structed a dataset consisting of 6 clusters of equal size in
5 dimensions (GAUSSIAN5D). The dataset if constructed as
follows: The center of the clusters are the points (0; 0; 0; 0; 0),
(10; 0; 0; 0; 0), (0; 10; 0; 0; 0), (0; 0; 10; 0; 0), (0; 0; 0; 10; 0),

(0; 0; 0; 0; 10). The data follow a Gaussian distribution with
covariance �i;j = 0 for i 6= j and 1 otherwise. In �gure 2
we can observe the mapping provided by both methods. All
the points of each cluster are projected on top of each other
which impedes signi�cantly any visualization purposes. This
has also been mentioned in [22]; however the authors only

tackle with the problem of recognizing the number of dis-
joint groups and not how to visualize them e�ectively.
In addition, we observe that the quality of the mapping

changes only marginally, if we sample the dataset and then
map the remaining points based on the already mapped por-

tion of the dataset. This is depicted in �gure 3. Speci�cally,
using the SCURVE dataset, we map a portion of the origi-
nal dataset. The rest of the objects are mapped according
to the projected sample, so as the distance of the K nearest
neighbors is preserved as well as possible in the lower dimen-
sional space. We calculate the residual error of the original

pairwise distances and the �nal ones. The residual error is
very small, which indicates that in the case of a dynamic

database, we don't have to repeat the mapping of all the
points again. Of course, this holds under the assumption
that the sample is representative of the whole database.
The observed "overclustering" e�ect can be mitigated if

instead of keeping only the k closest neighbors, we try to
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Figure 2: Left:Mapping in 2-dimensions of LLE and

ISOMAP using the GAUSSIAN5D dataset. Right:

Using our modi�ed mapping the clusters are clearly

separated.

reconstruct the distances to the k
2
closest objects, as well

as to the k
2
farthest objects. This is likely to provide us

with enhanced visualization results, since not only is it going
to preserve the local neighborhood, but also it will retain
some of the original global information. This is important
and quite di�erent from global methods, where each object's

individual emphasis is lost in the average, or in the e�ort
of some global optimization criterion. In �gure 2 we can
observe that the new mapping clearly separated the clusters
of the GAUSSIAN5D dataset.
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Figure 3: Residual Error when mapping a sample

of the dataset; the remaining portion is mapped ac-

cording to the projected sample.

Therefore, for visualizing large, clustered, dynamic datasets

we propose the following technique:

1. Map the current dataset using the k=2 closest objects
and the k=2 farthest objects. This will separate clearly

the clusters.



2. For any new points that are added in the database,

we don't have to perform the mapping again. The
position of every new point in the new space is found
by preserving, as well as possible, the original distances
of its k

2
closest and k

2
farthest objects in the new space

(using Least-Square �tting).

As suggested by the previous experiment the new incremen-
tal mapping will be adequately accurate.

5. CLASSIFICATION
In a classi�cation problem, we are given J classes and N

training observations. The training observations consist of q
feature measurements x = (x1; � � � ; xq) 2 <

q and the known
class labels, y, y = 1; : : : ; J . The goal is to predict the
class label of a given query x0. It is assumed that there ex-

ists an unknown probability distribution P (x; y) from which
data are drawn. To predict the class label of a given query
x0, we need to estimate the class posterior probabilities
fP (jjx)0g

J
j=1.

The K nearest neighbor classi�cation method [13, 18] is a
simple and appealing approach to this problem: it �nds the

K nearest neighbors of x0 in the training set, and then pre-
dicts the class label of x0 as the most frequent one occurring
in the K neighbors. K nearest neighbor methods are based
on the assumption of smoothness of the target functions,
which translates to locally constant class posterior proba-

bilities. It has been shown in [6] that the one nearest neigh-
bor rule has asymptotic error rate that is at most twice the
Bayes error rate, independent of the distance metric used.
However, severe bias can be introduced in the nearest

neighbor rule in a high dimensional input feature space with
�nite samples ([3]) . The assumption of smoothness becomes

invalid for any �xed distance metric when the input obser-
vation approaches class boundaries. One way to tackle this
problem is to develop locally adaptive metric techniques,
with the objective of producing modi�ed local neighbor-
hoods in which the posterior probabilities are approximately
constant. The common idea in these techniques ([10, 11, 7])

is that the weight assigned to a feature, locally at a given
query point q, re
ects its estimated relevance to predict the
class label of q: larger weights correspond to larger capabil-
ities in predicting class posterior probabilities.
A major drawback of locally adaptive metric techniques

for nearest neighbor classi�cation is the fact that they all

perform the K-NN procedure multiple times in a feature
space that is tranformed by means of weightings, but has the
same number of dimensions as the original one. In high di-
mensional spaces, then, these techniques become very costly.
Here, we propose to overcome this limitation by applying the

K-NN classi�cation in the lower dimensional space provided
by Isomap, where we can construct eÆcient index structures.
In contrast to global dimensionality reduction techniques

like SVD, the Isomap procedure has the objective of reduc-
ing the dimensionality of the input space while preserving
the local structure of the dataset as much as possible. This

feature makes Isomap particularly suited for being combined
with nearest neighbor techniques, that rely on the queries'
local neighborhoods to address the classi�cation problem.

6. OUR APPROACH
The mapping performed by Isomap, combined with the

label information provided by the training data, can help

us reduce the curse-of-dimensionality e�ect. We take into

consideration the non isotropic characteristics of the input
feature space at di�erent locations, thereby achieving more
accurate estimations. Moreover, since we will perform near-
est neighbor classi�cation in the reduced space, this process
will result in a boosted eÆciency.
When computing the distance between two points for clas-

si�cation, we desire to consider the two points close to each
other if they belong to the same class, and far from each
other otherwise. Therefore, we aim to compute a transfor-
mation that maps similar observations, in terms of class pos-
terior probabilities, to nearby points in feature space, and
observations that show large di�erences in class posterior

probabilities to distant points in feature space. We derive
such a transformation by modifying step 1 of the Isomap
procedure to take into consideration the labelling of points.
We proceed as follows. We �rst compute the K near-

est neighbors of each data point x (we set K = 10 in our
experiments). Let us denote with Ksame the set of nearest

neighbors having the same class label as x. We then \move"
each nearest neighbor in Ksame closer to x by rescaling their
Euclidean distance by a constant factor (set to 1/10 in our
experiments). This mapping construction is summarized in
Figure 5.
In constrast to visualization tasks, where we wish to pre-

serve the intrinsic metric structure for neighbors as much
as possible, here we wish to stretch or constrict such metric
in order to derive homogeneous neighborhoods in the trans-
formed space. Our mapping construction aims to achieve
this goal. Once we have derived the map into d dimensions,

we apply K-NN classi�cation in the reduced feature space to
classify a given query x0. We �rst need to derive the query's
coordinates in d dimensions. To achieve this goal, we learn
an explicit mapping f : <q

! <
d using the smooth inter-

polation technique provided by radial basis function (RBF)
networks [12, 21], applied to the known corresponding pairs

obtained as output in Figure 5.

Radial Basis Functions

Figure 4: Linear combination of three Gaussian Ba-

sis Functions.

An RBF neural network solves a curve-�tting approxima-

tion problem in a high-dimensional space. It involves three
di�erent layers of nodes. The input layer is made up of
source nodes. The second layer is a hidden layer of high
enough dimension. The ouput layer supplies the response
of the network to the activation patterns applied to the in-
put layer. The transformation from the input space to the

hidden-unit space is nonlinear, whereas the transformation



from the hidden-unit space to the output space is linear.

Through careful design, it is possible to reduce the dimen-
sion of the hidden-unit space, by making the centers and
spread of the hidden units adaptive. Figure 4 shows the
e�ect of combining three Gaussian Basis Functions with dif-
ferent centers and spread.
The training phase constitutes the optimization of a �t-

ting procedure to construct the surface f , based on known
data points presented to the network in the form of input-
output examples. Speci�cally, we train an RBF network
with q input nodes, d output nodes, and nonlinear hidden
units shaped as Gaussians. In our experiments, to avoid
over�tting, we adapt the centers and spread of the hid-

den units via cross-validation, and making use of the known
corresponding N pairs f(x;xd)g

N
1 . The RBF network con-

struction process is summarized in Figure 6. Figure 7 de-
scribes the classi�cation step, that involves mapping the in-
put query x0 using the RBF network, and then applying
the K-NN procedure in the reduced d dimensional space.

We call the whole procedure WeightedIso. To summarize,
WeightedIso performs three steps as follows:

1. Mapping Contruction (Figure 5);

2. Network Contruction (Figure 6);

3. Classi�cation (Figure 7).

In our experiments we also explore an alternative pro-
cedure, with the same objective of reducing the computa-
tional cost of applying locally adaptive metric techniques
in high dimensional spaces. We call this method Iso+Ada.
It combines the Isomap technique with the adaptive metric

nearest neighbor technique (ADAMENN) introduced in [7].
Iso+Ada �rst performs the Isomap procedure (unchanged
this time) on the training data, and then applies the ADAMENN
technique in the reduced feature space to classify a query
point. As for WeightedIso, the coordinates of the query in

the d dimensional feature space are computed via an RBF
network.

Mapping Construction:

� Input: Training data T = f(x; y)gN1

� Execute on the training data the Isomap procedure
modi�ed as follows:

{ Calculate the K closest neighbors xk of each x
in T ;

{ Let Ksame be the set of nearest neighbors that
have the same class label as x;

� For each xk 2 Ksame: scale the distance
dis(xk;x) by a factor of 1/�, � > 1

{ Use the de�ned distances to create the Minimum
Spanning Tree.

� Output: Set of N pairs f(x;xd)g
N
1 , where xd corre-

sponds to x mapped into d dimensions.

Figure 5: The Mapping construction phase of the

WeightedIso algorithm

RBF Network Construction:

� Input: Training data f(x;xd)g
N
1

1. Train an RBF network NET with q input nodes
and d output nodes, using the input training
pairs.

� Output: RBF network NET .

Figure 6: The RBF network construction phase of

the WeightedIso algorithm

Classi�cation:

� Input: RBF network NET , fxd; yg
N
1 , query x0

1. Use NET to map x0 into the d dimensional
space;

2. Use the points fxd; yg
N
1 to apply the K-NN rule

in the d dimensional space, and classify x0

� Output: Classi�cation label for x0.

Figure 7: The Classi�cation phase of the Weighte-

dIso algorithm

7. EXPERIMENTS
We compare several classi�cation methods using real data:

� ADAMENN-adaptive metric nearest neighbor technique

(one iteration) [7]. It uses the Chi-squared distance in order
to estimate to which extent each dimension can be relied on
to predict class posterior probabilities. The estimation pro-
cess is carried on over a local region of the query. Features
are weighted accordingly to their estimated local relevance.
� i-ADAMENN - ADAMENN with �ve iterations;

� K-NN method using the Euclidean distance measure;
� C4.5 decision tree method [23];
� Machete [10]. It is an adaptive NN procedure that com-
bines recursive partitioning with the K-NN technique. Ma-
chete recursively homes in to the query point by splitting
the space at each step along the most relevant feature. Rel-

evance of each feature is measured in terms of the informa-
tion gain provided by knowing the measurement along that
dimension.
� Scythe [10]. It is a generalization of the Machete algo-
rithm, in which the input variables in
uence each split in

proportion to their estimated local relevance, rather than
the winner-take-all strategy of Machete;
� DANN - Discriminant Adaptive Nearest Neighbor Tech-
nique. It is a discriminant adaptive nearest neighbor clas-
si�cation technique [11]. It employes a metric that locally
behaves as a local linear discriminant metric: larger weights

are credited to features that well separates the mean clus-
ters, relative to the within class spread.
� i-DANN - DANN with �ve iterations [11].
Procedural parameters for each method were determined

empirically through cross-validation. The data sets used
were taken from the UCI Machine Learning Database Repos-

itory [20]. They are: Iris, Sonar, Glass, Liver, Lung, Image,



and Vowel. Cardinalities, dimensions, and number of classes

for each data set are summarized in Table 1.

Table 1: The datasets used in our experiments

Dataset ] data ] dims ] classes experiment

Iris 100 4 2 leave 1 out c-v

Sonar 208 60 2 leave 1 out c-v

Glass 214 9 6 leave 1 out c-v

Liver 345 6 2 leave 1 out c-v

Lung 32 56 3 leave 1 out c-v

Image 640 16 15 ten 2fold c-v

Vowel 528 10 11 ten 2fold c-v

8. RESULTS
Tables 2 and 3 show the (cross-validated) error rates for

the ten methods under consideration on the seven real data

sets. The average error rates for the smaller data sets (i.e.,
Iris, Sonar, Glass, Liver, and Lung) were based on leave-one-
out cross-validation, and the error rates for Image and Vowel
were based on ten two-fold-cross-validation, as summarized
in Table 1.

In Figure 9 we plot the error rates obtained for theWeighte-
dIso method for di�erent values of reduced dimensionality d
(up to 15), and for each data set. We can observe an \elbow"
shaped curve for each data set, where the largest improve-
ments in error rates are found when d increases from two
to three and four. This means that, through our mapping

transformation, we are able to achieve a good discrimination
level between classes in low dimensional spaces. As a conse-
quence, it becomes feasible to construct indexing structures
that allow a fast nearest neighbor search in the reduced fea-
ture space. In Tables 2 and 3, we report the lowest error
rate obtained with the WeightedIso technique for each data

set. We use the d value that gives the lowest error rate
for each data set to run the Iso+Ada technique, and report
the corresponding error rates in Tables 2 and 3. We apply
the remaining eight techniques in the original q-dimensional
feature space.
Di�erent methods give the best performance on di�erent

data sets. Iso+Ada gives the best performance on three
data sets (Iris, Image, and Lung), and is close to the best
performer in the remaining four data sets. A large gain in
performance is achieved by both Iso+Ada and WeightedIso
for the lung data. The data for this problem are extremely

sparse in the original feature space (only 32 points with 56
dimensions). Both the WeightedIso and Iso+Ada techniques
reach an error rate of 34.4% in a two-dimensional space.
It is natural to ask the question of robustness. That is,

how well a particular method m performs on average in sit-
uations that are most favorable to other procedures. We

capture robustness by computing the ratio bm of its error
rate em and the smallest error rate over all methods being
compared in a particular example:

bm = em= min
1�k�10

ek:

Thus, the best method m� for that example has bm� = 1,

and all other methods have larger values bm � 1, for m 6=

m�. The larger the value of bm, the worse the performance

of the mth method is in relation to the best one for that
example, among the methods being compared. The dis-
tribution of the bm values for each method m over all the
examples, therefore, seems to be a good indicator concern-
ing its robustness. For example, if a particular method has
an error rate close to the best in every problem, its bm val-

ues should be densely distributed around the value 1. Any
method whose b value distribution deviates from this ideal
distribution re
ects its lack of robustness.
Figure 8 plots the distribution of bm for each method over

the seven simulated data sets. For each method we stack
the seven bm values. We can observe that the ADAMENN

technique is the most robust technique among the meth-
ods applied in the original q-dimensional feature space, and
Iso+Ada is capable of achieving the same performance. The
b values for both methods, in fact, are always very close to
1 (the sum of the values being slightly less for Iso+Ada).
Therefore Iso+Ada shows a very robust behavior, achieved

in feature spaces much smaller than the original one, upon
which ADAMENN has operated. The WeightedIso tech-
nique also shows a robust behavior, still competitive with
the adaptive techniques that operates in the original feature
space. C4.5 is the worst performer. Its poor performance is
likely due to estimates with large bias and variance, due to

the greedy strategy it employes, and to the partitioning of
the input space in disjoint regions.

Table 2: Average classi�cation error rates.

Iris Sonar Glass Liver Lung

WeightedIso 4 13.5 30.4 37.1 34.4

Iso+Ada 2.0 12.0 27.5 34.8 34.4

ADAMENN 3.0 9.1 24.8 30.7 40.6

i-ADAMENN 5.0 9.6 24.8 30.4 40.6

K-NN 6.0 12.5 28.0 32.5 50.0

C4.5 8.0 23.1 31.8 38.3 59.4

Machete 5.0 21.2 28.0 27.5 50.0

Scythe 4.0 16.3 27.1 27.5 50.0

DANN 6.0 7.7 27.1 30.1 46.9

i-DANN 6.0 9.1 26.6 27.8 40.6

Table 3: Average classi�cation error rates.

Vowel Image

WeightedIso 17.5 6.7

Iso+Ada 11.4 4.3

ADAMENN 10.7 5.2

i-ADAMENN 10.9 5.2

K-NN 11.8 6.1

C4.5 36.7 21.6

Machete 20.2 12.3

Scythe 15.5 5.0

DANN 12.5 12.9

i-DANN 21.8 18.1
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Figure 8: Performance distributions.
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Figure 9: Error rate for the WeightedIso method

as a function of the dimensionality d of the reduced
feature space.

9. CONCLUSIONS
We have addressed the issue of using local embeddings for

data visualization and classi�cation. We have analyzed the
LLE and Isomap techniques, and enhanced their visualiza-
tion power for data scattered among multiple clusters. Fur-

thermore, we have tackled the curse-of-dimensionality prob-
lem for classi�cation by combining the Isomap procedure
with locally adaptive metric techniques for nearest neigh-
bor classi�cation. Using real data sets we have shown that
our methods provide the same classi�cation power as other
methods, but in a much lower dimensional space. There-

fore, since the proposed methods considerably reduce the di-
mensionality of the original feature space, eÆcient indexing
data structures can be employed to perform nearest neigh-
bor search.
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