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Abstract is due to its widespread use and popularity among the data-
_ _ - _mining and Al community. Even though many other clus-
This work examines under what conditions Compressiontering techniques with superior clustering propertiesehav
methodologies can retain the outcome of clustering oper- gppeared (such as spectral methods [R)Means is still
ations. We focus on the popular k-Means clustering al- 3 prevalent approach due to its many desirable proper-
gorithm and we demonstrate how a properly constructed ties: simplicity of implementation, amenity to paralliiz
compression scheme based on post-clustering quantizationion and speed of execution. For applications where speed
is capable of maintaining the global cluster structure. Our s of essence or even for doing an initial pre-clustering for
analytical derivation indicate that a 1-bit moment preserv  gata analysisik-Means is still very much the algorithm of
ing quantizer per cluster is sufficient to retain the orig- choice. Variations of thé-Means process are widely used
inal data clusters. Merits of the proposed compression 45 syb-processes in many analytic components.
technique include: a) reduced storage requirements with Our approach may be intuitively described as follows.

cléjstear::jgcguirgn;eersé ?rd::'?)r?;lg?g};t(;n t.hea?.”g'tn;l] val;_ We begin by examining the objective function optimized
ues, ) shape preservati visualizalion pur ¢, r-_peans clustering, and then determine circumstances

high-di ional datasets. including 1-di ional and 2 inder which guantization or data simplification does not
\gh-dimensional datasets, Including L-dimensional an affect it. Since the objective function is defined in terms

Sr:me?s"?nfl :lme;ie;eﬁ (Srhapft daﬁetﬁ) and r?]em:)ni\};[?‘t%f the intra-cluster variance, we show that by designing a
€ cluster preservation property. - Ve also compare guantizer which preserves the first two moments of a time-

E;‘er}ggu;%;rgggszgos'mspl'fr'](.:?ct::t t.i:]: hro'qgﬁ]se:;sth;o:'hmg'nseries cluster, the objective function is preserved. Wa the
' W signin Improv how that this also means that the clustering outcome will

the clustering and shape preservation of the compressedze preserved. Finally, we show that using Moment Preserv-

datasets. ing Quantization (MPQ) a 1-bit quantizer per sample and
class is sufficient to retain perfectly the clustering stne.

The results that we present here apply for the optimal

The exponential increase in data sizes is currently driv- Partition of the K-Means clustering. In practice though,
ing mining techniques into combining approximation tech- Pecause of the gradient-descent based algorithmzer
niques with popular knowledge extraction algorithms, in Méans execution (Lloyd's algorithm), and/or potentially
order to allow even more tractable execution times. In Malformed clusters on the original data, final results may
this study we explore how clustering algorithms could be deviate slightly. Our empirical results, on multiple dagéss
combined with compression techniques, with the concur- SNOW that clustering results are well preserved by this guan
rent goal of providingquality guaranteeson the cluster-  tization. Importantly, we identify the cases and condsion
ing outcome of the approximated data. In particular, we which lead to potential discrepancies in final results.
examineunder what circumstancele outcome of thex - Applications of the preservation quantization based com-
Means clustering results can be preserved by compressioression scheme wit’-Means cluster preservation, can
or data simplification methods. To this end, we present a bit- find applications in the following areas:
guantization technique that satisfies the problem ded@mlera a)Reduced Storage Storing the quantized dataset requires
Therefore, clustering on the simplified dataset will lead to much less space than storing the original set. This also
similar results as on the uncompressed dataset. To the bestanslates to reduced transmission cost if the data sesneed
of our knowledge, this is the first work that provides such to be distributed. Importantly, the level of compression is
guarantees for th&-Means algorithm. tunable based on the number of bits allocated to the scalar

Our choice for selecting(-Means as our focus of study quantizers. Other approaches that investigate scalirtbeup

1 Introduction
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Figure 1. Objective: Design of quantization scheme for K-Means cluster preservation.

K-Means algorithm include [8, 4]. They examine the prob- K-Means, considering the scenario when the data are seg-
lem either from a dimensionality reduction or sampling per- regated either vertically or horizontally. In our case, the
spective, while this work views the problem from a quan- data are not separated, but are distributed as a whole. Sim-
tizer design angle. Additionally, these techniques make noilar in spirit to our work are also the following efforts:
assertions with regards to the cluster preservation. Parmeswaran and Blough [11] present clustering preserva-

b) Quantization with Shape Preservation When the tion techniques through Nearest Neighbor data substitutio
high-dimensional objects in a dataset represent timeseri and.OIiveira and Zaane.[lo] present.rotation based transfor
(i.e., theT samples of the 1-D time series are collected into Mations (RBT) that retain the clustering outcome, by chang-

aT dimensional vector), the proposed quantization retainsNg the object values but maintaining the pairwise object
very closely the shape of the original sequences. This maked&listances and hence the clustering results.

the compressed data amenable for a variety of mining and  The remaining of the paper is organized as follows; we

plication. In this area, our work has overlap with various problem of interest in Section 3. In Section 4 we introduce a
time-series simplification techniques. Bagnall etal. [@}p  1-Pit Moment Preserving Quantization scheme (MPQ) and
pose abinary clippingmethod for time-series data, where discuss its properties. We detail our a!gorlthm in Section 5
the data are converted infand! if they lie above or below and present results on real data sets in Section 6. We con-
the mean value baseline. This representation has integesti clude in Section 7 with directions for future research. In
theoretical underpinnings and has been applied for Speedlhe course of the paper we will describe the basic notions of
ing up the execution of th&'-Means algorithm. We com-  Our technique utilizing time-series as data objects. Tis i
pare against this work in the experimental section. Mega- {0 capture in a more visual way the fundamental constructs,
looikonomou et al. [9] present a piecewise vector quan- and also to illustrate more effectively the shape presma_t
tized approximation for time-series data, which preservesProperty of the proposed scheme. However, the following
with high accuracy the shape of the original sequences. Fi-discussion applies to any high-dimensional object.

qally, approaches such as v_vavelet or Fourigr ap.pro>§i.ma—2 Background: K-Means Clustering

tions have been used extensively for time-series simplifica ) o

tion, but none of these approaches are inherently designeq COnsider a se consisting of V' sample vectors;

for providing guarantees on the clustering outcome, which (1=J<1V), each containing’ dimensions:;; (1<i<T). K-
is one of the significant contributions of this work. Means clustering involves grouping th¢ sample vectors

) ) . . L into K non-overlapping clusters, i.e., subs8is(1<k<K
¢) Privacy Preserving Clustering By disseminating the it ), 5, — ), such that the sum of intra-class variance is
guantized dataset, an added benefit is that the original Va"minimized. We may define the sum of intra-class variances
ues are not distributed - only sufficient approximations are .
revealed. Therefore our approach can also be utilized for K
privacy enabled mining. Vaidya et al. [12] and Jagan- V= Z Z (xj — Mk)T (% — px) (1)
nathan et al. [6] present privacy preserving variations for k=1 x, €Sk



— 1 1 i nantized da
wherepy, = 33, g, %; is the centroid of each clus- wde

ter. We can define the number of vectors in clusteas
N = |Sk|. V is the objective function that th&-Means
algorithm attempts to minimize by selecting subs®ts

The objective can be expanded as follows:

K T
V= Z Z Z (zji — i)’ (2)

k=1x;ES8) i=1

in terms of the individual dimensions;; of each objeck;.
Furthermore by swapping summations we get:

— ki)’ ©))

or -
V= Z Z (%22 + iy — 2T jipi ) (4)
k=11i=1 x;ESy
or
K T
V=2 20w | sk, )
k=1i=1 x;ESk
or finally

1
> " 1SH D @il |

X €Sk
(6)

where we use the fact thaj,; = ‘8—1' ijesk T

From the above derivation we observe two things:

e The objective function depends on the fifst ¢ ;;) and
second momen{( z7;) of the data samples

quantized data
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Figure 2. Overview of the proposed quantizer design

wish to design a quantization scheme such that the cluster-
ing structure is retained after quantization. Equivalgrnitl

the K-Means algorithm is used to cluster the quantized time
series, it should result in exactly the same clustering as ob
tained on the original time series.

In order to achieve the defined objective we take the ap-
proach shown in Figure 2. As shown, we desigrscalar
1-bit quantizers per cluster, with one per dimension (oetim
instance, when dealing with time-series), i.e., one qaanti
for the set ofV,, 1-D samples on the same dimension (or co-
located in time) for clustek. Each quantizer is described
in terms of a codebook, consisting of a single threshold,
as well as two corresponding reconstruction levels. After
guantization, the resulting signals may be viewed as binary
0-1 sequences. In the rest of the paper we show that we
can build such 1-bit (single threshold) moment preserving
guantizers that ensure that the simplified (quantizedseata
will resultin identical clusters as the original (un-quaatl)
dataset, when using th€é-Means algorithm.

4 Moment Preserving Quantization

Here we briefly review Moment Preserving Quantization
(MPQ), which typically being used in the image processing

e The result of the objective function depends on the ob- literature [5] for retaining the texture properties of arage

ject to cluster assignmenﬂkK:1 ZiTzl )

while providing good compression. We will present a quan-
tizer that preserves the first two moments (i.e, mean and

In the upcoming sections we will explicate a quantization variance) for a set of samples, without making any assump-
scheme that (under certain assumptions) closely obeys theions on the distribution of the samples. We then derive two

above two points.

3 Problem Specification and Approach

Our goal is to design a quantization scheme that retains

the clustering structure as required by thieMeans algo-

rithm. An illustration of this is shown in Figure 1. Consider
the original data that consists of six time-series beloggin
to three different clusters. These clusters may be idedtifie

important observations for the proposed quantization:

e The quantization will preserve the mean and variance
for any subset of samples.

e The quantization will lead to ‘shrinking’ of the origi-
nal clusters under certain assumptions (which will be
discussed later on)

We utilize these key observations in showing that the

using theK'-Means algorithm on the original data set. We (optimal) K-Means clustering on the original and the quan-
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Figure 3. Different types of 1-D clusters
tized data will not change. all points below the mean are quantized to the same value

MPQ: The key idea behind MPQ may be described as fol- \L’i\"th d|s;cianced7,,“ﬁ from the mean. Idmaz > dmax and
lows. Consider a set dV 1-D samplesc; (1<j<N) with min < Gmin WE NAVE,
sample meam and sample variance®>. The samples are

transformed using the following 1-bit quantizer: S (@i > (dmax)’ + Y (dmin)” > No?,
J=1 T2 zj<p
N_N, (10)
‘o2 z;> . ; i
&= K x 9 p=# @) sinced, .. >0 andd,,;,< — o for any arbitrary data dis-
=04/ N_i‘jvg Ty < p tribution. This is clearly a contradiction, since the LHS is

equal toNo2.

Additionally, we show that the extent of the cluster in
each direction does not increase due to quantization, ex-
cept under some special conditions. If label the direc-
tion in which samples are greater than the mean as the

where N, is the number of samples that have magnitude
greater than or equal t@. The resulting quantizer guaran-
tees the preservation of the first two moments [5] of this set
of samples i.e.

1 X 1 N right direction, and the direction in which samples are less
¥ D ()P = I > (@)Pforp=1,2. (8)  than the mean as tHeft direction. Consider first the ex-
j=1 j=1 tent of the cluster in the right direction. For the clus-

We underscore that this is Bbit quantizersince each ter extent to increase after quantization, we need to have
sample can be replaced by a 0 or 1 indicating that it is abovedimar = 01/ "2 > dyaz, Where we use the definition
or below the mean value, since the mean value is preserve®f the quant|zer The above means that the extent in the
and hence can be reconstructed from the quantized valuesight direction can increase only whéyj, < N — N, (this
themselves. is a necessary, but not sufficient condition). Furthermore,
as N, decreases for a fixety, it is more likely that quan-
More importantly for our discussion, we can show that fization will lead to a greater increase in the right extent.
this quantization leads to clusters that are tighter thanTnhe scenario when this does actually happen is when a clus-
before quantization. ~ Formally, let the extent of the ter contains a small number of points that are far from the
cluster be defined bydpn.. = maz;(z; —p) and mean in the right direction, combined with a large number
dmin = min; (x; — p). Similarly we can definel,,,;,, = of points to the left of the mean. Intuitively, such a cluster
min; (&; — p1) andd,nq, = mazx; (&; — ). We firstprove  is “ill-behaved” in that the data within it, actually belong
that we cannot have the cluster extent increase in both di-to multiple sub-clusters that minimally overlap with each
rections simultaneously, i.e., we cannot hawe., > dmas other. Ideally, this indicates that we can get better chirsge
andd,nin < dumin simultaneously. This is easy to show via performance by partitioning this into multiple sub-cluste
contradiction. The moment preservation of the quantimatio This idea is illustrated in Figure 3, where we show two 1-D
implies cluster examples. On the left side is a “well-behaved” clus-
N ) , tgrhtthqt(jha}s a rgnagoEabl):juTifotrm spr:ead,dV\;hetre?s on :;e
2 5 5 right side is an ill-behaved cluster, where data to the ri
Z(xj = Z (dm‘”) + Z <dmi"> - O O?the mean consists of very few but distant samples. In%he
figure we show the cluster samples, the mean, as well as
We use the fact that all points above the mean are quantizedhe reconstruction levels in both directions. As shown, for
to the same value with distandg,,, from the mean, and the ill-behaved clusters it is possible that the extent ef th

Jj=1 Tj2p zj<p



cluster increases in one direction after quantization. If we now use the scalar moment preserving quantization,
In general, for well-behaved data clusters, we have designed based on the optimal clustering lak&lswe can

Amae<dmaz- Similarly, for the left extent, we have show that.

dmin>dmin for well-behaved clusters. R R R
Vort — yort < y* andVeort = Vort < 7 (13)
5 K-Means and Moment Preserving Quanti- h . N
. € moment preserving property of the quantization en-
zation sures that/°Pt = Vort while Vort < V* by definition of
We now show how the MPQ scheme may be used to the optimal Clustering scheme. Additionally, we know that
quantize data samples while retaining the clustering ebjec for “well-behaved” clusters, quantization actually resun
tive function of the/k-Means algorithm. GiverV time- shrinking the cluster extent towards the mean, making them
series of lengti” each and the clustering result, i.e., subsets tighter. As the mean squared error (MSE) optitiaMeans
Sk(1... K), as determined by the outcome of tieMeans clustering uses nearest-neighbor assignment of data sam-
algorithm on the unquantized data, we builldlL-bit scalar ples to cluster centroids, the tighter clusters are guaeaht
quantizers per class. The scalar quantizer for C|[&$e]’p- to retain the optimality of the original Clustering scheme.
erates onVy 5amp|es (One per object) of the same dimen- This is an important result as it |mp|leS that if we quan-
sion (or time for time-series data), and appropriately maps tize the original time series using a set of 1-bit moment pre-
them into two bins. Equivalently we design one 1-bit quan- Serving quantizers per cluster, designed based on the opti-
tizer per dimension of th&/,, vectors clustered into cluster ~Mal clustering labels, the new set of quantized samples re-
k. A value ‘0’ represents that the time sample is below the tains the same optimal clustering structure. Alternaivel
quantizer thresho[ld while a value ‘1’ represents that the if we take this new set of quantized time Series, and cluster
sample is above the quantizer threshold. As a result of thisthem using theX'-Means algorithm, they will result in the
quantization each time-series is then converted into apina Same cluster labels as for the original unquantized data set
sequence of 1's and 0's. Note that a O (or 1) may actu-
ally correspond to different reconstruction levels atatiéht 5.2 Compression Efficiency

time instances. Here we analyze the compression efficiency of the pro-

posed quantization scheme. For the sefNobbject with
T dimensions clustered int& clusters, let each unquan-
tized sample be represented Bybits. Then the total stor-

Recall equation 6 which is the expanded derivation of the age requirement iBTN bits for the unquantized data,
K-Means objective function. For the new quantized values and N log, (K) bits to indicate the clustering labels - with
Z;; and given the properties of the moment preserving quan-log, (K) bits per object.

5.1 Preservation of the K-Means Cluster-
ing Outcome

tization, it is guaranteed that Instead, if we use a 1-bit quantizer we need to store only
X 2 TN bits for all objects, along witR BT K bits to store the
N . 1 . two reconstruction levels per dimension per cluster. Note
= 2 —_— e = . . -1
V= Z Z Z Lji |Sk| Z i v that the threshold does not need to be explicitly stored as it

k=11=1 XjESk XjESk

can be deduced from the reconstructed samples, since the
] . ) (11) _gquantization does not distort the mean. FinaNylog, (K)
What this means is that, given the cluster labels associated,js are also required to indicate the clustering labelsidde

with each point, we can use 1-bit scalar moment preserv-hq compression efficiengy achieved by our moment pre-
ing quantization across each dimension (time sample) of theserving quantization scheme is:

vector (time series) within each cluster to guarantee tieat t
resulting clustering metric is preserved.

Additionally, consider that we know the optimal set of
clustersS;*", i.e., true clustering structure independent of
the gradient descent Lloyd Algorithm fdf'-Means. This
means that, for any other partitioning of the data into clus- Since typically we haveV — 1 > 2K the compression effi-

tersS;;, we have: ciencyp < 1.
yort  — ZKf ) ot ZZ; (2 — #ki)2 A better compression ratio can be achieved by noting that
K k=1 x"esk'T =t ) since the quantization preserves the underlying clugerin
< Dkm1 xgesy 2uimt (Thi — )" =V (12) structure, one does not explicitly need to store the cluster

_ bytesquantized TN +2BTK + Nlog,(K)
” = bytes unquantized BTN + Nlog,(K)

. (14)

1ForMoment-Preserving-Quantizatidhis is the mean of th&/;, sam- 2This discussion ignores the gradient descent nature oflgugithm
ples. that sometimes gets trapped in local minima.



Common Chimpanzee
male 2

Original Data Proposed Quantization Binary Clipping

YN VWV e

\/\/-/Wu—n_n-

Owl Monkey Female

\/WWW

Figure 4. Shape preservation of quantization techniques. From left to right: Skull shapes, original extracted sequences, sequences after
proposed quantization, sequences after the ‘clipping’ approach of [3]

labels. Then, while we requirBT N bits for the original jects is well preserved in the experimental section. Fnall
data set, for the quantized data sets doly, (27 K)T'N we note that pre-clustering cluster preservation techesqu
bits are sufficient. This is because there are @nppssible such as [10, 11], can achieve cluster preservation and data
values that each of thE samples can take per cluster, and obfuscation, but they are not designed for data compression
K clusters, i.e., a total of at mo87 K values. Hence we  or shape preservation. Such approaches completely change
need at moslog, (27 K') bits per sample. The correspond- the ‘shape’ of the original data by transforming them into a

ing no label compression efficiengymay be defined as: different domain.
. log,(2TK) Our K-Means cluster preservation technique is designed
p= B : (15) for Euclidean based separable distance functions between

objects. However, in many high-dimensional datasets,(e.g.
for time-series) warping distance functions and other non-
separable functions are also typically used. While our
technique does not carry over to such distance measures,
in Section 6.3 we show sample results of our technique
. on phase (rotation) invariantistance measures, the out-
resent the temporal mean of each of fiebject, and then come of which closely resembles that of warped distance

2T bits per time sample, i.e., a total &f( B + T). b't.s’ this functions. Extensions to support other types of distance
however comes at the expense of post quantization cluster-

: : .~ measures are under consideration.
ing accuracy. In the experiments show that our technique

achieves superior clustering performance on the quantized

data compared to such approaches. 6 Experiments

In the experimental section 6.4 we evaluate on real
datasets the compression efficiency of the quantization
scheme.

We also note that, while other quantization schemes suc
as the the clipping approach of [3] require juisbits to rep-

. Discussio . . .
5.3 1seussion In this section we validate the performance of our quan-

While it is easy to see that a trivial cluster-preserving tization on real data sets. We examine various character-
compression can be achieved by retaining only cluster cen-stics of the quantization scheme including its effect on
troids and the label for each vector and distributing just the ‘shape’ of the data, quality of cluster preservation and
those, it is nonetheless apparent that this compression isve also delineate preliminary results for for neighborhood
very lossy and destroys distinctions among objects within (k-NN) classification. We utilize stock market time-series
the same cluster. Therefore such an approach would havelata, as well as 2-dimensional shape contour data. The 2D
limited the use of the compressed dataset in other operacontours come from three datasets, represergiag | s,
tions such as visualization or Nearest-Neighbor search. In f i sh andl eaves shapes. We convert the 2D shapes into
stead, in our approach we can control the granularity of 1D sequences by finding the center of mass and extracting
compression, and show that even with 1-bit quantization thethe distance to all perimeter points. Such 1D sequence fea-
compressed data samples retain “shape” as well as neightures are commonly utilized in shape indexing and search
borhood relationships. We depict that neighborhood is ob- experiments [7].



6.1 Shape Preservation series, using the same initial conditions (the same sam-
ple points before and after quantization were chosen as the
initial cluster centroids) and compare the resulting &din
cluster centroids before and after quantization. These cen

shap((aj 'f we hprekselnlt redsults u5||r:19 the415 s_equgnckes” ®Xiroids are shown in Figure 6. As may be seen from the fig-
tracted from theskul | s dataset. Figure 4 depicts 6 skulls ure, a majority of the cluster centroids are almost idehtica

with extragted b sequences, the quantized fepresentatio%efore and after quantization. This is however not true for
and the ‘clipped’ representation as presented in the work Ofclusters 3 and 6. There are two reasons for this, clusters 3

[f?’]' Iln OL:r ql;antlﬁed rep_rese_ntatlor(;, V\;ehus%'the 'rf,corlmstruc and 6 are the least well-behaved of the clusters, and both
tion fevels of each quantizer instead of the 0" or ‘1" vallies violate thed,,... > dmn.. condition. Additionally, as the

We observe that the proposed moment-preserving quantizaT_ond algorithm is gradient descent based, while the opti-

tion retains very closely th_e form of the origipal SEQUENCES ) clustering structure remains before and after quantiza
On the other hand the clipped representation captures thefion, it is possible that an intermediate sub-optimal aust

;j_ata fluctutag_ons_, bUt tduti to d_tfrf'e purel;k/) bt:,r\llary rtipr:;e?ta-ing, as demonstrated here, may be different. However, even
lon cannot discriminate the dierence between e Meall - ¢, ;g gata set, quantization results in the mis-labetihg

amplitudes at different positions of the sequence. only 57 of the 1800 time-series.(3%), a majority of which
(49) belong to these two clusters. The resulting confusion
matrix, comparing unquantized and quantized labels is:

Here we demonstrate that the proposed 1-bit quantiza-
tion does in fact retain the with high accuracy the object

6.2 Cluster preservation

Now we examine how well the clusters are retained on

the quantized dataset. We utilize time series from stock 8 100 0 0 2 0

market data corresponding to 1800 stock symbols from 8 1(;9 809 8 8 4?3 (1) 8

companies listed on Nasdagq, reporting the stock values for 0 0 0 98 0 0 0 0

a period of approximately 3 years. 0 0o 0 0 329 0 0 0 )
Our theoretical results about cluster preservation are ap- 0 0O 6 0 1 129 0 1

plicable for the optimal<-Means algorithm. Since the ex- 1 0 0 0 0 0 353 0

act solution is NP-hard to compute, in practice a gradient 0 0O 0 0 0 0 0 198 |

descent (Lloyd’s algorithm) variation is used for computa- )

tional simplicity. Therefore, here we empirically evaleat Where the column index corresponds to the label before

the discrepancy of the clustering results, when the nostexa duantization and the row index represents the label after

algorithm is utilized. guantization. The confusion is primarily restricted toalat
Since, we do not have the cluster labels for aforemen- from clusters 3 and 6, and this is also reflected in Figure 6.

tioned dataset, we cluster these time-series into 8 chister

using the Lloyd Algorithm fori’-Means. As we desire a  jon [3] to quantize the time series into 1 bit per sample and
near-optimal set of clusters, we repeat #ieMeans algo-  then redo the clustering. Clipping is performed per time se-
rithm with multiple starting points and select the set that (jes and replaces a sample with ‘1’ if it lies above the mean
achieves the smallegt-Means metric. Note that we can  (computed across the time samples of that series) and ‘0’
also use algorithms such ds-Means++ [1] to achieve |t jt jies below. Clipping thus does not require any prior

a very good initial estimate of the cluster centroids and nowiledge of the data clusters. However, this results in a
maximize the probability of finding the global optimum.  gignificant impact on the label preservation performance.
We then use this clustering structure as ground truth, andreq, the stock data set, the clustering after clipping result

quantize the time series from each cluster using a separaig, only 203 time-series retaining their labdess than 20%
moment-preserving 1-bit quantizer. The resulting cluster 4t ihe data Hence, clipping not only retain as well the ob-

centroids, sample time series from each cluster, and the Upject shape, but also performs significantly worse the custe
per and lower reconstruction levels for each 1-bit quantize operations of the quantized data.
are shown in Figure S. , _ Sensitivity to initial centers: Here we evaluate the sen-
Cluster centroids are shown in black, while 3 exam- gjiive 1o the selection of the right starting point (the seed
ple series from each cluster are shown in gray. The 1-bit ceniroids). In order to quantify the impact of mismatched
guantlzer Ieyels for each samp_le for each cluster are Showrktarting points on clustering before and after quantizatio
n red.” As is clear, the quantizer does tend to follow the \ye yse a set of disjoint starting points for the two cases.
mean” shape of the cI}Jster quite nicely. We then rerun the The resylting mismatch is quantified in terms of the number
clustering using Lloyd's algorithm on the quantized time ¢ gignals mislabeled. We find that for a set of 10 different
3The number of clusters was selected manually based on thevadhie St?-rting pOi!’]tS, the mean mismatch was 140 (7.-3%) sigr)als,
quantization error, and visual inspection of the time series with a maximum of 230 (12.7%) signals. Additionally, in

For the same dataset we use the clipped data representa-
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Figure 5. Sample time series from stock data grouped into 8 clusters. Clusters numbered left to right and top to bottom.
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Figure 6. Cluster centroids before (red) and after (blue) 1-bit quantization. Clusters numbered left to right and top to bottom.

most cases cluster centroids are very close before and aftetering structure. In order to verify this, we assume that the
guantization. This low level of mismatch indicates that the unquantized clusters represent ground truth with 8 laloels f
clustering structure is well retained after quantization. the data. We use k-NN with varying numbers of neighbors
Neighborhood preservation While the quantization and use majority voting among neighbors to determine the
scheme is not designed for k-nearest neighbor (k-NN) clas-predicted class label. We present classification results on
sification, the fact that it tends to retain the clusterinlgst  the training set before and after quantization in Table 1.

ture indicates that it may also preserve results for k-NN - if ~ The limited separation between the clusters ensures that
the class labels are assumed to be determined by the clusncreasing the number of neighbors does not always result



Table 1. k-NN classification accuracy before and after quantization serving quantization (MPQ), with labels retained for 98.4%
of the series when the number of clusters is 10. Note that

5-NN | 10-NN | 20-NN reducing the number of clusters to 5 leads to the creation
Unquantized| 97.3% | 96.9% | 95.4% of more “ill-behaved” clusters, i.e., data from multipleist
Quantized | 91.1% | 91.2% | 90.4% ters gets forced into one umbrella cluster, and hence the la-

bel preservation is not as good. Additionally, as the number

of clusters increases beyond a certain level, there is-nsuf
in increasing the prediction accurécy However, impor- ficient data to train the clusters, and hence Identlfylng 15
tantly, 1-bit quantization degrades the k-NN performance clusters from the 247i sh series leads to poor clustering,
only by 5-6% in this scenario. While the scheme does @and as a result poor label preservation. As opposed to the
not provide any guarantees on nearest neighbor classificaf i sh data set, thé eaves data set has continuously in-
tion, this is a useful illustrative example to show the perfo ~ creasing performance with the number of clusters. This is
mance on real data. Attempting to bound performance of because the data set contains a much Iarger number of se-
this scheme for the k-NN classification scheme is a direc- ries, avoiding the problem of overfitting. Furthermore, as

tion for future work. the number of clusters decrease, there is a higher proba-
bility of “ill-behaved” clusters reducing performance. &h
6.3 Contour Data Sets best results are achieved for this data set are when 15

In this section we repeat the clustering experiments for when 96.8% of the series retain their label. Also, from the
thefi sh and thel eaves data sets, both of which rep-  taple we see that MPQ always outperforms Clipping, which
resent the 2D contours of the corresponding images. Theperforms reasonably on the simptérsh data set - 76% of
fi sh data set consists of 247 contours, while treaves the series retain the same label before and after quantizati
data set contains 1125 contours. These contours are con-pt performs significantly worse on theaves data set -
verted into series of samples by extracting the distance ofgnjy 349 of the samples retain their label. Finally, in terms
the perimeter points from the center of mass. Additionally, of sensitivity to the mismatch in initial centroid selectifor
when one wishes to support rotation invariance, their pe- quantized and unquantized datasets, the standard deviatio

riodogram can be extracted and used as the sequence fegqy MPQ on thef i sh data set i§.2%, while it is 6.8% for
ture, similar to the method used in [14, 13]. The new ihe| eaves dataset.

rotation-invariant sequences can now be used to provide
more flexible clustering results. Utilizing tHe sh dataset
we demonstrate some of those clustering results in Figure
7. Observe that rotated versions of the same shape are Lastly, we evaluate the compression efficiency of the
now clustered together. Obviously, various erroneous ob-quantization scheme. We report the compression efficiency
ject placements can be detected in the figure as well, how-5, as defined in equation (15), for the datasets used in our
ever, this example serves as another demonstration of thexperiments.; is reported as percentage of the quantized
meaningfulness of time-series clustering usitigMeans. dataset compared to the original one.

As we do not have ground truth labels for thesh
and| eaves datasets, we perform clustering with differ-

Compression Efficiency

Table 3. Compression Efficiency

ent number of clusters for both data sets. We present the Dataset| N | Dim | K | 5
resulting label preservation in terms of the number of serie stock | 1800 | 1004 | 8 | 44%
that retain their label after quantization. These resuks a 5 | 35%
shown in Table 2. In the table, we also present the results fish 247 | 256 | 10 | 38%
for clipping. 15 | 40%
5 | 32%
Table 2. Label Preservation with Quantization | eaves | 1125| 128 | 10 | 35%
Dataset | Scheme| K =5 [ K=10 | K =15 15| 37%
fish MPQ 96.3% | 98.4% 85% _
Clipping | 74.4% | 75.7% | 70.4% For computing these values, we assume that the unquan-
| eaves | MPQ | 79.1% | 88.6% | 96.8% tized data samples are represented by 4 bytes each, i.e.,
Clipping | 25.6% | 33.2% | 34.2% B = 32. As can be seen from the table, the compression

can be as small as 35%, a reduction in size by almost a fac-
From the table, we see that the labels forfthesh data  tor of 3. The compression efficiency varies with the number
set are very well preserved by the proposed moment pre-uf c|ysters, deteriorating ds increases. Selecting the opti-
4This may also be because the labels are not true class labekseb mal trade-off between compression, clustering, and aluste
derived from clustering. label preservation is an important practical considendito
this scheme.
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We showcased compression schemes for
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Figure 7. Some of the discovered clusters for the f i sh dataset in conjunction with rotation invariant time-series features

Conclusion

high-

(5]

dimensional data sets that preserve the outcome of [6]

K-Means clustering.
that a quantizer that retains the first two moments of each

Our analytic derivation indicates

dimension of the data set, per cluster, does not change [7]
the optimization metric forK-Means and therefore can
guarantee preservation of the underlying cluster stractur
Such a quantizer can be designed using 1-bit per dimension

Moment Preserving Quantization.

As future work, we

plan to investigate the design of multi-bit quantizers,
for providing fine-grained trade-offs between clustering

guarantees and shape preservation.

investigate the interaction with transform domain (Watjele
Fourier) based compression schemes and design extensiorﬁo]
for non-separable distance functions.
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