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Abstract

This work examines under what conditions compression
methodologies can retain the outcome of clustering oper-
ations. We focus on the popular k-Means clustering al-
gorithm and we demonstrate how a properly constructed
compression scheme based on post-clustering quantization
is capable of maintaining the global cluster structure. Our
analytical derivation indicate that a 1-bit moment preserv-
ing quantizer per cluster is sufficient to retain the orig-
inal data clusters. Merits of the proposed compression
technique include: a) reduced storage requirements with
clustering guarantees, b) data privacy on the original val-
ues, and c) shape preservation for data visualization pur-
poses. We evaluate the quantization scheme on various
high-dimensional datasets, including 1-dimensional and 2-
dimensional time-series (shape datasets) and demonstrate
the cluster preservation property. We also compare with
previously proposed simplification techniques in the time-
series area and show significant improvements both on
the clustering and shape preservation of the compressed
datasets.

1 Introduction

The exponential increase in data sizes is currently driv-
ing mining techniques into combining approximation tech-
niques with popular knowledge extraction algorithms, in
order to allow even more tractable execution times. In
this study we explore how clustering algorithms could be
combined with compression techniques, with the concur-
rent goal of providingquality guaranteeson the cluster-
ing outcome of the approximated data. In particular, we
examineunder what circumstancesthe outcome of theK-
Means clustering results can be preserved by compression
or data simplification methods. To this end, we present a bit-
quantization technique that satisfies the problem desiderata.
Therefore, clustering on the simplified dataset will lead to
similar results as on the uncompressed dataset. To the best
of our knowledge, this is the first work that provides such
guarantees for theK-Means algorithm.

Our choice for selectingK-Means as our focus of study

is due to its widespread use and popularity among the data-
mining and AI community. Even though many other clus-
tering techniques with superior clustering properties have
appeared (such as spectral methods [2]),K-Means is still
a prevalent approach due to its many desirable proper-
ties; simplicity of implementation, amenity to paralleliza-
tion and speed of execution. For applications where speed
is of essence or even for doing an initial pre-clustering for
data analysis,K-Means is still very much the algorithm of
choice. Variations of theK-Means process are widely used
as sub-processes in many analytic components.

Our approach may be intuitively described as follows.
We begin by examining the objective function optimized
for K-Means clustering, and then determine circumstances
under which quantization or data simplification does not
affect it. Since the objective function is defined in terms
of the intra-cluster variance, we show that by designing a
quantizer which preserves the first two moments of a time-
series cluster, the objective function is preserved. We then
show that this also means that the clustering outcome will
be preserved. Finally, we show that using Moment Preserv-
ing Quantization (MPQ) a 1-bit quantizer per sample and
class is sufficient to retain perfectly the clustering structure.

The results that we present here apply for the optimal
partition of theK-Means clustering. In practice though,
because of the gradient-descent based algorithm forK-
Means execution (Lloyd’s algorithm), and/or potentially
malformed clusters on the original data, final results may
deviate slightly. Our empirical results, on multiple data sets,
show that clustering results are well preserved by this quan-
tization. Importantly, we identify the cases and conditions
which lead to potential discrepancies in final results.

Applications of the preservation quantization based com-
pression scheme withK-Means cluster preservation, can
find applications in the following areas:

a)Reduced Storage. Storing the quantized dataset requires
much less space than storing the original set. This also
translates to reduced transmission cost if the data set needs
to be distributed. Importantly, the level of compression is
tunable based on the number of bits allocated to the scalar
quantizers. Other approaches that investigate scaling-upthe
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Figure 1. Objective: Design of quantization scheme for K-Means cluster preservation.

K-Means algorithm include [8, 4]. They examine the prob-
lem either from a dimensionality reduction or sampling per-
spective, while this work views the problem from a quan-
tizer design angle. Additionally, these techniques make no
assertions with regards to the cluster preservation.

b) Quantization with Shape Preservation. When the
high-dimensional objects in a dataset represent time-series,
(i.e., theT samples of the 1-D time series are collected into
a T dimensional vector), the proposed quantization retains
very closely the shape of the original sequences. This makes
the compressed data amenable for a variety of mining and
visualization purposes, besides the intended clustering ap-
plication. In this area, our work has overlap with various
time-series simplification techniques. Bagnall et al. [3] pro-
pose abinary clippingmethod for time-series data, where
the data are converted into0 and1 if they lie above or below
the mean value baseline. This representation has interesting
theoretical underpinnings and has been applied for speed-
ing up the execution of theK-Means algorithm. We com-
pare against this work in the experimental section. Mega-
looikonomou et al. [9] present a piecewise vector quan-
tized approximation for time-series data, which preserves
with high accuracy the shape of the original sequences. Fi-
nally, approaches such as wavelet or Fourier approxima-
tions have been used extensively for time-series simplifica-
tion, but none of these approaches are inherently designed
for providing guarantees on the clustering outcome, which
is one of the significant contributions of this work.

c) Privacy Preserving Clustering. By disseminating the
quantized dataset, an added benefit is that the original val-
ues are not distributed - only sufficient approximations are
revealed. Therefore our approach can also be utilized for
privacy enabled mining. Vaidya et al. [12] and Jagan-
nathan et al. [6] present privacy preserving variations for

K-Means, considering the scenario when the data are seg-
regated either vertically or horizontally. In our case, the
data are not separated, but are distributed as a whole. Sim-
ilar in spirit to our work are also the following efforts:
Parmeswaran and Blough [11] present clustering preserva-
tion techniques through Nearest Neighbor data substitution
and Oliveira and Zaane [10] present rotation based transfor-
mations (RBT) that retain the clustering outcome, by chang-
ing the object values but maintaining the pairwise object
distances and hence the clustering results.

The remaining of the paper is organized as follows; we
review theK-Means objective in Section 2 and describe our
problem of interest in Section 3. In Section 4 we introduce a
1-bit Moment Preserving Quantization scheme (MPQ) and
discuss its properties. We detail our algorithm in Section 5
and present results on real data sets in Section 6. We con-
clude in Section 7 with directions for future research. In
the course of the paper we will describe the basic notions of
our technique utilizing time-series as data objects. This is
to capture in a more visual way the fundamental constructs,
and also to illustrate more effectively the shape preservation
property of the proposed scheme. However, the following
discussion applies to any high-dimensional object.

2 Background: K-Means Clustering
Consider a setS consisting ofN sample vectorsxj

(1≤j≤N ), each containingT dimensionsxji (1≤i≤T ). K-
Means clustering involves grouping theN sample vectors
into K non-overlapping clusters, i.e., subsetsSk (1≤k≤K

with ∪kSk = S), such that the sum of intra-class variance is
minimized. We may define the sum of intra-class variances
as:

V =

K
∑

k=1

∑

xj∈Sk

(xj − µk)
T

(xj − µk) (1)



whereµk = 1

|Sk|

∑

xj∈Sk
xj is the centroid of each clus-

ter. We can define the number of vectors in clusterk as
Nk = |Sk|. V is the objective function that theK-Means
algorithm attempts to minimize by selecting subsetsSk.

The objective can be expanded as follows:

V =

K
∑

k=1

∑

xj∈Sk

T
∑

i=1

(xji − µki)
2 (2)

in terms of the individual dimensionsxji of each objectxj .
Furthermore by swapping summations we get:

V =

K
∑

k=1

T
∑

i=1

∑

xj∈Sk

(xji − µki)
2
, (3)

or

V =

K
∑

k=1

T
∑

i=1

∑

xj∈Sk

(

x2

ji + µ2

ki − 2xjiµki

)

, (4)

or

V =
K

∑

k=1

T
∑

i=1









∑

xj∈Sk

x2

ji



 − |Sk|µ
2

ki



, (5)

or finally

V =

K
∑

k=1

T
∑

i=1











∑

xj∈Sk

x2

ji



 −
1

|Sk|





∑

xj∈Sk

xji





2





,

(6)
where we use the fact thatµki = 1

|Sk|

∑

xj∈Sk
xji.

From the above derivation we observe two things:

• The objective function depends on the first (
∑

xji) and
second moment (

∑

x2

ji) of the data samples

• The result of the objective function depends on the ob-
ject to cluster assignment (

∑K

k=1

∑T

i=1
(·))

In the upcoming sections we will explicate a quantization
scheme that (under certain assumptions) closely obeys the
above two points.

3 Problem Specification and Approach

Our goal is to design a quantization scheme that retains
the clustering structure as required by theK-Means algo-
rithm. An illustration of this is shown in Figure 1. Consider
the original data that consists of six time-series belonging
to three different clusters. These clusters may be identified
using theK-Means algorithm on the original data set. We
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Figure 2. Overview of the proposed quantizer design

wish to design a quantization scheme such that the cluster-
ing structure is retained after quantization. Equivalently, if
theK-Means algorithm is used to cluster the quantized time
series, it should result in exactly the same clustering as ob-
tained on the original time series.

In order to achieve the defined objective we take the ap-
proach shown in Figure 2. As shown, we designT scalar
1-bit quantizers per cluster, with one per dimension (or time
instance, when dealing with time-series), i.e., one quantizer
for the set ofNk 1-D samples on the same dimension (or co-
located in time) for clusterk. Each quantizer is described
in terms of a codebook, consisting of a single threshold,
as well as two corresponding reconstruction levels. After
quantization, the resulting signals may be viewed as binary
0-1 sequences. In the rest of the paper we show that we
can build such 1-bit (single threshold) moment preserving
quantizers that ensure that the simplified (quantized) dataset
will result in identical clusters as the original (un-quantized)
dataset, when using theK-Means algorithm.

4 Moment Preserving Quantization

Here we briefly review Moment Preserving Quantization
(MPQ), which typically being used in the image processing
literature [5] for retaining the texture properties of an image
while providing good compression. We will present a quan-
tizer that preserves the first two moments (i.e, mean and
variance) for a set of samples, without making any assump-
tions on the distribution of the samples. We then derive two
important observations for the proposed quantization:

• The quantization will preserve the mean and variance
for any subset of samples.

• The quantization will lead to ‘shrinking’ of the origi-
nal clusters under certain assumptions (which will be
discussed later on)

We utilize these key observations in showing that the
(optimal)K-Means clustering on the original and the quan-
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tized data will not change.

MPQ: The key idea behind MPQ may be described as fol-
lows. Consider a set ofN 1-D samplesxj (1≤j≤N ) with
sample meanµ and sample varianceσ2. The samples are
transformed using the following 1-bit quantizer:

x̂j =







µ + σ
√

N−Ng

Ng
xj ≥ µ

µ − σ
√

Ng

N−Ng
xj < µ

(7)

whereNg is the number of samples that have magnitude
greater than or equal toµ. The resulting quantizer guaran-
tees the preservation of the first two moments [5] of this set
of samples i.e.

1

N

N
∑

j=1

(xj)
p =

1

N

N
∑

j=1

(x̂j)
p for p = 1, 2. (8)

We underscore that this is a1-bit quantizersince each
sample can be replaced by a 0 or 1 indicating that it is above
or below the mean value, since the mean value is preserved
and hence can be reconstructed from the quantized values
themselves.

More importantly for our discussion, we can show that
this quantization leads to clusters that are tighter than
before quantization. Formally, let the extent of the
cluster be defined bydmax = maxj (xj − µ) and
dmin = minj (xj − µ). Similarly we can definêdmin =

minj (x̂j − µ) andd̂max = maxj (x̂j − µ). We first prove
that we cannot have the cluster extent increase in both di-
rections simultaneously, i.e., we cannot haved̂max > dmax

andd̂min < dmin simultaneously. This is easy to show via
contradiction. The moment preservation of the quantization
implies

N
∑

j=1

(xj − µ)
2

=
∑

xj≥µ

(

d̂max

)2

+
∑

xj<µ

(

d̂min

)2

. (9)

We use the fact that all points above the mean are quantized
to the same value with distancêdmax from the mean, and

all points below the mean are quantized to the same value
with distanced̂min from the mean. Ifd̂max > dmax and
d̂min < dmin we have,

N
∑

j=1

(xj − µ)
2

>
∑

xj≥µ

(dmax)
2

+
∑

xj<µ

(dmin)
2

> Nσ2,

(10)
sincedmax≥σ anddmin≤ − σ for any arbitrary data dis-
tribution. This is clearly a contradiction, since the LHS is
equal toNσ2.

Additionally, we show that the extent of the cluster in
each direction does not increase due to quantization, ex-
cept under some special conditions. If label the direc-
tion in which samples are greater than the mean as the
right direction, and the direction in which samples are less
than the mean as theleft direction. Consider first the ex-
tent of the cluster in the right direction. For the clus-
ter extent to increase after quantization, we need to have

d̂max = σ
√

N−Ng

Ng
> dmax, where we use the definition

of the quantizer. The above means that the extent in the
right direction can increase only whenNg < N − Ng (this
is a necessary, but not sufficient condition). Furthermore,
asNg decreases for a fixedN , it is more likely that quan-
tization will lead to a greater increase in the right extent.
The scenario when this does actually happen is when a clus-
ter contains a small number of points that are far from the
mean in the right direction, combined with a large number
of points to the left of the mean. Intuitively, such a cluster
is “ill-behaved” in that the data within it, actually belong
to multiple sub-clusters that minimally overlap with each
other. Ideally, this indicates that we can get better clustering
performance by partitioning this into multiple sub-clusters.
This idea is illustrated in Figure 3, where we show two 1-D
cluster examples. On the left side is a “well-behaved” clus-
ter that has a reasonably uniform spread, whereas on the
right side is an ill-behaved cluster, where data to the right
of the mean consists of very few but distant samples. In the
figure we show the cluster samples, the mean, as well as
the reconstruction levels in both directions. As shown, for
the ill-behaved clusters it is possible that the extent of the



cluster increases in one direction after quantization.
In general, for well-behaved data clusters, we have

d̂max≤dmax. Similarly, for the left extent, we have
d̂min≥dmin for well-behaved clusters.

5 K-Means and Moment Preserving Quanti-
zation

We now show how the MPQ scheme may be used to
quantize data samples while retaining the clustering objec-
tive function of theK-Means algorithm. GivenN time-
series of lengthT each and the clustering result, i.e., subsets
Sk(1 . . . K), as determined by the outcome of theK-Means
algorithm on the unquantized data, we buildT 1-bit scalar
quantizers per class. The scalar quantizer for clusterSk op-
erates onNk samples (one per object) of the same dimen-
sion (or time for time-series data), and appropriately maps
them into two bins. Equivalently we design one 1-bit quan-
tizer per dimension of theNk vectors clustered into cluster
k. A value ‘0’ represents that the time sample is below the
quantizer threshold1, while a value ‘1’ represents that the
sample is above the quantizer threshold. As a result of this
quantization each time-series is then converted into a binary
sequence ofT 1’s and 0’s. Note that a 0 (or 1) may actu-
ally correspond to different reconstruction levels at different
time instances.

5.1 Preservation of the K-Means Cluster-
ing Outcome

Recall equation 6 which is the expanded derivation of the
K-Means objective function. For the new quantized values
x̂ji and given the properties of the moment preserving quan-
tization, it is guaranteed that

V̂ =

K
∑

k=1

T
∑

i=1











∑

xj∈Sk

x̂2

ji



 −
1

|Sk|





∑

xj∈Sk

x̂ji





2





= V.

(11)
What this means is that, given the cluster labels associated
with each point, we can use 1-bit scalar moment preserv-
ing quantization across each dimension (time sample) of the
vector (time series) within each cluster to guarantee that the
resulting clustering metric is preserved.

Additionally, consider that we know the optimal set of
clustersSopt

k , i.e., true clustering structure independent of
the gradient descent Lloyd Algorithm forK-Means. This
means that, for any other partitioning of the data into clus-
tersS∗

k , we have:

V opt =
∑K

k=1

∑

xj∈Sopt

k

∑T

i=1
(xji − µki)

2

≤
∑K

k=1

∑

xj∈S∗

k

∑T

i=1
(xji − µki)

2
= V ∗ (12)

1ForMoment-Preserving-Quantizationthis is the mean of theNk sam-
ples.

If we now use the scalar moment preserving quantization,
designed based on the optimal clustering labelsSk, we can
show that.

V̂ opt = V opt ≤ V ∗ andV̂ opt = V opt ≤ V̂ ∗ (13)

The moment preserving property of the quantization en-
sures that̂V opt = V opt while V opt ≤ V ∗ by definition of
the optimal clustering scheme. Additionally, we know that
for “well-behaved” clusters, quantization actually results in
shrinking the cluster extent towards the mean, making them
tighter. As the mean squared error (MSE) optimalK-Means
clustering uses nearest-neighbor assignment of data sam-
ples to cluster centroids, the tighter clusters are guaranteed
to retain the optimality of the original clustering scheme.

This is an important result as it implies that if we quan-
tize the original time series using a set of 1-bit moment pre-
serving quantizers per cluster, designed based on the opti-
mal clustering labels, the new set of quantized samples re-
tains the same optimal clustering structure. Alternatively,
if we take this new set of quantized time series, and cluster
them using theK-Means algorithm, they will result in the
same cluster labels as for the original unquantized data set2.

5.2 Compression Efficiency

Here we analyze the compression efficiency of the pro-
posed quantization scheme. For the set ofN object with
T dimensions clustered intoK clusters, let each unquan-
tized sample be represented byB bits. Then the total stor-
age requirement isBTN bits for the unquantized data,
andN log

2
(K) bits to indicate the clustering labels - with

log
2
(K) bits per object.

Instead, if we use a 1-bit quantizer we need to store only
TN bits for all objects, along with2BTK bits to store the
two reconstruction levels per dimension per cluster. Note,
that the threshold does not need to be explicitly stored as it
can be deduced from the reconstructed samples, since the
quantization does not distort the mean. Finally,N log

2
(K)

bits are also required to indicate the clustering labels. Hence
the compression efficiencyρ achieved by our moment pre-
serving quantization scheme is:

ρ =
bytes quantized

bytes unquantized
=

TN + 2BTK + N log
2
(K)

BTN + N log
2
(K)

. (14)

Since typically we haveN − 1 > 2K the compression effi-
ciencyρ < 1.

A better compression ratio can be achieved by noting that
since the quantization preserves the underlying clustering
structure, one does not explicitly need to store the cluster

2This discussion ignores the gradient descent nature of the algorithm
that sometimes gets trapped in local minima.
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labels. Then, while we requireBTN bits for the original
data set, for the quantized data sets onlylog

2
(2TK)TN

bits are sufficient. This is because there are only2 possible
values that each of theT samples can take per cluster, and
K clusters, i.e., a total of at most2TK values. Hence we
need at mostlog

2
(2TK) bits per sample. The correspond-

ing no label compression efficiencŷρ may be defined as:

ρ̂ =
log

2
(2TK)

B
. (15)

In the experimental section 6.4 we evaluate on real
datasets the compression efficiency of the quantization
scheme.

We also note that, while other quantization schemes such
as the the clipping approach of [3] require justB bits to rep-
resent the temporal mean of each of theN object, and then
2T bits per time sample, i.e., a total ofN(B + T ) bits, this
however comes at the expense of post quantization cluster-
ing accuracy. In the experiments show that our technique
achieves superior clustering performance on the quantized
data compared to such approaches.

5.3 Discussion

While it is easy to see that a trivial cluster-preserving
compression can be achieved by retaining only cluster cen-
troids and the label for each vector and distributing just
those, it is nonetheless apparent that this compression is
very lossy and destroys distinctions among objects within
the same cluster. Therefore such an approach would have
limited the use of the compressed dataset in other opera-
tions such as visualization or Nearest-Neighbor search. In-
stead, in our approach we can control the granularity of
compression, and show that even with 1-bit quantization the
compressed data samples retain “shape” as well as neigh-
borhood relationships. We depict that neighborhood is ob-

jects is well preserved in the experimental section. Finally,
we note that pre-clustering cluster preservation techniques,
such as [10, 11], can achieve cluster preservation and data
obfuscation, but they are not designed for data compression
or shape preservation. Such approaches completely change
the ‘shape’ of the original data by transforming them into a
different domain.

OurK-Means cluster preservation technique is designed
for Euclidean based separable distance functions between
objects. However, in many high-dimensional datasets (e.g.,
for time-series) warping distance functions and other non-
separable functions are also typically used. While our
technique does not carry over to such distance measures,
in Section 6.3 we show sample results of our technique
on phase (rotation) invariantdistance measures, the out-
come of which closely resembles that of warped distance
functions. Extensions to support other types of distance
measures are under consideration.

6 Experiments

In this section we validate the performance of our quan-
tization on real data sets. We examine various character-
istics of the quantization scheme including its effect on
the ‘shape’ of the data, quality of cluster preservation and
we also delineate preliminary results for for neighborhood
(k-NN) classification. We utilize stock market time-series
data, as well as 2-dimensional shape contour data. The 2D
contours come from three datasets, representingskulls,
fish andleaves shapes. We convert the 2D shapes into
1D sequences by finding the center of mass and extracting
the distance to all perimeter points. Such 1D sequence fea-
tures are commonly utilized in shape indexing and search
experiments [7].



6.1 Shape Preservation

Here we demonstrate that the proposed 1-bit quantiza-
tion does in fact retain the with high accuracy the object
‘shape’. We present results using the 1D sequences ex-
tracted from theskulls dataset. Figure 4 depicts 6 skulls
with extracted 1D sequences, the quantized representation
and the ‘clipped’ representation as presented in the work of
[3]. In our quantized representation, we use the reconstruc-
tion levels of each quantizer instead of the ‘0’ or ’1’ values.
We observe that the proposed moment-preserving quantiza-
tion retains very closely the form of the original sequences.
On the other hand the clipped representation captures the
data fluctuations, but due to the purely binary representa-
tion cannot discriminate the difference between the relative
amplitudes at different positions of the sequence.

6.2 Cluster preservation

Now we examine how well the clusters are retained on
the quantized dataset. We utilize time series from stock
market data corresponding to 1800 stock symbols from
companies listed on Nasdaq, reporting the stock values for
a period of approximately 3 years.

Our theoretical results about cluster preservation are ap-
plicable for the optimalK-Means algorithm. Since the ex-
act solution is NP-hard to compute, in practice a gradient
descent (Lloyd’s algorithm) variation is used for computa-
tional simplicity. Therefore, here we empirically evaluate
the discrepancy of the clustering results, when the non-exact
algorithm is utilized.

Since, we do not have the cluster labels for aforemen-
tioned dataset, we cluster these time-series into 8 clusters
using the Lloyd Algorithm forK-Means3. As we desire a
near-optimal set of clusters, we repeat theK-Means algo-
rithm with multiple starting points and select the set that
achieves the smallestK-Means metric. Note that we can
also use algorithms such asK-Means++ [1] to achieve
a very good initial estimate of the cluster centroids and
maximize the probability of finding the global optimum.
We then use this clustering structure as ground truth, and
quantize the time series from each cluster using a separate
moment-preserving 1-bit quantizer. The resulting cluster
centroids, sample time series from each cluster, and the up-
per and lower reconstruction levels for each 1-bit quantizer
are shown in Figure 5.

Cluster centroids are shown in black, while 3 exam-
ple series from each cluster are shown in gray. The 1-bit
quantizer levels for each sample for each cluster are shown
in red. As is clear, the quantizer does tend to follow the
“mean” shape of the cluster quite nicely. We then rerun the
clustering using Lloyd’s algorithm on the quantized time

3The number of clusters was selected manually based on the achieved
quantization error, and visual inspection of the time series

series, using the same initial conditions (the same sam-
ple points before and after quantization were chosen as the
initial cluster centroids) and compare the resulting trained
cluster centroids before and after quantization. These cen-
troids are shown in Figure 6. As may be seen from the fig-
ure, a majority of the cluster centroids are almost identical
before and after quantization. This is however not true for
clusters 3 and 6. There are two reasons for this, clusters 3
and 6 are the least well-behaved of the clusters, and both
violate thed̂max > dmax condition. Additionally, as the
Lloyd algorithm is gradient descent based, while the opti-
mal clustering structure remains before and after quantiza-
tion, it is possible that an intermediate sub-optimal cluster-
ing, as demonstrated here, may be different. However, even
for this data set, quantization results in the mis-labelingof
only 57 of the 1800 time-series (∼ 3%), a majority of which
(49) belong to these two clusters. The resulting confusion
matrix, comparing unquantized and quantized labels is:

























378 1 0 0 0 0 2 0
0 169 0 0 0 0 1 0
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
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,

where the column index corresponds to the label before
quantization and the row index represents the label after
quantization. The confusion is primarily restricted to data
from clusters 3 and 6, and this is also reflected in Figure 6.

For the same dataset we use the clipped data representa-
tion [3] to quantize the time series into 1 bit per sample and
then redo the clustering. Clipping is performed per time se-
ries and replaces a sample with ‘1’ if it lies above the mean
(computed across the time samples of that series) and ‘0’
if it lies below. Clipping thus does not require any prior
knowledge of the data clusters. However, this results in a
significant impact on the label preservation performance.
For the stock data set, the clustering after clipping results
in only 203 time-series retaining their label -less than 20%
of the data. Hence, clipping not only retain as well the ob-
ject shape, but also performs significantly worse the cluster
operations of the quantized data.
Sensitivity to initial centers: Here we evaluate the sen-
sitive to the selection of the right starting point (the seed
centroids). In order to quantify the impact of mismatched
starting points on clustering before and after quantization,
we use a set of disjoint starting points for the two cases.
The resulting mismatch is quantified in terms of the number
of signals mislabeled. We find that for a set of 10 different
starting points, the mean mismatch was 140 (7.8%) signals,
with a maximum of 230 (12.7%) signals. Additionally, in
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Figure 5. Sample time series from stock data grouped into 8 clusters. Clusters numbered left to right and top to bottom.
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Figure 6. Cluster centroids before (red) and after (blue) 1-bit quantization. Clusters numbered left to right and top to bottom.

most cases cluster centroids are very close before and after
quantization. This low level of mismatch indicates that the
clustering structure is well retained after quantization.
Neighborhood preservation: While the quantization
scheme is not designed for k-nearest neighbor (k-NN) clas-
sification, the fact that it tends to retain the clustering struc-
ture indicates that it may also preserve results for k-NN - if
the class labels are assumed to be determined by the clus-

tering structure. In order to verify this, we assume that the
unquantized clusters represent ground truth with 8 labels for
the data. We use k-NN with varying numbers of neighbors
and use majority voting among neighbors to determine the
predicted class label. We present classification results on
the training set before and after quantization in Table 1.

The limited separation between the clusters ensures that
increasing the number of neighbors does not always result



Table 1. k-NN classification accuracy before and after quantization

5-NN 10-NN 20-NN
Unquantized 97.3% 96.9% 95.4%
Quantized 91.1% 91.2% 90.4%

in increasing the prediction accuracy4. However, impor-
tantly, 1-bit quantization degrades the k-NN performance
only by 5–6% in this scenario. While the scheme does
not provide any guarantees on nearest neighbor classifica-
tion, this is a useful illustrative example to show the perfor-
mance on real data. Attempting to bound performance of
this scheme for the k-NN classification scheme is a direc-
tion for future work.

6.3 Contour Data Sets

In this section we repeat the clustering experiments for
the fish and theleaves data sets, both of which rep-
resent the 2D contours of the corresponding images. The
fish data set consists of 247 contours, while theleaves
data set contains 1125 contours. These contours are con-
verted into series of samples by extracting the distance of
the perimeter points from the center of mass. Additionally,
when one wishes to support rotation invariance, their pe-
riodogram can be extracted and used as the sequence fea-
ture, similar to the method used in [14, 13]. The new
rotation-invariant sequences can now be used to provide
more flexible clustering results. Utilizing thefish dataset
we demonstrate some of those clustering results in Figure
7. Observe that rotated versions of the same shape are
now clustered together. Obviously, various erroneous ob-
ject placements can be detected in the figure as well, how-
ever, this example serves as another demonstration of the
meaningfulness of time-series clustering usingK-Means.

As we do not have ground truth labels for thefish
andleaves datasets, we perform clustering with differ-
ent number of clusters for both data sets. We present the
resulting label preservation in terms of the number of series
that retain their label after quantization. These results are
shown in Table 2. In the table, we also present the results
for clipping.

Table 2. Label Preservation with Quantization
Dataset Scheme K = 5 K = 10 K = 15

fish
MPQ 96.3% 98.4% 85%

Clipping 74.4% 75.7% 70.4%

leaves
MPQ 79.1% 88.6% 96.8%

Clipping 25.6% 33.2% 34.2%

From the table, we see that the labels for thefish data
set are very well preserved by the proposed moment pre-

4This may also be because the labels are not true class labels, but are
derived from clustering.

serving quantization (MPQ), with labels retained for 98.4%
of the series when the number of clusters is 10. Note that
reducing the number of clusters to 5 leads to the creation
of more “ill-behaved” clusters, i.e., data from multiple clus-
ters gets forced into one umbrella cluster, and hence the la-
bel preservation is not as good. Additionally, as the number
of clusters increases beyond a certain level, there is insuf-
ficient data to train the clusters, and hence identifying 15
clusters from the 247fish series leads to poor clustering,
and as a result poor label preservation. As opposed to the
fish data set, theleaves data set has continuously in-
creasing performance with the number of clusters. This is
because the data set contains a much larger number of se-
ries, avoiding the problem of overfitting. Furthermore, as
the number of clusters decrease, there is a higher proba-
bility of “ill-behaved” clusters reducing performance. The
best results are achieved for this data set are whenK = 15
when 96.8% of the series retain their label. Also, from the
table we see that MPQ always outperforms Clipping, which
performs reasonably on the simplerfish data set - 76% of
the series retain the same label before and after quantization
- but performs significantly worse on theleaves data set -
only 34% of the samples retain their label. Finally, in terms
of sensitivity to the mismatch in initial centroid selection for
quantized and unquantized datasets, the standard deviation
for MPQ on thefish data set is7.2%, while it is 6.8% for
theleaves dataset.

6.4 Compression Efficiency

Lastly, we evaluate the compression efficiency of the
quantization scheme. We report the compression efficiency
ρ̂, as defined in equation (15), for the datasets used in our
experiments.ρ̂ is reported as percentage of the quantized
dataset compared to the original one.

Table 3. Compression Efficiency
Dataset N Dim K ρ̂

stock 1800 1004 8 44%

fish 247 256
5 35%
10 38%
15 40%

leaves 1125 128
5 32%
10 35%
15 37%

For computing these values, we assume that the unquan-
tized data samples are represented by 4 bytes each, i.e.,
B = 32. As can be seen from the table, the compression
can be as small as 35%, a reduction in size by almost a fac-
tor of 3. The compression efficiency varies with the number
of clusters, deteriorating asK increases. Selecting the opti-
mal trade-off between compression, clustering, and cluster
label preservation is an important practical consideration for
this scheme.



Figure 7. Some of the discovered clusters for the fish dataset in conjunction with rotation invariant time-series features

7 Conclusion
We showcased compression schemes for high-

dimensional data sets that preserve the outcome of
K-Means clustering. Our analytic derivation indicates
that a quantizer that retains the first two moments of each
dimension of the data set, per cluster, does not change
the optimization metric forK-Means and therefore can
guarantee preservation of the underlying cluster structure.
Such a quantizer can be designed using 1-bit per dimension
Moment Preserving Quantization. As future work, we
plan to investigate the design of multi-bit quantizers,
for providing fine-grained trade-offs between clustering
guarantees and shape preservation. We also propose to
investigate the interaction with transform domain (Wavelet,
Fourier) based compression schemes and design extensions
for non-separable distance functions.
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