
Fast Parameterless Density-Based Clustering
via Random Projections

Johannes Schneider
IBM Research - Zurich

Michail Vlachos
IBM Research - Zurich

ABSTRACT
Clustering offers significant insights in data analysis.
Density-based algorithms have emerged as flexible and ef-
ficient techniques, able to discover high-quality –and po-
tentially irregularly shaped– clusters. We present two fast
density-based clustering algorithms based on random pro-
jections. Both algorithms demonstrate one to two orders
of magnitude speedup compared to equivalent state-of-art
density based techniques, even for modest-size datasets. We
give a comprehensive analysis of both our algorithms and
show runtime of O(dN log2 N), for a d-dimensional dataset.
Our first algorithm can be viewed as a fast variant of the OP-
TICS density-based algorithm, but using a softer definition
of density combined with sampling. The second algorithm
is parameter-less, and identifies areas separating clusters.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; I.5.3 [Clustering]: Algorithms

Keywords
Clustering, Data Mining, Random Projections

1. INTRODUCTION
Data doubles about every two years. This makes the anal-

ysis of Big Data a necessity and it also drives the design of
more efficient algorithms for data analytics. Clustering is an
important operation for knowledge extraction. Its objective
is to assign objects into groups such that objects within a
group are more similar than objects across different groups.
Subsequent inspection of the realized groups can provide
important insights, with applications to pattern discovery
[13], data summarization/compression [10] as well as data
classification [4]. Density-based clustering algorithms have
emerged both as high-quality and efficient clustering tech-
niques with solid theoretical foundations on density estima-
tion [8]. They can discover clusters with irregular shapes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full cita-
tion on the f rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505590.

and require easy to set parameters (e.g., minimum number
of points per cluster). They also can help assess important
dataset characteristics, such as the intrinsic density of data,
which can be visualized via reachability plots.

In this work we extend the state-of-art in density-based
clustering techniques by presenting algorithms that signifi-
cantly improve runtime, while providing analytical guaran-
tees on the preservation of cluster quality. We achieve this
through the use of random projections. A key theoretical re-
sult of random projections is that, in expectation, distances
are preserved. We exploit this in a pre-processing phase, to
partition objects into sets that should be examined together.
The resulting sets are used to compute a new type of density
estimate through sampling.

Our first algorithm, requires only the setting of a single pa-
rameter, the minimum number of points of a cluster, which
is customarily required as input in density-based techniques.
Our second algorithm lifts this requirement and presents a
parameterless density-based clustering algorithm by creat-
ing a sequence of clusters for varying density parameters. In
general, we make the following contributions:

• We depict how to use random projections to improve
the performance of existing density-based algorithms,
such as OPTICS and its performance-optimized ver-
sion DeLi-Clu. We introduce a new density estimate
based on computing average distances. We also pro-
vide guarantees on the preservation of cluster quality
and runtime.

• We provide an algorithm that eliminates the need for
setting any density related parameter. It allows to
identify clusters in datasets of strongly varying densi-
ties that could not be identified easily with state-of-
the-art density-based algorithms. For d-dimensional
data, it runs in O(dN log2 N) time.

• Both algorithms are evaluated extensively and yield
performance gains of up to two orders of magnitude
with a provable degree of distortion on the clustering
result.

2. PRELIMINARIES
For points and lines we use capital letters, e.g. P, T,Q, L.

For a set of points or a sequence of lines we use calligraphic
font, e.g. P,S,L. For a set of sets or sequences we use
Fraktur letters, e.g. S,L,W. We are given a set of N points
P in the d-dimensional Euclidean space, i.e., for a point
P ∈ P holds P ∈ R

d. We use the term whp, i.e., with

861

high probability, to denote probability 1 − 1/Nc for an ar-
bitrarily large constant c. The constant c (generally) also
occurs as a factor hidden in the big O-notation. Define the
distance D(A,B) := ||B − A||2 for two points A,B ∈ P
to be the L2-norm. Assume or norm the shortest distance
minA,B∈P,A6=B D(A,B) to be 1. We often use the following
Chernoff bound:

Theorem 2.1. The probability that the number X of oc-
curred independent events Xi ∈ {0, 1}, i.e. X :=

∑
i Xi, is

not in [(1−c0)E[X], (1+c1)E[X]] with c0 ∈]0, 1] and c1 ∈]0, 1[
can be bounded by p(X ≤ (1−c0)E[X]∨X ≥ (1+c1)E[X]) <

2e−E[X]·min(c0,c1)
2/3

If an event occurs whp for a point (or edge) it occurs for all
whp. The proof uses a standard union bound.

Theorem 2.2. For nc0 (dependent) events Ei with i ∈
[0, nc0 − 1] and constant c0 s.t. each event Ei occurs with
probability p(Ei) ≥ 1− 1/nc1 for c1 > c0 +2, the probability
that all events occur is at least 1− 1/nc−c0−2.

3. PRE-PROCESS: DATA PARTITIONING
Our density based clustering algorithms consist of two

phases: the first partitions the data so that nearby points are
placed in the same partition. The second phase uses these
partitions to compute distances or densities only within pairs
of the same set. This allows for much faster execution.
The partitioning phase splits the dataset into smaller sets

(Partition algorithm). We perform multiple of these parti-
tions by using different random projections (MultiPartition
algorithm). Intuitively, if the projection P · L and Q · L
of two points P,Q onto line L is of similar value then the
points should be close. Thus, they are likely kept together
whenever the point set is divided.
For a single partition, we start with the entire point set.

We split it recursively into two parts until the size of the
point set is at most minSize+1, where minSize is a pa-
rameter of the algorithm. To split the points, the points are
projected onto a random line, and a point that has been pro-
jected on the line is chosen uniformly at random. All points
with a projected value smaller than that of the chosen point
constitute one part and the remainder the other part.
More formally, MultiPartition algorithm chooses the set

L := {L0,L1, ...} of c0 logN sequences (for a constant c0),
where Li := (L0, L1, ...) is a sequence of c1 logN random
lines for a constant c1 with Lj ∈ R

d. The Partition algo-
rithm is called for a sequence Li. The points S are projected
onto each line Lj ∈ Li. First, after the projection onto L0,
the points S are split into two disjoint sets S1

0 ⊆ P and S1
1

using the value rs := L·A of a randomly chosen point A ∈ S.
The set S1

0 contains all points P ∈ P with smaller projected
value than the chosen number rs, i.e., Q · L0 ≤ rs, and the
other points P \ S1

0 end up in S1
1 . Afterwards, recurse on

sets S1
0 and S1

1 , that is to say, for line L1 we first consider
set S1

0 and split it into sets S2
0 and S2

1 . Then, the process
is repeated for S1

1 to obtain sets S2
2 and S2

3 . For line L2,
we consider all four sets S2

0 , S2
1 , S2

2 and S2
3 . The recursion

ends once a set S contains fewer than minSize+1 points.
We compute the union of all sets having at most minSize
points of all projection sequences Li ∈ L. An instance of the
above process is illustrated in Figure 1. Similar techniques
to algorithm Partition have been used in the RP-tree [5].
However, here we use a much simpler splitting rule.

S1
0 L1

S1
1

L2

L2

S2
0

S2
1

S2
2 S2

3

P0 P1

P3

P2

P4 P5

P6 P7

P0 P1

P3

P2

P4

P6

P7

P5

1) Project points onto random line

2) Recursively partition points P into sets Si
j using projections onto random lines Li

P1

P3

P0

P2

P5

P4

P6

P7

splitting points

L1
P0 P1

P3

P2

P4 P5

P6 P7

Figure 1: A single partitioning of points using ran-
dom projections. The splitting points are chosen
uniformly at random among all projected points.

Algorithm 1 MultiPartition(points P, minimum set size
minSize) return set of point sets S

1: Choose sequences of random lines Li := (L0, L1, ..., Lc1 logN)

for i ∈ [0, c0 ·logN−1] for constants c0, c1 with Lj ∈ R
d being

a random vector of unit length
2: for i = 1..c0 · logN do
3: W := result of Partition(P, 0, i,minSize)
4: S := S ∪W

5: end for

Algorithm Partition(points S, line j, sequence i,minSize)
return set of sets S

6: if |S| > minSize then
7: rs := value chosen uniformly at random from {Q · Lj |Q ∈

S, Lj ∈ Li}
8: S0 := {Q ∈ S|Q · Lj ≤ rs, Lj ∈ Li}
9: S1 := S \ S0

10: Partition(S0, j + 1, i,minSize)
11: Partition(S1, j + 1, i,minSize)
12: else
13: S := S ∪ {S}

14: end if

The following hold, but we omit the proofs for brevity.

Theorem 3.1. For a d-dimensional dataset, Algorithm
Partition runs in O(dN logN) time whp.

Algorithm MultiPartition calls Algorithm Partition
c0 logN times, thus using Theorem 2.2:

Corollary 3.2. Algorithm MultiPartition runs in
O(dN log2 N) time whp.

862

4. DENSITY MEASURE AND NEIGHBOR-
HOOD SAMPLE

Using the previous data partitioning we compute for each
point a probabilistic neighborhood and an estimate of den-
sity.

Sampled Neighbors: For each point A we compute a sam-
ple of close neighbors using a set of sequences of points S

for a parameter dPts. A sequence is an ordering of points
projected onto a random line (see Figure 1). For each se-
quence S ∈ S and every point A ∈ S we choose randomly
a point B being at most dPts points after point A in the
sequence S. All the selected points around A form the sam-
pled neighbors N (A). See Algorithm 2 and for an example
consider Figure 2.

Algorithm 2 SampledNeighbors(set of sequences of points
S, distance in points dPts, return for each point A neighbor
set N (A))

1: for all P ∈ S ∈ S do N (P) := {} end
2: for all S ∈ S with |S| ≥ 2 · dP ts do
3: Sort S according to values of projected points
4: for i = 1 to |S| − dP ts do
5: j := Random integer in [1, dP ts]
6: N (S(i)) := N (S(i)) ∪ S(i+ j)
7: end for

8: end for

L2

S1
1

P4

P6

P7

P5

Partitioning 1

S1
0 L1

S1
1

P0 P1

P3

P2

P4 P5

P6 P7

P0 P1

P3

P2

P4 P5

P6 P7

S1
0 P0 P1

P3

P2

P0 P1

P3

P2

P4 P5

P6 P7

Partitioning 2

Figure 2: Two partitionings using random projec-
tions. For dPts = 1 a density estimate for point
P3 is obtained as follows: For the first partition-
ing either P2 or P0 is added to the sampled neigh-
bors N (P3). For the second, P1 or P2. Say P0

and P2 are chosen, i.e. N (P3) = {P0, P2}. Then,
for f = 1 the average distance Davg(P3) becomes
(D(P3, P0)+D(P3, P2))/2. The candidate(s) for P3 can
only be P2, since D(P3, P0) > m(P3, P0) ≥ Davg(P3).

Density Estimate: The density of a point A is the average
distance Davg(A) of a subset of all sampled neighbors N (A)
for a parameter dPts. More precisely, we only consider the

points from Nf (A) ⊂ N (A) that are among the fraction of f
closest points in N (A) for some constant f . Mathematically
speaking, let C be the |N (A)| · f -th closest point in N (A)
to A then Nf (A) := {B ∈ N (A)|D(A,B) ≤ D(A,C)} and
Davg(A) :=

∑
B∈Nf (A) D(A,B)/|Nf (A)|. Thus, for f = 1,

Davg(A) is just the average of all sampled neighbors. Note,
the smaller the average distance, the larger the density.

Assume that there are just dPts+1 points. Then Davg(A)
is an approximation of the average distance to the f · dPts-
th (closest) neighbors. If we add a point to the dataset that
is closer than the f · dPts-th nearest neighbor N ′ then the
average distance will decrease (in expectation). If we add a
point that is farther away than the f ·dPts-th nearest neigh-
bor B then the average distance increases. So, if we add
many points that are somewhat further away than B then
the added points may cause the average distance to increase
significantly beyond the average distance of the f · dPts-th
closest neighbors B. However, as we shall see due to our
partition process (Algorithm MultiPartition) points distant
from A only appear in a set S ∈ S with low probability.
However, to ensure that the average is not significantly dis-
torted with high probability, we do not compute only the
average of all sampled neighbors but restrict ourselves to a
subset dependent on the parameter f .

Candidate Mergers: Two points A,B are candidates
to be merged if their distance is within merging distance.
The merging distance m(A,B) is just the minimum of
the average distances of the two points, i.e. m(A,B) :=
min(Davg(A), Davg(B)). A point A may merge with any
sampled neighbor B ∈ N (A), if and only if their distance is
less than the merging distance m(A,B) < D(A,B). Thus,
we restrict the pairs of points that can be merged by any
clustering algorithm according to some criterion to the pair
of points A,B with m(A,B) < D(A,B) with B ∈ N (A) (or
A ∈ N (A)), i.e. we define the candidates for point A as
NC(A) := {B ∈ N (A)|m(A,B) < D(A,B)}. This process
is captured in Algorithm 3. For an example, the reader is
directed to Figure 2.

Algorithm 3 CandidateMergers(points P, distance in
points dPts, return for each point A candidates NC(A) for
potential mergers)

1: S := MultiPartition(P, 2 · dP ts)
2: S′ := {S|S ∈ S, |S| < 6 · dP ts}
3: Compute SampledNeighbors(S′, dP ts)
4: for all P ∈ S ∈ S do NC(P) := {} end
5: for all A ∈ P do
6: for all B ∈ N (A) do
7: m(A,B) := min(Davg(A), Davg(B))
8: if m(A,B) < D(A,B) then NC(A) := NC(A) ∪ B

end if
9: end for

10: end for

Assume that to estimate the density of a point A we mea-
sure a volume V (A) containing dPts points. If the volumes
V (A) and V (B) of two points intersect significantly then the
density at a point contained in the intersection is likely to
be of similar density of either A or B (or both). However, in
case the two volumes do not intersect this does not hold. For
density-based clustering we want to form clusters of points
of similar density - at least all nearby points must have sim-
ilar density. Therefore, it suffices to consider nearby points,
i.e. points with intersecting volumes. Note, that for merging

863

candidates A and B the volumes V (A) and V (B) used for
the computation of the density intersects by definition since
m(A,B) := min(Davg(A), Davg(B)) < D(A,B).

Algorithm Complexity: Now we state our main theorems
regarding the complexity of the presented techniques.

Theorem 4.1. Algorithm 3 runs in O(dN log2 N) whp.

Next, we state a bound on Davg(A) for a point in R
d, i.e.

we relate Davg(A) and the average of the distance to the
dPts-nearest neighbors of a point A.
Theorem 4.2 states that for the smallest set SA returned

by the Partition algorithm containing A, a sufficient fraction
of all points are not substantially far from A than Davg(A).
Therefore, if we sample points from SA at least some of these
points are close to A (Theorem 4.3).
For a point A, define D(A, dPts) to be the distance to

the dPts-th nearest point from A. Define N (A, r) to be
all points C ∈ S within radius r := D(A, dPts) from
A, i.e. D(A,C) < r. Denote the average distance of
the dPts nearest points to a point A as D(A, dPts) :=∑

B∈N (A,D(A,dPts)) D(A,B)/|N (A,D(A, dPts))|.

Theorem 4.2. For a point A, the probability that |SA \
N (A, c7r)|/|SA| > 1/c7

1/4 is at least 1/2−48 log log c7/c7 for
dPts > c9 for some constants c7, c9.

Theorem 4.3. For every point A ∈ R
d holds D(A, dPts ·

c10) < Davg(A) < 2
√
c1 ·D(A, dPts) for a constant c10 whp.

As an example, assume that D(A, dPts · c10) ≈ Davg(A) ·
c10, which holds in general, if the number of points from
A do not increase much faster with distance than to the
dPts · c10 nearest point. In this case, we compute an O(1)-
approximation of D(A, dPts). Assuming that D(A, dPts)
is an equivalently valid density measure as the distance to
the minPts-th neighbor used by OPTICS we compute a
O(1)-approximation of the density, i.e. core-distance, used
by OPTICS.

5. DENSITY BASED CLUSTERING USING
REACHABILITY

We apply our ideas to speed up the computation of the
popular OPTICS algorithm (Ordering points to identify
the clustering structure) [2]. OPTICS defines a sequence
of all points and a distance for each point. This allows for
an easy visualization to identify clusters. Similarity between
two points A,B is measured by computing a reachability dis-
tance. Figure 3 provides an illustration. This distance is the
maximum of the Euclidean distance between A and B and
the core-distance (or density of a point), i.e. the distance of
A to the minPts-th points, where minPts corresponds to
the minimum size of a cluster. Any point A is equally close
(or equally dense) to B, if A is among the minPts-nearest
neighbors of B. If this is not the case then the distance be-
tween the two points matters. The algorithm maintains a
list of point pairs sorted by their reachability distance. It
chooses a point A with minimum reachability distance (if
the list is non-empty, otherwise an arbitrary point) and up-
dates the list by computing the reachability distance from
A to each neighbor. The algorithm investigates each point’s
neighbors only once. For performance reasons OPTICS re-
quires a parameter ǫ that denotes an upper bound on the

distance between any two points that are considered to com-
pute the reachability distance. The parameter ǫ should be at
least the distance to the minPts-nearest point of any point.

5.1 Fast OPTICS FOPTICS

We compute a similar ordering as for OPTICS but use
a different definition of reachability. As core-distance of a
point A we use the average distance Davg(A) as proposed
in Section 4. Whereas for the core-distance in the original
OPTICS algorithm only the distance to a single point, i.e.
the minPts-nearest point matters. Using our probabilistic
approach we compute a smoother estimate: points that are
closer (or further) than the minPts-nearest point matter,
too. Two points are reachable if they are within merging
distance. In other words, we dynamically adjust the param-
eter ǫ for each point A.

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Ordered Points

R
e
a
c
h
a
b
ili

ty
 D

is
ta

n
c
e

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Ordered Points

R
e
a
c
h
a
b
ili

ty
 D

is
ta

n
c
e

Dataset Compound

Figure 3: Reachability plots of FOPTICS and OP-
TICS for the Compound dataset. Note that both ex-
hibit the same hills and valleys and hence discover
the same clusters.

More precisely, ǫ(A) states the maximal distance of a point
B that might be merged with A, i.e. ǫ(A) := Davg(A). Point
A can reach point B, if B is a candidate to be merged, i.e.
B ∈ NC(A), see Section 4. The definition of the reachability
distance for a point A and a reachable point B from A is
the same as for OPTICS, it is the maximum of the core-
distance of A and the distance of A and B. However, for
a point A we only compute the reachability distance to all
sampled neighbors B ∈ N (A).

In Figure 3 we provide a visual illustration for the reacha-
bility plot computed on one dataset for OPTICS and FOP-
TICS. It is apparent that both techniques can reveal the
same cluster structure.

Theorem 5.1. FOPTICS runs in O(dN log2 N) whp.

Proof. Computing all candidate neighbors takes time
O(dN log2 N) whp according to Theorem 4.1. For each point
we consider all candidate mergers at most once. This takes
time O(N logN).

6. PARAMETER-FREE DENSITY BASED
CLUSTERING

Density-based clustering algorithms require as input a pa-
rameter that captures some notion of density, e.g. the min-
imum number of points which constitute a cluster or the
volume used to estimate density. Different parameters may

864

lead to different clustering outcomes. Figure 4 shows such
an example, consisting of two elliptical clusters connected
by a thin line of points.
The thin line is denser when the density is estimated us-

ing small volumes (smaller ǫ values). For larger volumes the
left and right elliptical areas become denser. The outcome
of OPTICS for different parameters is also shown in Fig.
4. Notice that the cluster structure may change, leading to
clusters merging or separating. We propose an efficient al-
gorithm without data-dependent parameters to capture the
variability of cluster structure.

0

0.2

0.4

0.6

0.8

1

R
e
a
c
h
a
b
ili

ty
 D

is
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

R
e
a
c
h
a
b
ili

ty
 D

is
ta

n
c
e

minPts = 7 minPts = 14

minPts = 28

minPts=28

minPts=7

minPts=28

minPts=7

Figure 4: The choice of parameters, i.e. data den-
sity, greatly affects the resulting cluster structure.
The outcome of OPTICS for different parameters
minPts = 7, 14 and 28, suggesting three, one and
three clusters, respectively.

6.1 Algorithm DeBaRa

Algorithm DeBaRa (Density Based Clustering via Ran-
dom Projections) gradually increases the average distance
of a point, i.e. parameter dPts for computing the sampled
neighbors (Algorithm 2). For a fixed value of dPts it iden-
tifies points that potentially split clusters, i.e. points that
belong to volumes of lower density than their surrounding.
Any point that is not classified as low density point merges
with all nearby points, whereas low density points greed-
ily merge with the point of maximum density within some
distance.
Two points A and B are adjacent (or nearby) if their

Euclidean distance D(A,B) is less than their merging dis-
tance: D(A,B) ≤ m(A,B). Each point A identifies the
point B ∈ NC(A) among the merging candidates of maxi-
mum density (that might also be itself). Any such identified
point B is called non-separating. Any non-separating point
A merges with all clusters that have a point B within half
the merging distance and any non-separating point C within
the merging distance.
The assumption behind this rule is that two clusters are

separated by points of low density. Points of low density
have large average distance Davg and it is more likely that

they merge with a distant point A. Such a point A has larger
density, i.e. smaller Davg. Furthermore, point A is likely to
be somewhat distant from the cluster border. Therefore,
it can merge with all the points within (half the) merging
distance without merging with another cluster separated by
points of low density.

Algorithm 4 DeBaRa(points P) return C
i

1: c0 := 1.1 {Granularity of parameter increase}

2: S := result of MultiPartition(P,N/ckc10)
3: for i = 2 to logN/ log c0 do

4: Si := {S|S ∈ S, s.t.|S| ∈ [|P|/ci0, |P|/ci+1
0]} {All sets

within size [|P|/ci0, |P|/ci+1
0]}

5: Davg(A):=AverageDistance(Si, c
i
0/2) {Approximate aver-

age distance of A}
6: m(A,B) := min(Davg(A), Davg(B)) {Merging distance of

A and B}
7: N (A) := for each set S with A ∈ S choose a point B ∈ S

randomly with D(A,B) < m(A,B) {Neighbors of A}
8: Pmax(A) := arbitrary B ∈ N (A), s.t.Davg(B) =

minC∈N (A) Davg(B) {Neighbor of maximum density ofA}
9: Sno.sep := {P ∈ P|P = ∃A ∈ P with Pmax(A) = P}

{Non-separating points}
10: Ci := {Cl(P)|Cl(P) = {P}, P ∈ P} {Initial clusters}
11: Merge clusters Cl(A) with Cl(Pmax(A)), ∀A ∈ P
12: for all P ∈ Sno.sep do
13: Merge all clusters Cl(P) with Cl(A) for A ∈ N (P) and

D(A,B) < m(A,B)/2
14: end for
15: for all P,Q ∈ Sno.sep do
16: Merge all clusters Cl(P) with Cl(Q) for Q ∈ N (P)
17: end for

18: end for

Theorem 6.1. Algorithm DeBaRa runs in O(dN log2 N)
time whp.

Proof. Computing all candidate neighbors requires time
O(dN log2 N) whp based on Theorem 4.1. For a fixed dPts
for each point we consider all candidate mergers at most
once. This takes time O(N logN). A merger of clusters
Cl(P) and Cl(Q) takes time proportional to the size of the
smaller cluster. There are at most N − 1 mergers. The run-
ning time is maximal if both merged clusters are of the same
size. Therefore, we have N/2 mergers of clusters of size 1,
N/4 of clusters of size 2 and so on. Thus all merger oper-
ations together require at most

∑
i∈[0,logN−1] 2

i ·N/2i+1 =
∑

i∈[0,logN−1] N/2 = N/2 logN−1 time. We consider logN

distinct values for dPts yielding time O(N log2 N).

7. EMPIRICAL EVALUATION
We evaluate the runtime and clustering quality of the pro-

posed random projection based techniques. The FOPTICS
and DeBaRa algorithms have been implemented in Java.
We compare their performance with OPTICS and DeLi-Clu,
from the Elki Java Framework 1. DeLi-Clu represents an im-
provement of OPTICS leveraging indexing structures, such
as R*-trees, to improve performance.

Parameter setting: OPTICS requires parameters ǫ, and
minPts. ǫ is set to infinity, which provides the most accurate
results. minPts depends on the dataset. DeLi-Clu requires

1elki.dbs.ifi.lmu.de/

865

only the minPts parameter. FOPTICS uses the same pa-
rameter value for dPts as minPts for OPTICS (and DeLi-
Clu): dPts = minPts. DeBaRa uses no data-dependent
parameters. We performed 100 partitionings, that is, calls
to algorithm Partition from MultiPartition, of the entire
dataset for FOptics and DeBaRa and used fc = 1 for the
computation of Davg.

Cluster Quality: The original motivation of our work was
to provide faster versions of existing density-based tech-
niques while not compromising accuracy. To compare the
clustering we use the Rand index [11], which returns a value
between 0 and 1, where 1 indicates identical cluster results.
The results for various datasets are summarized in Table 1.
FOPTICS provides almost perfect cluster preservation with
OPTICS. As shown in previous examples the reachability
plots for FOPTICS and OPTICS are very similar. For the
chosen parameter dPts = minPts the reachability plot of
FOPTICS is typically smoother, following from the defini-
tion of the average distance Davg that computes a smoother
estimate of the density than OPTICS.

Name Type Obj- Dim Clu- Rand Index
ects st- FOPTICS -

ers OPTICS

Aggrega.[7] shape 788 2 7 0.99
Compou.[14] shape 399 2 6 0.98
Spiral[3] shape 312 2 3 0.99
R15[12] shape 600 2 15 0.98
Jain[9] shape 373 2 2 0.97
Flame[6] shape 240 2 2 0.94
Glass[1] material 214 10 7 0.99
Iris plants 150 4 3 1

Table 1: Cluster Preservation (1 is best)

Runtime: Our performance comparison in Figure 5 sug-
gests a drastic improvement of FOPTICS and DeBaRa com-
pared to both OPTICS and DeLi-Clu. FOPTICS is more
than 500 times faster than OPTICS and more than 20 times
faster than DeLi-Clu. Note, that DeLi-Clu is using an R*-
tree structure to speedup various operations. Our approach
bases its runtime improvements on random projections, thus
is much simpler to implement and maintain.

0 20 40 60 80 100 120 140
0

500

1000

1500

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e

c
)

FOPTICS

OPTICS eps=∞

DeLi−Clu

DeBaRa

Objects(1000 units)

 520x

over OPTICS

 22x

over Deli-Clu

Figure 5: FOPTICS runs faster than OPTICS or
DeLi-Clu.

Figure 6 highlights the runtimes for increasing data di-
mensionalities for a synthetic dataset of Gaussian clusters.
Note that the performance gap between OPTICS and DeLi-
Clu diminishes for higher dimensions. In fact for more than
500 dimensions OPTICS is faster than DeLi-Clu. This is

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

Dimensions

E
x
e
c

u

ti

�

n

T

im

e
��
e
�
�

FOP�ICS

OP�ICS eps=�

DeLi−Cl�

DeBaRa

38x

over Deli�Clu

32x

over OPTICS

Figure 6: Performance of DeLi-Clu diminishes for
higher dimensions, due to its use of indexing tech-
niques.

a by-product of the use of indexing techniques by DeLi-
Clu. It is well understood that the performance of space-
partitioning indexing structures like R-trees, diminishes for
increasing dimensionalities. The performance improvements
of FOPTICS compared to OPTICS range from 47x (at low
dimensions) to 32x (for high dimensions). A different trend
is suggested in the runtime improvement against DeLi-Clu
ranging from 17x (at low dimensions) to 38x (at high di-
mensions). Therefore, when dealing with high-dimensional
datasets it is best to resort to techniques based on random
projections.

In general, DeBaRa is slower than FOPTICS but does
not require to set any parameters, making it an excellent
candidate for exploratory data analysis.

8. REFERENCES
[1] UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml/datasets.html. Accessed:
10/11/2012.

[2] M. Ankerst, M. M. Breunig, H. peter Kriegel, and J. Sander.
Optics: Ordering points to identify the clustering structure. In
SIGMOD, 1999.

[3] H. Chang and D.-Y. Yeung. Robust path-based spectral
clustering with application to image segmentation. In Pattern
Recognition, 2008.

[4] R. Chitta and M. N. Murty. Two-level k-means clustering
algorithm for k-tau relationship establishment and linear-time
classification. Pattern Recognition, 2010.

[5] S. Dasgupta and Y. Freund. Random projection trees and low
dimensional manifolds. In STOC, 2008.

[6] L. Fu and E. Medico. Flame, a novel fuzzy clustering method
for the analysis of dna microarray data. In BMC
bioinformatics, 2007.

[7] A. Gionis, H. Mannila, and P. Tsaparas. Clustering
aggregation. TKDD, 2007.

[8] A. Hinneburg and H.-H. Gabriel. Denclue 2.0: Fast clustering
based on kernel density estimation. In IDA, pages 70–80, 2007.

[9] A. K. Jain. Data clustering: User’s dilemma. In MLDM, 2007.

[10] M. Koyut, A. Grama, and N. Ramakrishnan. Compression,
clustering, and pattern discovery in very high-dimensional
discrete-attribute data sets. IEEE TKDE, 2005.

[11] W. M. Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical association,
(336), 1971.

[12] C. J. Veenman, M. J. T. Reinders, and E. Backer. A maximum
variance cluster algorithm. Pattern Anal. Mach. Intell., 2002.

[13] J. J. Whang, X. Sui, and I. S. Dhillon. Scalable and
memory-efficient clustering of large-scale social networks. In
ICDM, 2012.

[14] C. T. Zahn. Graph-theoretical methods for detecting and
describing gestalt clusters. IEEE Trans. Comput., 1971.

866

