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ABSTRACT
The emergence of cloud-based storage services is opening
up new avenues in data exchange and data dissemination.
This has amplified the interest in right-protection mecha-
nisms to establish ownership in case of data leakage. Cur-
rent right-protection technologies, however, rarely provide
strong guarantees on the dataset utility after the protection
process. This work presents techniques that explicitly ad-
dress this shortcoming and provably preserve the outcome
of certain mining operations. In particular, we take special
care to guarantee that the outcome of hierarchical clustering
operations remains the same before and after right protec-
tion. We encode data ownership using watermarking prin-
ciples. In the process, we derive fundamental bounds on
the distortion incurred by the watermarking. We leverage
our theoretical analysis to design fast algorithms for right
protection without exhaustively searching the vast design
space.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering

Keywords
Watermarking, Distortion Estimation

1. INTRODUCTION
Data exchange and data sharing have become an inher-

ent part of business and academic efforts. Both practices
encourage scientific enquiry, ease validation of research ef-
forts and maximize transparency. As such, data sharing
and data publishing are recognized as important productiv-
ity catalysts in diverse research efforts. To offer a concrete
example, it is widely recognized that initiatives such as the
human genome project [1] that advocated data sharing lead
to “rapid scientific breakthroughs that otherwise would not
have occurred” 1. Recently, even fields that viewed data

1http://scientificdatasharing.com/about/
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sharing through a negative prism (e.g., banking industry),
have promoted the establishment of consortia to ease data
exchange [6]. Owing to the high availability of cloud-based
services in the near future, similar initiatives are projected
to experience a surge in demand, as attested in many recent
studies [11, 17, 10].

Data owners, nonetheless, need also maintain principal
rights over the shared datasets, datasets which in many cases
have been obtained after laborious procedures. This work
presents a protection mechanism that can deliver detectable
evidence on the legal ownership of a shared dataset, without
compromising its usability for a class of mining operations.
To achieve this, we guarantee that important distance-based
relationships between the dataset objects remain unaltered.

We embed ownership evidence using watermarking tech-
niques. Watermarking has emerged over the years as a suc-
cessful method for establishing data progeny. It has been
used extensively in many multimedia applications, on im-
age, video, and audio data. Traditional watermarking tech-
niques focus on a single data object and are not tailored
for preserving relationships between multiple objects. In
that sense, our technique augments and strengthens exist-
ing watermarking methodologies. Our goal is two-fold: to
guarantee right-protection and, at the same time, preserve
the original relationships between the dataset objects. Hav-
ing accomplished this, any learning or retrieval task that
depends on the preserved structural properties will remain
undistorted even after the watermark application.

In this work, we explicitly show how to preserve hierar-
chical clustering (HC). HC is a popular knowledge extrac-
tion tool, because it can visually communicate the similarity
between objects and groups of objects. Because of its de-
scriptive power and ease of implementation it is a valuable
tool in many disciplines, including:

• Biology and Bioinformatics, for the construction of
phylogenetic trees between species [16].

• Natural Sciences, for the taxonomic categorization of
plants or animals based on their similarity to previ-
ously categorized objects [23].

• Business Analytics and Marketing, for performing
customer-base segmentation and aiding the discovery
of common customer profiles [28].

Our objective is to maximize the knowledge we can gar-
ner from the watermarked data. Here, we give provable
guarantees of identical outcome for HC algorithms on the
original and watermarked dataset. To achieve this we pro-
vide a theoretical analysis of the distance distortion due



to watermarking. We derive tight bounds on the expan-
sion/contraction of distances caused by multiplicative wa-
termarking techniques. We exploit these results to engineer
fast watermarking variants that drastically prune the
parameter search space, compared to the exhaustive algo-
rithms.

2. OVERVIEW OF OUR APPROACH
Our goal is to discover how to right-protect a dataset so

that the dendrogram resulting from the hierarchical cluster-
ing after the right protection is isomorphic to the one on
the original data (see Fig. 1). This translates into study-
ing with what watermark intensity to protect the dataset
so that important parts of the dataset graph are not dis-
torted. We study how to achieve this goal for both single-
and complete-linkage hierarchical clustering.
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Figure 1: Our goal is to guarantee ‘isomorphic’ den-
drograms before and after right-protection

It is essential to discover the maximum watermark inten-
sity for right protection. This provides assurances of bet-
ter detectability and hence security for the right-protection
scheme. Therefore, we first study how (Euclidean) distances
between the objects are distorted as a parameter of the wa-
termark embedding strength. This provides insight into de-
signing fast variants of our algorithms that still guarantee
hierarchical clustering preservation, but operate significantly
faster than the exhaustive algorithms.

Our paper is structured as follows: First, we describe how
right-protection can be materialized via a spread-spectrum
watermarking approach. We also show how to detect the wa-
termark. Subsequently, we study the distortion of distances
due to watermarking. We describe single- and complete-
linkage algorithms and the necessary conditions to preserve
them post-watermarking. We provide a theorem that gives
tight lower and upper bounds on the distance distortion. We
use it to design faster HC-preservation algorithms that are
based on the bounds derived. Finally, we provide a compre-
hensive set of experiments, and we review the related work.

3. RIGHT PROTECTION THROUGH WA-
TERMARKING

We describe first how watermarking mechanisms can em-
bed a secret key (watermark) on a collection of objects. We
demonstrate the techniques for 2D sequence data (image
contours, trajectories, etc). We later demonstrate how to
detect the watermark using a correlation filter.

3.1 Watermark Embedding
Assume an object represented as a vector of complex num-

bers x = {x1, . . . , xn}, where xk = ak + bki (i is the imagi-
nary unit, i2 = −1), and where the real and imaginary parts,
ak and bk respectively, describe the coordinates of the k-th

point of object x on the imaginary plain. Such a model can
describe data trajectories or even image contour data which
capture coordinates of a shape perimeter, as shown later in
Figure 10.

We adapt a spread-spectrum approach [7]. This embeds
the watermark across multiple frequencies of each object and
across multiple objects of the dataset. As such, it renders
the removal of the watermark particularly difficult without
substantially compromising the data utility. An object x is
mapped into the frequency domain using its complex Fourier
descriptors X = {X1, . . . , Xn}. The mapping from the space
domain to the frequency domain is described by the normal-
ized discrete Fourier transform, DFT (x), and its inverse,
IDFT (X). Every coefficient Xj can be expressed as a func-
tion of its magnitude δj and phase φj as Xj = δje

φji. The
watermark constitutes a piece of secret information to be
hidden inside each sequence. In our approach, we consider
the watermark to be a vector W ∈ {−1, 0, +1}n, which is
embedded in all objects of the dataset.

Definition 3.1. (Watermark Embedding (W, p)) Given
are a sequence x ∈ C

n with corresponding set of Fourier
descriptors X, a watermark W ∈ R

n and power p ∈ [0, 1],
which specifies the intensity of the watermark. A multi-

plicative watermark embedding (W, p) generates a wa-
termarked sequence x̂ by replacing the magnitudes of each

Fourier descriptor of x with a watermarked magnitude δ̂j

while not altering the phases, specifically:

δ̂j = δj · (1 + pWj) , and φ̂j = φj

Using the modified magnitudes δ̂j and the original phases
φj , we can revert from the frequency domain to the space do-
main and obtain the watermarked sequence using the inverse
discrete Fourier transform. An overview of the methodology
described is given in Fig. 2.
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Figure 2: Overview of the right-protection process.

The robustness of the watermark embedding depends on
the choice of coefficients. We embed the watermark in the
coefficients that exhibit, on average over the dataset, the
largest Fourier magnitudes. This makes the removal of the
watermark difficult; masking it out (e.g. by noise addition)
would mean that important frequencies of the dataset will
be distorted. This would diminish the dataset utility. Fig.
3 shows the reconstruction of a shape from a dataset when



approximated using the highest-energy coefficients. It is ap-
parent that the high-energy coefficients capture important
characteristics of the dataset.

2 coeffs 4 coeffs 8 coeffs

16 coeffs 32 coeffs 64 coeffs

original object ..using some of its Fourier coefficients

Figure 3: Object reconstruction for different num-
ber of Fourier coefficients that contain the highest
energy.

Watermark Choice: Given dataset D and an even integer
2 ≤ l ≤ n, we focus on the following class of watermarks:

Definition 3.2. (Class of watermarks Wl(D) with l non-
zero elements, compatible with dataset D) The class of wa-
termarks with l non-zero elements, compatible with dataset
D, denoted by Wl(D), is the set of all W ∈ {−1, 0, +1}n

that satisfy:

Wj =






0 if j = 1 (DC component)
{−1, 1} if µj(D) is among the l largest µi6=1(D)

0 otherwise

(1)

as well as
∑n

j=1 Wj = 0.

Note that in the above definition we do not embed any
part of the watermark in the first Fourier descriptor, X1

(also called the DC component), but leave it intact. The
DC component captures the center of mass of object x and
is therefore highly susceptible to translational attacks. For
example, if a part of the watermark were embedded on the
DC component of an object then a simple translation would
shift the center of mass of the object, thus rendering this
part of the watermark useless without affecting the general
shape of the object at all.

In summary, we embed the watermark in the magnitudes
of the Fourier descriptors and leave the phases unchanged;
we leave the DC component intact, and we watermark the
Fourier descriptors with the largest average magnitudes.

Resilience to transformations: By construction, our
right-protection mechanism provides resilience to geomet-
ric data transformations, such as rotation, translation, and
scaling. Global object rotation is an intelligent attack be-
cause it distorts all coordinates of the objects, but pairwise
distances remain the same. However, rotation in the fre-
quency domain affects only the phases but not the magni-
tudes. Our watermark being embedded in the magnitude
space will remain unaffected. Similarly, global translation
of all objects only distorts the DC component, in which no
part of the watermark was embedded. Scaling attacks can
be addressed simply by normalizing all objects/sequences
appropriately before watermark detection.

3.2 Watermark Detection
We measure the probability of existence of a watermark by

evaluating the correlation between a tested watermark and

the right-protected dataset. Measuring directly the correla-
tion between the watermark and the magnitudes of Fourier
descriptors may prove ineffective. The reason being that
the original level of the average of magnitudes acts as back-
ground noise, masking the embedded watermark we seek to
detect. We address this issue by explicitly recording the
bias of average magnitudes before embedding the water-
mark, and removing it before the detection. We also record
this bias vector along with the watermark W , and both are
used jointly as the key.

For a dataset D = {x(1), . . . , x(|D|)}, we denote as δx(i)

j

the magnitude of the jth Fourier descriptor of object x(i)

before watermarking. The average of the magnitudes of the
jth Fourier descriptor across all objects in D, denoted as
µj(D), is given by

µj(D) :=
1

|D|

|D|∑

i=1

δ
x(i)

j . (2)

We measure the correlation between a watermarked
dataset D̂ and watermark W as follows:

χ(W, D̂) :=

(
µ(D̂)− µ(D)

µ(D)

)T

W,

where the division is element-wise, excluding elements where
µj(D) = 0. In other words, we remove the bias of average
magnitudes before computing the correlation. The scheme
enables a very effective detection of the watermark. We
show briefly why; after elementary algebraic calculations,
the correlation between a dataset watermarked with W and
any other watermark W ′ is reduced to:

χ(W ′
, D̂) = pW T W ′

The quantity is maximized for W ′ = W , giving χ(W ′, D̂) =

pl. So, for any W ′ 6= W , χ(W ′, D̂) < χ(W, D̂).
Recall that µ(D) is part of the watermark (key). This

results in a very secure protocol. The reason being that a
malicious attacker may try to discover the embedded key
by probing different watermarks. However, the correlation
depends on the vector µ(D), which the attacker has no way
of knowing without access to the non-watermarked data.

4. HIERARCHICAL CLUSTERING
PRESERVATION

Hierarchical clustering (HC) builds a nested hierarchy of
groups of objects according to a given distance function.
This nested hierarchy is called a dendrogram (see Fig. 1). A
popular method of building a dendrogram is to use an ag-
glomerative “bottom-up” approach: each data point starts
in its own cluster, and pairs of clusters are merged itera-
tively until a single cluster remains. There exist different
functions for evaluating the distance between clusters, lead-
ing to many variants of HC approaches, such as single- or
complete linkage. We explain these in detail later on, and
also show how to preserve them post-watermarking.

Our right-protection scheme operates in such a way that
important object distances are preserved, leading to iden-
tical clustering structure irrespective of whether the data
contains a watermark or not. It is important to strike a bal-
ance between security, i.e. detectability of the watermark,



visual distortion of objects, and correctness of the cluster-
ing. Therefore, we seek to find the maximum embedding
power p∗ that does not distort the original dendrogram of
the objects.

In certain cases, it may be possible to embed a watermark
with high intensity and still maintain the dendrogram struc-
ture. This however, may lead to a visible distortion in an
object’s shape. Fig. 4 depicts how an object is distorted for
increasingly larger watermark embedding powers. There-
fore, in practice, we set an upper limit on the maximum
allowed power, i.e., p∗ ∈ [pmin, pmax]. In our experiments
we used pmax = 0.01, therefore we allow up to 1% relative
distortion. This assures that objects before and after water-
marking will look virtually the same.

p = 0 p = 0.01 p = 0.05

Figure 4: One object from a handwritten dataset
(hand dataset) for different embedding powers of the
watermark. Left: original object (p = 0). Middle:
object distortion for p = 0.01. Right: object is more
visibly distorted when the watermark is embedded
with p = 0.05, corresponding to a 5% relative distor-
tion.

Here, we study HC-preservation approaches that use the
Euclidean distance between objects. We can also view pair-
wise relationships between objects as the edges of a complete
graph. On this graph each edge e = (x, y) connecting two
objects x, y has weight (or length) equal to their distance
D(x, y). After right-protection, the edges of the dataset
graph may change, because the new distance of objects x, y

watermarked with power p will be D̂p(x, y). We want to
ensure that important parts of the graph remain the same.

Note, also, that the function D̂p(x, y) =
∑n

j=1 ‖(1 +

pWj)(Xj − Yj)‖
2 is a parabola with respect to the em-

bedding power p (see Figure 7 for an example). We use this
important observation to discover the appropriate lower or
upper envelope of the parabolas, when we deal with single-
or complete-linkage, respectively. More details on this will
be provided later.

The next three definitions formalize the goal of hierarchi-
cal clustering preservation.

Definition 4.1. (Dendrogram) A dendrogram over
(D, D) is a triplet (T, M, l) where T is a binary rooted tree,
M : leaves(T ) → D is a bijection, and l : V (T ) → {0, . . . , h}
(for some integer h ≥ 0) such that (i) for every leaf
node u ∈ V (T ), l(u) = 0 and (ii) if (u, v) ∈ E(T ) then
l(u) > l(v).

Definition 4.2. (Isomorphic Dendrograms) Dendro-
grams (T0, M0, l0) and (T1, M1, l1) are (order) isomorphic,
if there exists a graph isomorphism φ : V (T0) → V (T1)
between the two trees T0 and T1, such that ∀v, u ∈ V (T0):
l0(u) < l0(v) ⇔ l1(φ(u)) < l1(φ(v)).

Definition 4.3. (Hierarchical Clustering Preservation
Problem) Given a set of objects D and a range of feasible
powers [pmin, pmax], find the maximal embedding power p∗

such that the dendrograms computed on D and D̂ are iso-
morphic.

4.1 Single-Linkage Clustering
Single-linkage hierarchical clustering operates as follows:

initially each object belongs to its own cluster. The two clus-
ters with the smallest distance are merged and the distances
of the newly formed cluster to the old ones are updated. The
process is repeated until only one cluster remains. The link-
age function L that evaluates the distance between two clus-
ters C0 and C1 is given by L(C0, C1) := min D(u, v), where
u ∈ C0, v ∈ C1. Algorithm 1 gives a high-level description of
the process. Note, that the naive algorithm requires O(n3)
runtime, given n objects. More efficient algorithms exist in
the literature that leverage additional data structures, such
as priority queues or data structures for finding the next-
best-match. These effectively reduce the runtime to O(n2).
One such algorithm is SLINK [22].

Algorithm 1 Single-Linkage Algorithm

1: INPUTS: dataset D
2: OUTPUT: Clustering C(i), i ∈ [1, |D|]
3: C(1) := D {Each object is its own cluster}
4: for i = 1→ |D| − 1 do {repeat until one cluster remains}
5: Find clusters M(i) := {Cm1, Cm2} of minimum distance
{L(Cm1, Cm2) = minC,C′∈C(i) L(C, C′)}

6: C(i + 1) = C(i) \M(i) ∪ {Cm1 ∪ Cm2} {Merge clusters}

7: end for

To guarantee that the dataset after watermarking yields
the same dendrogram, we ensure that all mergers between
clusters are the same, and that they are also executed in the
same order. However, it is not important which objects be-
tween the clusters lead to the merger (i.e., which edge on the
distance graph is shortest), as long as the same clusters are
merged for both watermarked objects and non-watermarked
objects. We wish to ensure that for every feasible watermark
embedding power p the shortest edge is an edge between the
two merged clusters and not between any other two clus-
ters. Formally, if Cm1 and Cm2 are the clusters merged in
the current step then:

p is feasible ⇔ ∀i with M(i) = {Cm1, Cm2} : (3)

min
u∈Cm1
v∈Cm2

D̂p(u, v) ≤ min
r∈C1
s∈C2

C1 6=C2

D̂p(r, s)

To get the feasible powers p for a merger M(i), defined by
inequality (3), one must determine for every p ∈ [pmin, pmax]
whether the shortest distance is between the two merged
clusters Cm1 and Cm2 or between any other two clusters.
This is illustrated in Fig. 5. The two solid lines originating

from Ĉ represent graph edges between the two clusters. The

three dashed lines from D̂ correspond to all graph edges in
between any other two clusters. In terms of inequality (3),
the solid edges belong to the left-hand side and the dashed
edges to the right-hand side of the inequality.

Therefore, to discover the proper power p, we consider
each edge e = (x, y) on the distance graph and find the

ranges of power p where the examined parabola D̂p(e) is
smaller than all other relevant parabolas. All power ranges
for which the current edge is not the smallest should be
eliminated (see Fig. 6), because otherwise the dendrogram
mergers will not happen in the same order.

Analytically, this boils down to finding the lower envelope
of a set of parabolas. The lower envelope EN l (see Figure
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Figure 5: All relevant distances when computing
the feasible powers to ensure the merger of clusters

{Â, B̂} and Ĉ.

7) corresponds to a sequence of interleaving edges e of min-
imum distance and intersection points of the feasible pow-
ers p, i.e., EN l = (p0 = pmin, e0, p1, e1, p2, e2, ...em, pmax),
where pi ∈ [pmin, pmax] is an intersection point of ei and

ei+1, i.e. D̂pi
(ei) = D̂pi

(ei+1). One might compute a sepa-
rate lower envelope for all constraints on the left-hand side
and right-hand side of inequality (3) and then compare the
two envelopes to determine the feasible powers for a merger
M(i). It is somewhat simpler to just build a single parabola
containing all parabolas from the left- and right-hand side
of inequality (3). This is essentially what our Algorithm 2
does. We can achieve that very efficiently using the algo-
rithm presented in [9] to compute the compound envelope.

pmin pmax

infeasible power range

'"blue" < "black"

D
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Figure 6: The feasible range of powers guaranteeing

a merger of the two clusters {Â, B̂} and Ĉ in Figure
5. The edges between the merged clusters are given
by solid lines. All other edges are shown as dashed
lines. For single-linkage clustering, an embedding
power will be feasible if the shortest edge between
two merged clusters is smaller than any other edge
between any two other clusters.

More precisely, we iteratively compute a new envelope
EN l using all edges E in the prior envelope except the
edges E′ (line 8) that are between the previously merged
clusters Cm1 and Cm2. We go through all mergers (see line
5) in ascending order, i.e., let M(i) = {Cm1, Cm2} be the
merger currently considered. We compute the lower enve-
lope EN l according to [9] (line 9). Then we consider all
edges e ∈ E′ that have been added to EN l (line 10). If an
edge e is not in the envelope then there are edges of smaller
distance for every power p ∈ [pmin, pmax]. Thus, edge e has
no influence on the feasible powers. It no longer has to be
considered. If edge e is part of EN l, say e corresponds to

edge ej ∈ EN , then the range of powers [pj , pj+1] is fea-
sible. This range [pj , pj+1] is added to the set of feasible
power ranges pRanges(M(i)). At the end of the algorithm
(line 15), we compute the intersection of all pRanges(M(i))
to determine the maximum power p∗ that yields the same
mergers for watermarked and non-watermarked data.

pmin pmax
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watermark power

Figure 7: Dashed line shows the distance function

D̂p(x, y) for an edge e = (x, y). The solid line cor-
responds to the lower envelope, i.e., the minimum
distance for every power p for a set of edges, e.g.,
between two clusters. For single-linkage clustering
only the minimum distance is relevant.

Algorithm 2 Single-Linkage Preservation Algorithm

1: INPUTS: dataset D, watermark W ∈ W(D), pmin, pmax

2: OUTPUT: p∗

3: den← dendrogram on original data D, e.g. using SLINK[22]
4: E := {(u, v)|u, v ∈ D} {set of all edges}
5: for i = 1→ |D| − 1 do
6: C ← set of clusters before ith merger M(i) in den
7: {Cm1, Cm2} ← clusters merged at ith merger M(i) in den
8: E′ ← {(u, v)|u ∈ Cm1, Cm2}
9: EN l := lower envelope EN l of edges E using [9]

10: for all ej ∈ (E′ ∩ EN l) do {edges between the merged
clusters that are in the envelope}

11: pRanges(M(i)) := pRanges(M(i)) ∪ [pj , pj+1]
12: end for
13: E := E \ E′ {Remove edges between merged clusters}
14: end for

15: p∗ = max{p ∈
(⋂

1≤i<|D| pRanges(M(i))
)⋂

[pmin, pmax]}

Complexity: Construction of the Single-Linkage Dendro-
gram requires O(|D|2) time [22]. Computation of the lower
envelope using O(|D|2) elements takes O(|D|2 log |D|) us-
ing [9]. When computing the lower envelope EN l, we be-
come immediately see which edges e ∈ E′ are added between
merged clusters, i.e. the intersection edges E′ ∩ EN l (line
10) does not add to the time complexity. Combining this,
the outer for loop (line 5) takes time O(|D|3 log |D|). Com-
puting the intersections of feasible powers pRanges(M(i))
of individual mergers takes time O(|D|2 log |D|): There are
in total (for all M(i) together) at most as many edges as
intervals of feasible powers [pj , pj+1], i.e., O(|D|2). Sort-
ing the power intervals in each pRanges(M(i)) according to
the left end point and merging the different sorted intervals
pRanges(M(i)) yields the time complexity.

4.2 Complete Linkage Clustering
Just like single-linkage, complete-linkage hierarchical clus-

tering merges two clusters according to a different linkage
function L. The distance L between two clusters of nodes



C0 and C1 is given by the maximal distance of a pair of nodes
in distinct clusters, i.e. L(C0, C1) := maxx∈C0,y∈C1 D(x, y).
Therefore, we are not interested in the edges of smallest dis-
tance between clusters but in edges of maximum distance.
This changes the (number of) relevant constraints signifi-
cantly. Instead of a single constraint for each merger, a
constraint for every pair of clusters is required. We define
M(i), C(i), EN in the same way as in the previous section.

p is feasible ⇔ ∀i with M(i) = {Cm1, Cm2} : (4)

∀C1, C2 ∈ C(i), C1 6= C2 :

max
u∈Cm1
v∈Cm2

D̂p(u, v) ≤ max
r∈C1
s∈C2

D̂p(r, s)

Algorithm 3 for complete-linkage clustering preservation is
more involved than Algorithm 2 for single-linkage. We have
to deal with the min-max relationship due to the complete
linkage criterion expressed in Inequalities (4), i.e., merge the
two clusters with minimum maximum distance of two nodes.
This requires to maintain a set of upper envelopes EN u, i.e.
for each pair of clusters C1, C2 ∈ C there is an envelope
ENu(C1, C2) ∈ EN u. To get the minimal maximum dis-
tance, we compute a lower envelope EN l for the edges in
the upper envelopes.
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Figure 8: Preservation of complete-linkage den-
drogram by watermarking (largest possible power
p = 0.0221).

An overview of the process is given in Algorithm 3.
Initially, a clustering of non-watermarked objects is com-
puted using the CLINK algorithm [8]. We maintain a set
of upper envelopes for any pair of clusters, i.e., EN u :=
{ENu(C1, C2)|C1, C2 ∈ C}. Computing the upper and lower
envelope are equivalent problems, thus we can use [9] for
lower envelopes with some adjustments2. Originally, when
each object is a cluster, the upper envelope between two
clusters is given by the edge between the two objects (line
4 of Algorithm 3). To get all feasible powers for merger

2e.g. in [9] Section 4, replace the lower envelope function
F (x) = mini≤n pi(x) by F (x) = maxi≤n pi(x). In Lemma 5
use Fi+1(x) = max(pi+1(x), Fi(x))

M(i) = {Cm1, Cm2} we compute a lower envelope EN l con-
sisting of the union of all edges contained in any upper en-
velopes ENu(C1, C2) of any pair C1, C2 ∈ C. For any edge
ej between the merged clusters {Cm1, Cm2} that is also in
the lower envelope EN l (line 12) we add the power range
[pj , pj+1] for which edge ej is smallest to the feasible pow-
ers pRanges(M(i)). After a merger M(i) = {Cm1, Cm2}
all upper envelopes between pairs containing either Cm1 or
Cm2 must be adjusted to keep EN u up-to-date. We delete
all upper envelopes of pairs involving any of two merged
clusters Cm1 or Cm2 from EN u. Then a new upper enve-
lope ENu(Cm1 ∪Cm2, C) for each C ∈ C(i) \ {Cm1, Cm2} is
added to EN u. After having gone through all mergers i in
ascending order, we finally compute the intersection of all
pRanges(M(i)) giving the maximum power p∗.

Algorithm 3 Complete-Linkage Preservation Algorithm

1: INPUTS: dataset D, watermark W ∈ W(D), pmin, pmax

2: OUTPUT: p∗

3: den← dendrogram on original data D, e.g. using CLINK[8]
4: ENu(u, v) := {pmin, e = (u, v), pmax} {upper envelope of

one edge}
5: ENu := {ENu(u, v)|u, v ∈ D} {set of upper envelopes}
6: for i = 1→ (|D| − 1) do
7: C ← set of clusters before ith merger M(i) in den
8: {Cm1, Cm2} ← clusters merged at ith merger M(i) in den
9: /*– Compute feasible powers pRanges(M(i)) –*/

10: Compute lower envelope EN l consisting of all edges in the
upper envelopes in ENu using [9]

11: E′ ← {(u, v)|u ∈ Cm1, v ∈ Cm2}
12: for all ej ∈ (E′ ∩ EN l) do {edges between the merged

clusters that are in the envelope}
13: pRanges(M(i)) := pRanges(M(i)) ∪ [pj , pj+1]
14: end for
15: /*– Update upper envelopes ENu –*/
16: Remove {ENu(Cm1, C), ENu(Cm2, C)|C ∈ C} from ENu

17: for all C ∈ C \ {Cm1, Cm2} do
18: Compute envelopes for newly merged cluster Cm1∪Cm2

and C to ENu(Cm1 ∪ Cm2, C)
19: end for
20: end for

21: p∗ = max{p ∈
(⋂

1≤i<|D| pRanges(M(i))
)⋂

[pmin, pmax]}

Complexity: Construction of the Complete-Linkage Den-
drogram requires O(|D|2) time [8]. Computation of the lower
envelope EN l using [9] (line 10) takes O(|D|2 log |D|). When
adding an edge e ∈ E′ to envelope EN l, we become imme-
diately aware whether the edge becomes part of EN l (or
is too large for all powers). Thus determining the edges
between merged clusters that are part of the lower enve-
lope, i.e. E′ ∩ EN l, (line 12) causes no costs. In iteration
i of the for-loop (line 6) there are |D| − i clusters remain-
ing. Computing the upper envelopes EN u requires delet-
ing O(|D|) envelopes and adding at most O(|D|) upper en-
velopes. More precisely, the number of edges within upper
envelope ENu(Cm1 ∪ Cm2, C) with C ∈ C \ {Cm1, Cm2} is
given by |Cm1 ∪Cm2||C|. Thus the total number is given by
|Cm1∪Cm2|

∑
C∈C |C|. Each object is in exactly one cluster,

i.e.
∑

C∈C |C| = |D|. Therefore, |Cm1 ∪ Cm2|
∑

C∈C |C| ≤

|Cm1 ∪ Cm2||D| ≤ |D|2. The algorithm in [9] runs in
O(|D|2 log |D|). Therefore the running time of the for-loop
(line 6) is bounded by O(|D|3 log |D|). Computing the in-
tersections of feasible powers pRanges(M(i)) of individual
mergers takes time O(|D|2 log |D|) as for Algorithm 2.



5. FAST ALGORITHMS
Here we derive faster variants of the previous HC-

preservation algorithms. They are based on a study of the
distance distortion due to the multiplicative watermarking.

Theorem 5.1. For any two watermarked objects x̂, ŷ ∈
D̂, their Euclidean distance denoted as Dp(x̂, ŷ) is lower
and upper bounded by the Euclidean distance of the non-
watermarked objects x, y ∈ D as follows:

(1 − p)D(x, y) ≤ Dp(x̂, ŷ) ≤ (1 + p)D(x, y)

The proof can be found in the Appendix. Fig. 9 illustrates
it.

Figure 9: Two objects cannot get arbitrarily close or
arbitrarily far after the watermark embedding. In
this figure we represent objects as points for presen-
tational purposes. To better illustrate the distortion
bounds, objects x̂, ŷ are globally translated so that x

and x̂ coincide.

We can exploit Theorem 5.1 to prune the search space
while preserving the clustering structure. Namely, if for two
edges e′ and e′′ we know that the upper bound for one of
them is lower than the lower bound for the other, then those
two edges will not intersect. Therefore, if for edges e′ and
e′′ holds that:

(1 + pmax)D(e′) < (1− pmax)D(e′′)

or

(1 + pmax)D(e′′) < (1− pmax)D(e′)

then using Theorem 5.1 we can be sure that edge e′ will be
shorter than e′′ (or e′′ shorter than e′, respectively) for any
feasible power p ∈ [0, pmax]. Thus, there is no need to search
for their intersection. After adding an edge e′ to the lower
envelope in Algorithm [9] (line 9 of Algorithm 2) we can
therefore avoid computing the intersection of edges e′ and
e′′ to update the envelope, i.e. figure out which edges to
remove from the envelope due to the addition of e′. Indeed,
the algorithm can avoid the computation for e′ and e′′ if:

1 − pmax

1 + pmax
≤

D(e′′)

D(e′)
≤

1 + pmax

1 − pmax

thus affecting significantly the number of quadratic inequal-
ities to be solved.

In the experimental section that follows, we show that the
use of lower- and upper-bounds on the watermarked distance
can lead to reduction of the search space that ranges from
one (1) to three (3) orders of magnitude.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the presented schemes. First,

we verify that our right-protection methodology discovers

the maximum watermarking power that correctly preserves
the original dendrogram. Then, we compare the fast algo-
rithms proposed in Section 5 to their exhaustive counter-
parts cf. Section 4, in terms of number of operations. We
report major speed-ups. Finally, we assess the resilience of
our scheme against a broad range of potential attacks: geo-
metric distortions, resampling, etc.

Figure 10: Image shapes can also be treated as two-
dimensional sequences by extracting the perimeter
of a shape.

We test our methods on datasets from various application
areas: mobility data (taxi trajectories in Beijing [32, 33]
and San Francisco [21]), financial data (stock prices in the
NASDAQ stock market), video-tracking data, handwritten
data, and image contour data from anthropology and nat-
ural sciences (the latter datasets were obtained from [15]).
The characteristics of our datasets are summarized in Ta-
ble 1. All experiments have been executed on a 2.16GHz
Intel CPU with 3GB RAM.

Name Data Type Points/Object Objects

nasdaq Stock Prices 1000 500
taxiSF Taxi Traj. SF 5000 516
taxiBeijing Taxi Traj. Beijing 1411 1063
skulls Image Contour 1500 16
fish Image Contour 256 247
video1 Video-Tracking 1500 15
video2 Video-Tracking 500 23
hand Handwritten 128 90

Table 1: Datasets used in the experiments.

6.1 Preservation of Distance Relations
Here we evaluate whether the single- and complete-

linkage preservation algorithms discover the correct embed-
ding power for the watermark so the dendrograms both on
the original and the watermarked data remain isomorphic.
This means that both the tree structure and the order of
the merger points M(i) are the same. A sample compar-
ison of a dendrogram resulting from the complete linkage
procedure of the original data and of the watermarked data
was presented in Figure 8. In Figure 11 we show the dis-
tortion of the dendrogram that occurs when a watermark
is embedded with power p > p∗. Indeed, even a slightly
increased value of the power results in alterations in the re-
sulting dendrogram. We report the maximal power p∗ that
the algorithms returned which resulted in all cases in total
dendrogram preservation. The same maximal embedding



power was returned by both exhaustive and fast variants of
the algorithms. Table 2 summarizes our findings.

p = 0.0222 > p*

dendrogram is same as original parts of dendogram are distorted

p* = 0.0221

Figure 11: Dendrogram portion for the skulls

dataset. Left: dendrogram for maximum discov-
ered p∗ = 0.0221 is same as original. Right: for even
slightly larger p = 0.0222 the dendrogram changes.

Single linkage | Complete linkage
Dataset p∗ Pres. p∗ Pres.

nasdaq 0.77 · 10−4 100% 0.243 · 10−3 100%
taxiSF 0.47 · 10−4 100% 0.97 · 10−4 100%
taxiBeijing 0.4 · 10−5 100% 0.28 · 10−4 100%
skulls 0.1 · 10−1 100% 0.1 · 10−1 100%
fish 0.229 · 10−3 100% 0.122 · 10−3 100%
video1 0.39 · 10−2 100% 0.1 · 10−1 100%
video2 0.1 · 10−1 100% 0.1 · 10−1 100%
hand 0.2271 · 10−2 100% 0.116 · 10−3 100%

Table 2: Maximal watermarking power p∗ and the
percentage of dendrogram preservation.

6.2 Comparison of Algorithms
Now we compare the efficiency of the fast dendrogram

preservation algorithms. With the use of the lower- and
upper-bounds on the distance distortion, the fast variants
can eliminate many pairs of objects from examination. This
reduction leads to solving fewer quadratic inequalities in the
progress of the algorithm. We record exactly how many
quadratic inequalities we need to solve with each algorithm.
Note, that this is also a CPU-agnostic measure and therefore
does not depend on any runtime optimization.

Table 3 summarizes the results of single-linkage preserva-
tion. The pruning efficiency is reported as the ratio of the
number of inequalities solved by the exhaustive algorithms,
compared to the fast algorithms. The use of the bounds
on the distance distortion (Section 5) results in considerable
speedup in terms of solved inequalities; up to 3 orders of
magnitude. Table 4 reports the results of the same experi-
ment for the case of complete-linkage preservation.

Dataset Single-L Fast Single-L Pruning

nasdaq 22,039,601 16,854 1,308×
taxiSF 23,032,154 5,993 3,843×
taxiBeijing 214,304,616 161,305 1,329×
skulls 770 16 48×
fish 2,895,694 8,425 344×
video1 637 23 28×
video2 2,311 40 58×
hand 129,377 976 133×

Table 3: Number of quadratic inequalities solved for
different datasets, single linkage (pmin = 0, pmax =
0.01).

Dataset Complete-L Fast Complete-L Pruning

nasdaq 21,187,434 36,280 584×
taxiSF 28,667,907 91,039 315×
taxiBeijing 322,436,544 393,970 818×
skulls 770 14 55×
fish 2,618,789 9,552 274×
video1 646 29 22×
video2 2,260 54 42×
hand 126,953 1,113 114×

Table 4: Number of quadratic inequalities solved
for different datasets, complete linkage (pmin = 0,
pmax = 0.01).

6.3 Resilience to Attacks
Here, we test the resiliency to potential attacks of the

right-protection scheme . We right protect the dataset by
inserting a watermark with the maximum allowed embed-
ding power that preserves the dendrogram (we test on the
power that preserves single-linkage clustering). We mea-
sure how detectable is the embedded watermark under a
series of attacks: addition of Gaussian noise in the space
and in the frequency domain, up- and down-sampling, and
geometric transformations (rotation, translation, scaling).
Fig. 12 depicts the ROC curves representing true- versus
false-positives rates. We also report the performance of a
random baseline, that randomly classifies the dataset as hav-
ing or not having the watermark embedded. Due to lack of
space, we only report ROC curves for four datasets. How-
ever, the results for the remaining ones were very similar.

We observe that our detection method works very effec-
tively. It is more than 4 orders of magnitude more effective
than the random baseline. In addition, the graphs exhibit
a large area under-the-curve, suggesting high detectability
and therefore high resilience to attacks.

7. RELATED WORK
Watermarking is a steganographic technique used for es-

tablishing the ownership, with many applications in multi-
media datasets [7], such as images [18], vector graphics [19],
audio [4, 27] and video [24, 34]. Multimedia watermarking
focuses on the protection of a single object whilst minimiz-
ing visual/audible distortions of the data. In contrast, our
setting operates on a collection of objects and at the same
time accounts for preservation of distance relations between
objects. More importantly, our scenario incorporates addi-
tional constraints in the form of guaranteeing identical out-
puts, after watermarking, for a class of mining and learning
algorithms based on hierarchical clustering.

Privacy-preserving techniques are also related to our work,
because they also alter data but enforce different constraints.
To achieve privacy-preservation two research paths are typ-
ically followed: a) protection through data alteration or
masking, and b) protection through dataset partition. Data
alteration can be achieved via noise addition [14, 13], con-
densation [2] or data transformation [5, 20]. Similar no-
tions have also been used for watermarking databases [3,
25]. Contrary to the above approaches, we do not attempt to
reconstruct the original data distribution but work directly
on the perturbed data, while guaranteeing preservation of
distance properties on them.
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Figure 12: ROC curves for watermark detection corresponding to geometric transformations, noise addition,
noise addition in the frequency domain, upsampling, and downsampling on different datasets.

Privacy-protection via dataset partition is achieved using
horizontal or vertical data partitioning [29, 12, 30, 31]. Dif-
ferent portions of the data are distributed to different sites,
and data exchange without leakage of private information
becomes possible through cryptographic techniques (multi-
party computation). The techniques in our approach are
fundamentally different; the dataset is not dissected in por-
tions, but is distributed as a whole.

Of relevance is also the work on watermarking stream-
ing time-series [26]. Differently from our approach, they
examine watermarking on a single numerical sequence, as
opposed to considering a collection of sequences. We also
aim at maintaining the original pairwise relationships and
we consider resilience even under geometric data transfor-
mations (rotations, etc).

In summary, our setting presents additional challenges
compared to traditional watermarking or privacy preserva-
tion techniques, because not only do we work directly on the
perturbed data, but more importantly, we provide provable
guarantees on preservation of distance properties. A right-
protection scheme based on watermarking principles that
preserved the Nearest Neighbor of objects was presented
in [15]. We adopt the watermarking model of that work,
but here we study the more elaborate case of hierarchical
clustering preservation. In addition, we provide a thorough
theoretical analysis on the distance distortion under a multi-
plicative watermarking process. We leverage the theoretical
analysis, first presented in this work, to obtain fast versions
of the exhaustive algorithms that we put forward, and we
demonstrate substantial speed-up in all experiments, with-
out any sacrifice in accuracy.

8. CONCLUSION
Right protection of a dataset presents an inherent engi-

neering tradeoff: the protection should be strong enough
to offer robustness of detection, but at the same time not
so dominant to destroy the utility of the dataset for subse-
quent mining operations. We propose a watermarking tech-
nique that identifies an optimal compromise between the
two conflicting factors. We design algorithms that find the
maximum embedding power that guarantees preservation of
hierarchical clustering operations on the modified dataset.
The fast variants that we put forward can reduce the search
space by more than 3000 times compared to the exhaustive
algorithms, with no sacrifice in accuracy. Our analysis is
generic and delivers great promise for a broader applicability
for an extended class of distance-based mining operations,
such as anomaly detection, classification and visualization.
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Appendix
Proof of Theorem 5.1: The squared Euclidean distance can be
expressed in the time or frequency domain as: D2(x, y) = ‖x −
y‖2 = ‖X − Y ‖2. The same objects x and y after watermarking
with power p have distance:

D̂
2
p(x, y) = ‖x̂ − ŷ‖2 = ‖X̂ − Ŷ ‖2 =

n∑

j=1

‖X̂j − Ŷj‖
2

=

n∑

j=1

‖(1 + pWj)Xj − (1 + pWj)Yj‖
2

=
n∑

j=1

‖(1 + pWj)(Xj − Yj)‖
2

However, because Wj ∈ {0, 1,−1}, we get the following bounds:
n∑

j=1

‖(1 − p)(Xj − Yj)‖
2 ≤ D̂2

p(x, y) ≤
n∑

j=1

‖(1 + p)(Xj − Yj)‖
2

⇔ (1 − p)2‖X − Y ‖2 ≤ D̂2
p(x, y) ≤ (1 + p)2‖X − Y ‖2

⇔ (1 − p)2D2(x, y) ≤ D̂2
p(x, y) ≤ (1 + p)2D2(x, y)

2

Tightness of Distance Bounds: The bounds are tight,
i.e. there exist distinct data points x and y such that (1 −

p)2D2(x, y) = D̂2
p(x, y) and points x′, y′ such that (1 +

p)2D2(x′, y′) = D̂2
p(x′, y′). First, we show how to construct the

subspace containing points X, Y to match the lower bound. Con-
sider two points X = (X0, X1, ...) and Y = (Y0, Y1, ...) such that
Xj = Yj for Wj ∈ {0, 1}. All remaining coordinates j with
Wj = −1 are arbitrary. This gives:

D̂2
p(x, y) =

n∑

j=1

‖(1 + pWj)(Xj − Yj)‖
2

=
n∑

j=1,Wj∈{0,1}

‖(1 + pWj)(Xj − Yj)‖
2

+
n∑

j=1,Wj=−1

‖(1 + pWj)(Xj − Yj)‖
2

= (1− p)2
n∑

j=1

‖(Xj − Yj)‖
2 = (1− p)2D2(x, y)

The points X′, Y ′ to reach the upper bound are constructed
analogously: X′

j = Y ′
j for Wj ∈ {0,−1} and arbitrary coordinates

Xj , Yj otherwise.


