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Abstract Clustering offers significant insights in data analysis. Density-based
algorithms have emerged as flexible and efficient techniques, able to discover
high-quality and potentially irregularly shaped clusters. Here, we present scal-
able density-based clustering algorithms using random projections. Our clus-
tering methodology achieves a speedup of two orders of magnitude compared
with equivalent state-of-art density-based techniques, while offering analytical
guarantees on the clustering quality. Moreover, it does not introduce difficult
to set parameters. We provide a comprehensive analysis of our algorithms and
comparison with existing density-based algorithms.

1 Introduction

Clustering is an important operation for knowledge extraction. Its objective
is to assign objects to groups such that objects within a group are more sim-
ilar than objects across different groups. Subsequent inspection of the groups
can provide important insights, with applications to pattern discovery [27],
data summarization/compression [17] and data classification [6]. In the field
of clustering, computationally light techniques, such as k-Means, are typically
of heuristic nature, may require non-trivial parameters, such as the number of
clusters, and often rely on stringent assumptions, such as the cluster shape.
Density-based clustering algorithms have emerged as both high-quality and
efficient clustering techniques with solid theoretical foundations on density es-
timation [12]. They can discover clusters with irregular shapes and only require
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parameters that are relatively easy to set (e.g., minimum number of points per
cluster). They can also help to assess important dataset characteristics, such
as the intrinsic density of data, which can be visualized via reachability plots.

In this work, we extend the state of the art in density-based clustering
techniques by presenting algorithms that significantly improve runtime, while
providing analytical guarantees on the preservation of cluster quality. Further-
more, we highlight weaknesses of current clustering algorithms with respect
to parameter dependency. Our performance gains and our quality guarantees
are achieved through the use of random projections. A key theoretical result
of random projections is that, in expectation, distances are preserved. We ex-
ploit this in a pre-processing phase to partition objects into sets that should
be examined together. The resulting sets are used to compute a new type of
density estimate through sampling.

Our algorithm requires the setting of only a single parameter, namely, the
minimum number of points in a cluster, which is customarily required as input
in density-based techniques. In general, we make the following contributions:

– We show how to use random projections to improve the performance of
existing density-based algorithms, such as OPTICS and its performance-
optimized version DeLi-Clu without the need to set any parameters. We
introduce a new density estimate based on computing average distances.
We also provide guarantees on the preservation of cluster quality and run-
time.

– The algorithm is evaluated extensively and yields performance gains of
two orders of magnitude with provable degree of distortion on the clus-
tering result compared with prevalent density-based approaches, such as
OPTICS.

2 Background and Related Work

The majority of density-based clustering algorithms follow the ideas presented
in DBSCAN [10], OPTICS [3] and DENCLUE [13]. Our methodology is more
similar in spirit to OPTICS, but relaxes several notions, such as the construc-
tion of neighborhood. The end result is a scalable density-based algorithm
even without parallelization.

DBSCAN was the first influential approach for density-based clustering in
the data-mining literature. Among its shortcomings are flat (not hierarchi-
cal) clustering, large complexity, and the need for several parameters (cluster
radius, minimum number of objects). OPTICS overcame several of these weak-
nesses by introducing a variable density and requiring the setting of only one
parameter (density threshold). OPTICS does not explicitly produce a data
clustering but only a cluster ordering, which is visualized through reacha-
bility plots. Such a plot corresponds to a linear list of all objects examined,
augmented by additional information, i.e., the reachability distance, that rep-
resents the intrinsic hierarchical cluster structure. Valleys in the reachability
plot can be considered as indications of clusters. OPTICS has a complexity
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that is on the order of O(N · |neighbors|), which can be as high as O(N2) in the
worst case, or O(N logN) in the presence of an index (discounting for the cost
of building and maintaining the actual index). A similar complexity analysis
applies for DBSCAN.

DENCLUE capitalizes on kernel density estimation techniques. Perfor-
mance optimizations have been implemented in DENCLUE 2.0 [12] but its
asymptotic complexity is still quadratic.

Other approaches to expedite the runtime of density-based clustering tech-
niques involve implementations in Hadoop or using Graphical Processing Units
(GPUs). For example, Cludoop [28] is a Hadoop-based density-based algo-
rithm that reports an up to fourfold improvement in runtime. Boehm et al. [5]
presented CUDA-DClust, which improves the performance of DBSCAN using
GPUs. They report an improvement in runtime of up to 15 times. G-DBSCAN
[2] and CudaSCAN [19] are recent GPU-driven implementations of DBSCAN,
and report an improvement in runtime of 100 and 160 times, respectively. Our
approach uses random projections to speed up the execution, while at the same
time having provable cluster quality guarantees. It exhibits an equivalent or
more speedup than the above parallelization approaches, without the need for
distributed execution, thus lending itself to a simpler implementation.

Random-projection methodologies have been also used to speed up density-
based clustering. For example, the algorithm in [25] leverages the observation
that for high-dimensional data and a small number of clusters, it is possible to
identify clusters based on the density of the projected points on a randomly
chosen line. We do not capitalize on this observation. We attempt to determine
neighborhood information using recursively applied random projections. The
protocol in [25] is of “heuristic nature”, as attested by the original authors, so
it does not provide any quality guarantees. It runs in time O(n2 ·N+N ·logN),
where N points are projected onto n random lines. It requires the specification
of several parameters, whereas our approach is parameter-light.

Randomly projected k-d-trees were introduced in [7]. A k-d-tree is a spatial
data structure that splits data points into cells. The algorithm in [7] uses
random projections to partition points recursively into two sets. Our algorithm
Partition shares this methodology, but uses a simpler splitting rule. We just
select a projected point uniformly at random, whereas the splitting rule in [7]
requires finding the median of all projected points and using a carefully crafted
jitter. Furthermore, we perform multiple partitionings. The purpose of [7] is
to serve as an indexing structure. Retrieving the k-nearest neighbors in a k-d
tree can be elaborate and suffers heavily from the curse of dimensionality. To
find the nearest neighbor of a point, it may require to look at several branches
(cells) in the tree. The cardinality of the branches searched grows with the
dimensions. Even worse, computing k-nearest neighbors only with respect to
OPTICS would mean that all information between cluster distances would
be lost. More precisely, for any point of a cluster, the k-nearest neighbors
would always be from the same cluster. Therefore, only knowing the k-nearest
neighbors is not sufficient for OPTICS. To the best of our knowledge, there
is no indexing structure that supports finding distances between two clusters
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(as we do). Nevertheless, an indexing structure such as [7] or the one used
in [1] can prove valuable, but might come with significant overhead compared
with our approach. We get neighborhood information directly using small sets.
Furthermore, we are also able to obtain distances between clusters.

Random projections have also been applied to hierarchical clustering [22],
i.e., single and average linkage clustering (more precisely, Ward’s method). To
compute a single linkage clustering it suffices to maintain the nearest neigh-
bor that is not yet in the same cluster for each point. To do so, [22] runs the
same partitioning algorithm as the one used here. In contrast to this work, it
computes all pairwise distances for each final set of the partitioning. Because
this requires quadratic time in the set size, it is essential to keep the maximum
possible set size, minPts, as small as possible. In contrast to this work, where
minPts is related to the density parameter used in OPTICS, there is no rela-
tion to any clustering parameter. In fact, minPts might be increased during
the execution of the algorithm. If a shortest edge with endpoints A,B is “un-
stable”, meaning that the two points A and B do not co-occur in many final
sets, then minPts is increased. In this work there is no notion of neighborhood
stability.

Multiple random projections onto one-dimensional spaces have also been
used for SVM [20]. Note that for SVMs a hyperplane can be defined by a
vector. The naive approach tries to guess the optimal hyperplane for an SVM
using random projections. The more sophisticated approach uses local search
to change the hyperplane, coordinate by coordinate.

Projection-indexed nearest neighbors have been proposed in [9] for outlier
detection. First, they identify potential k-nearest-neighbor candidates in a
reduced dimensional space (spanned by several random projections). Then,
they compute distances to this nearest-neighbor candidates in the original
space to select the k-nearest-neighbors. In contrast, we perform (multiple)
recursive partitionings of points using random projections to identify potential
nearest neighbors.

Locality Sensitive Hashing (LSH) [8] also employs random projections. LSH
does not perform a recursive partitioning of the dataset as we do, but splits
the entire data set into bins of fixed width. It conducts multiple of these
partitionings. Furthermore, in contrast to our technique, it requires several
parameters, such as width of a bin, number of hash tables, and number of
projections per hash value. These parameters typically require knowledge of
the dataset for proper tuning.

3 Our approach

In density-based clustering, a key step is to discover the neighborhood of each
object to estimate the local density. Traditional density-based clustering al-
gorithms, such as OPTICS, may exhibit limited scalability partially because
of the expensive computation of neighborhood. Other approaches, such as
DeLi-Clu [1], use indexing techniques to speed up the neighborhood discovery
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process. As discussed in the related work, spatial indexing approaches are not
tailored towards the scenario of OPTICS and require fast k-nearest neighbor
retrieval but also distance computation between (distant) points of different
clusters.

Our approach capitalizes on a random-projection methodology to create a
partitioning of the space from which the neighborhood is produced. We ex-
plain this step in Section 4. The intuition is that if an object resides in the
neighborhood of another object across multiple projections, then it belongs to
that object’s neighborhood. The majority of random-projection methodolo-
gies project high-dimensional data into a lower dimensionality d that does not
depend on the original dimensionality, but is logarithmic to the dataset size
[16]. In contrast, we run computations directly on multiple one-dimensional
projections. This allows us to work on a very reduced space, in which oper-
ations, such as neighborhood construction, can be executed very efficiently.
Our neighborhood construction is fast because it only requires linear time in
the number of points for each projection. Note that a naive scheme looking at
pairs of neighboring points would require quadratic time.

After the candidate neighboring points of each object are computed, see
Section 5, the local density is estimated. This is described in Section 6.
We prove that the local density computed using our approach is an O(1)-
approximation of the core density calculated by the algorithm used in OPTICS
given weak restrictions on the neighborhood size (depending on the distance).
This essentially allows us to compute reachability plots equivalent to those of
OPTICS, but at a substantially lower cost. Finally, in Section 8, we show em-
pirically that our approach is significantly faster than existing density-based
clustering algorithms.

This work represents an extension of [21]. We augment our previous work by
formally stating the proofs for the theorems presented and including additional
comparisons with existing density-based clustering techniques. We also make
the source-code for our approach available in the public domain.

Naturally, our approach and the related proofs are focused on Euclidean
distances, because random projections conserve the Euclidean distance.

3.1 Preliminaries

We are given a set of N points P in the d-dimensional Euclidean space, i.e.,
for a point P ∈ P it holds P ∈ Rd. We use the term whp, i.e., with high
probability, to denote probability 1− 1/N c for an arbitrarily large constant c.
The constant c (generally) also occurs as a factor hidden in the big O-notation.
We often use the following Chernoff bound:

Theorem 1 The probability that the number X of occurred independent events
Xi ∈ {0, 1}, i.e., X :=

∑
iXi, is not in [(1 − c0)E[X], (1 + c1)E[X]] with

c0 ∈]0, 1] and c1 > 0 can be bounded by

p(X ≤ (1− c0)E[X] ∨X ≥ (1 + c1)E[X]) < 2e−E[X]·min(c0,c1)
2/3
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Symbol Explanation

P, T,Q Points in Euclidean space Rd

P, C, S Set of points
L Randomly chosen line
L Sequence of lines (L0, L1, ...)
S,W Set of sets of points
Davg(A) Average distance of A to nearby points, see Definition 2
N (A) Neighbors of A, see Algorithm 3
Nf (A) subset of neighbors of A, see Definition 1
N (A, r) All points B ∈ P within distance r from A

D̃k(A) Distance to k nearest point in N (A) computed using Algorithm 3
Dk(A) Distance to k nearest point among all points S
minPts Parameter of OPTICS stating the number of points used for the density

estimate, i.e., the distance to the minPts nearest

DminPts(A) Denote the average distance of the minPts nearest points to a point A as
DminPts(A) :=

∑
B∈N (A,DminPts(A)) D(A,B)/|N (A,DminPts(A))|.

Generally, |N (A,DminPts(A))| = minPts, except if there are multiple
points at the same distance DminPts(A) from A.

minSize Parameter of the partitioning process stating the minimum size for which
a set is split

cm Fixed analysis constant; It relates the partitioning parameter minSize
for splitting the point set and the density parameter minPts: minSize =
cm ·minPts; cm ≥ 1

r Distance to the cmminPts nearest neighbor, i.e., r := Dcm·minPts(A) in
the analysis; otherwise, just the distance to the minPts closest neighbor.

c0, ..., c3 Constants in basic probability bounds
cL Fixed analysis constant; for a partitioning of the entire point set, we need

up to cL logN random lines
cd Fixed analysis constant; a point is far away if it is a factor cd > 1 further

away than the minSize nearest point
cp Fixed analysis constant; we perform cp(logN) partitions of the point set
cs A small constant close to zero, used for technical reasons.
fd, fg Factors used for the upper bound on the neighborhood size, see Equation

(1).

Table 1: Notation and constants used in the paper

If an event occurs whp for a point (or edge) it occurs for all whp. This can be
proved using Boole’s inequality (or, alternatively, consider [23]).

Theorem 2 For nc2 (dependent) events Ei with i ∈ [0, nc2−1] and constant c2
such that each event Ei occurs with probability p(Ei) ≥ 1−1/nc3 for c3 > c3+2,
the probability that all events occur is at least 1− 1/nc3−c2−2.

4 Pre-process: Data Partitioning

Our density-based clustering algorithm consists of two phases: the first parti-
tions the data so that close points are placed in the same partition. The second
uses these partitions to compute distances or densities only within pairs of the
same partition. This enables much faster execution.

The partitioning phase splits the dataset into smaller sets (Partition al-
gorithm). We perform multiple of these partitions by using different random
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Fig. 1: A single partitioning of points using random projections. The splitting
point is chosen uniformly at random in-between the two most distant points
on the projection line.

projections (MultiPartition algorithm). Intuitively, if the projections P · L
and Q · L of two points P,Q onto line L are of similar value then the points
should be close. Thus, they are likely kept together whenever the points are
divided. The process is illustrated in Figure 1.

For a single partition, we start with the entire point set. We split it re-
cursively into two parts until the size of the point set is at most minSize+1,
where minSize is a parameter of the algorithm. To split the points, the points
are projected onto a random line, and a point that has been projected onto
the line is chosen uniformly at random. All points with a projected value
smaller than that of the point chosen constitute one part and the remainder
the other part. In principle, one could also split based on distance, i.e., pick
a point randomly on the projection line that lies between the projected point
of minimum and maximum value. However, this might create sets that only
contain points of one cluster. This yields infinite distances between clusters,
because no distance will be computed for points stemming from different clus-
ters. For example, if there are three very dense clusters on one line, then using
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Algorithm 1 Algorithm Partition(points S, line j, sequence of random lines
L,minSize) return set of sets S

1: if |S| > minSize then
2: rs := value chosen uniformly at random from {Q · Lj |Q ∈ S, Lj ∈ L}
3: S0 := {Q ∈ S|Q · Lj ≤ rs, Lj ∈ L}
4: S1 := S \ S0
5: Partition(S0, j + 1,L,minSize)
6: Partition(S1, j + 1,L,minSize)
7: else
8: S := S ∪ {S}
9: end if

Algorithm 2 MultiPartition(points P, minimum set size minSize) return set
of point sets S

1: for i = 1..cp(logN) do
2: Choose sequence of random lines L := (L0, L1, ..., LcL logN ) for constant cL with

Lj ∈ Rd being a random vector of unit length
3: W := result of Partition(P, 0,L,minSize)
4: S := S ∪W
5: end for

a distance-based splitting criterion will give the following: The first random
projection will likely yield one set containing all points of one cluster and one
set containing all points of the other two clusters. It is probable that these two
clusters being in one set are split into two separate sets in the second projec-
tion. From then on, all further partitionings are within the same cluster. Thus,
all clusters are assumed to have infinite distances from each other, although all
clusters are on the same line and might have rather different distances to each
other. Using our splitting criterion for this scenario yields that (most likely)
some pair of points from different clusters will be considered.

More formally, the MultiPartition algorithm chooses in total cp logN
sequences (for constant cp ), where each sequence L := (L0, L1, ...) consists of
cL logN random lines for a constant cL with Lj ∈ Rd. The Partition algorithm
is called for each sequence L. The points S are projected onto each line Lj ∈ L.
First, after the projection onto L0, the points S are split into two disjoint sets
S00 ⊆ P and S01 using the value rs := L0 ·A of a randomly chosen point A ∈ S.
The set S00 contains all points P ∈ P with smaller projected value than the
number rs chosen, i.e., Q ·L0 ≤ rs, and the other points P \ S00 end up in S01 .
Afterwards, recurse on sets S00 and S01 , that is, for line L1 we first consider set
S00 and split it into sets S10 and S11 . Then, a similar process is used on S01 to
obtain sets S12 and S13 . For line L2, we consider all four sets S10 , S11 , S12 and S13 .
The recursion ends once a set S contains fewer than minSize+1 points. We
compute the union of all sets of points resulting from any partitioning for any
of the projection sets L ∈ L. Techniques equivalent to algorithm Partition

have been used in the RP-tree [7].
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Theorem 3 For a d-dimensional dataset, algorithm Partition runs in
O(dN logN) time whp.

Essentially, the theorem says that we need to compute O(logN) projections
of all points, because each projection has to project N points of d dimensions
taking dN time. If we were to split a set of N points into two sets of equal
size N/2 then it is clear that logN projections would be sufficient, because
after that many splits the resulting sets are only of size 1, i.e., N/2/2/2... =
N/2logN = 1. Therefore, the proof deals mainly with showing that this also
holds when splitting points are chosen randomly.

Proof For each random line Lj ∈ L, all N points from the d-dimensional
space are projected onto the random line Lj , which takes time O(dN). The
number of random lines required until a point P is in a set of size smaller
than minSize is bounded as follows: In each recursion, the given set S is
split into two sets S0,S1. By p(E|S|/4) we denote the probability of event
E|S|/4 := min(|S0|, |S1|) ≥ |S|/4 that the size of both sets is at least 1/4 than
that of the total set. As the splitting point is chosen uniformly at random, we
have p(E|S|/4) = 1/2. Put differently, the probability that a point P is in a
set of size at most 3/4 of the overall size |S| is at least 1/2 for each random
line L. When projecting onto |L| = cL · logN lines, we expect E|S|/4 to occur
cL · logN/2 times. Using Theorem 1, the probability that there are fewer than
cL · logN/4 occurrences is

e−cL·logN/48 = 1/N cL/48.

For a suitable constant cL, we have

N · (3/4)cL·logN/4 < 1.

Therefore, the number of recursions until point P is in a set S of size less
than minSize is at most cL · logN whp. Using Theorem 2 this holds for all N
points whp. A single projection takes time O(dN). Thus, the time to compute
|L| = cL · logN projections is O(dN logN) whp. �

Algorithm MultiPartition calls Algorithm Partition cp(logN) times,
thus using Theorem 2 we get the following corollary.

Corollary 1 Algorithm MultiPartition runs in O(dN log2+2 log(cd)
3/cd N)

time whp.

5 Neighborhood

Using the data partitioning described above, we compute, for each point, a
neighborhood consisting of nearby points and an estimate of density. Each set
resulting from the data partitioning consists of nearby points. Thus, poten-
tially, all points in a set are neighbors of each other. However, looking at a set
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Fig. 2: Picking a center and adding all points to its neighborhood (left panel)
results in a connected graph. Picking the same number of edges at random
(center panel) likely results in several non-connected components. Picking all
pairwise distances (right panel) is computationally expensive.

as a clique of points results in an excessive computation and memory overhead,
because the distances for all pairs of neighboring points must be computed.

OPTICS (see Section 7.1) uses the idea of core points. If a core point has
sufficiently large density then the core point and all its closest neighbors NC
form a cluster, irrespective of the neighborhood of the points NC near the core
point. This motivates the idea to pick only a single point per set, call it center,
and add the other points of the set to the neighborhood of the center (and
the center to the neighborhood of all points). If the center is dense enough, it
and its neighbors are in the same cluster. Another motivation to pick a single
point and add all points to its neighborhood is that this gives a connected
component with the minimum number of edges (see Figure 2). More precisely,
the single point picked from a set S of points has |S|-1 edges. Picking |S|-
1 edges randomly reduces the probability that the graph is connected, e.g.,
picking edges randomly results in the creation of triangles of nearby nodes.

To reduce run-time, one may consider to evaluate all pairwise distances
only for a single random projection and (potentially) perform fewer random
projections overall. Although this seems feasible, further reducing the number
of projections to asymptotically below log n (i.e., o(log n)) poses a high risk of
obtaining inaccurate results, because a single random projection only preserves
distances in expectation and, therefore, a minimum number of projections is
necessary to obtain stable and accurate neighborhoods. More precisely, using
only a few random projections likely creates neighborhoods that consist of
points that are actually far from each other, i.e., that should not be considered
neighbors, and points that are not in the same neighborhood although they
are close to each other.

To summarize the neighborhood creation process: A sequence S ∈ S is an or-
dering of points projected onto a random line (see Figure 1). For each sequence
S ∈ S, we pick a random point, i.e., a center point PCenter. For this point, we
add all other points S \ PCenter to its neighborhood N (PCenter). The center
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PCenter is added to the neighborhood N (P ) of all points P ∈ S \PCenter.The
pseudocode is given in Algorithm 3.

Algorithm 3 Neighbors(set of set of points S) return for each point A neigh-
bor set N (A)

1: for all P ∈ S ∈ S do N (P ) := {} end
2: for all S ∈ S do
3: PCenter := random point in set S
4: N (PCenter) := N (PCenter) ∪ (S \ PCenter)
5: for all P ∈ S \ PCenter do
6: N (P ) := N (P ) ∪ {PCenter}
7: end for
8: end for

The next theorem elaborates on the size of the neighborhood created.
In the current algorithm, we only ensure that the size of the neighborhood
is at least Ω(min(minSize, (logN))). Thus, for a large parameter minSize,
i.e., minSize � logN , the size of the neighborhood might be smaller than
minSize. In this situation, the neighborhood would be a sample of size roughly
logN of close points. To get a larger neighborhood, it is possible to pick more
than one center per set in Algorithm 3.

Theorem 4 For the size |N (A)| of a neighborhood N (A) for every point
A holds |N (A)| ∈ Ω(min(minSize, (logN))) whp and |N (A)| ∈ O(logN ·
minSize).

Proof The size of the neighborhood of a point A can be bounded by keeping
in mind that the entire point set is split cp(logN) times into sets of size at
most minSize. For each final set of size at most minSize a point may receive
minSize − 1 new neighbors. This yields the upper bound. A point A gets at
least one neighbor for the first set. From then on, for every final set that is
the result of the partitioning process, a new point might either be added to
the neighborhood or a point chosen might already be in the neighborhood.
Algorithm MultiPartition performs cp(logN) calls to algorithm Partition. For
each call, we obtain a smallest set SA containing A. Define SA ⊂ S to be
the union of all sets A ∈ SA ∈ S containing A. Before the last split of a
set SA resulting in the sets S1,A and S2, the set S must be of size at least
cm ·minSize; the probability that splitting it at a random point results in a
set SA with |SA| < cm/2·minSize is at most 1/2. Thus, using a Chernoff bound
1, at least cp/8 logN sets SA ∈ SA are of size at least cm/2 ·minSize whp.
Assume that the current number of distinct neighbors N (A) for A is smaller
than min(cm/4 · minSize, cp/16(logN)). Then, for each of the cp/8(logN)
final sets SA the probability that a new point is added to N (A) is at least 1/2.
(Note that we cannot guarantee that final sets resulting from the partitioning
are different.) Thus, we expect that at least min(cm/4 ·minSize, cp/16(logN))
points are added (given |N (A)| < cm/4 ·minSize). The probability that we
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deviate by more than 1/2 of the expectation is 1/N cp/96 using Theorem 1 for
point A and 1/N cp/96−2 for all points using Theorem 2. Therefore, for every
neighborhood, it is at least min(cm/8 ·minSize, cp/32(logN)) whp. �

The time complexity is dominated by the time it takes to compute the
partitioning of points (see Theorem 1). Once we have the partitioning, the time
is linear in the number of points per set: For example, hash tables requiring
O(1) for inserts and finds (to check whether a neighbor is already stored)
can be used to implement the neighborhood construction in lines 4 and 6 in
Algorithm 3.

Corollary 2 The neighborhood of all points A ∈ P can be computed in time
O(dN log2+1/cd N).

The neighborhood may not contain some close points, but rather some more
distant points as shown in Figure 3. We discuss the details and guarantees in
Section 7.3.

A

Fig. 3: PointA and its 8 closest points. Potentially, the computed neighborhood
N (A) of a point A using 5 points might miss some of the closest points, e.g.,
the points with dashed circles.

6 Density Estimate

To compute the density at point A one needs to measure the volume containing
a fixed amount of points. This volume is roughly rd, where d is the dimension
and r is the radius of a ball that is required to include a fixed number of points
minPts. More precisely, the radius r is the distance to the minPts-th point.
The density is then a function of 1/rd.

Many of the existing density-based clustering algorithms, such as OPTICS,
use 1/r as a measure for density rather than 1/rd. Reasons for this are:

– It is computationally faster.
– For large d, even small changes in r would yield large differences in density.

Therefore, a transformation would be required when visualizing densities
of points.
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A key question is how the number of points minPts used to compute the
volume relates to the minimum size threshold minSize such that a set is
split in Algorithm MultiPartition. Because a point is chosen uniformly at
random as center to compute the neighborhood from a final set, the final set
should be of order |N (A)|. Thus, the minimum split size should also be about
2N (A)|, because in expectation a split reduces the size by a factor of 2, i.e.,
minSize ≈ 2 · |N (A)| ≈ minPts.

Algorithm 4 states the density and neighborhood computation. For the
theoretical analysis of Algorithm 4 (given later), we fix minSize to cm ·minPts
for some constant cm determined in the analysis.

6.1 Smoother Density Estimate

Let us illustrate the downside of using 1/r as a density estimate. The compu-
tation of r is indifferent to the distribution of the minPts closest datapoints
within the ball of radius r from a point A, as well as to that of points that
are further away than the minPts point from A. Also, the distribution of
points in datasets is often not very homogeneous – otherwise the outcome
of clustering would not be meaningful. Furthermore, the value of parameter
minPts is typically small, e.g., choosing minPts between 10 to 100 is a
reasonable choice. As a consequence, using the radius r to the minPts-closest
point might yield unnatural density estimates, as shown in Figure 4 because
of the high sensitivity on the number of fixed points minPts. For all three
cases points A, B have circles of equal radius (and, thus, equal density) in
Figure 4. For the distribution of points on the left, this seems plausible. In the
middle distribution, A should be of larger density, because all points except
one are very near to A, thus changing minPts by one has a large impact. On
the right-hand side, A also appears denser because it has many points that
are just at marginally larger distance than the minPts closest point.

A

A

B

B

A

B

Fig. 4: Three examples of a distribution of 10 points together with the circles
for two points A, B covering the 5 closest points. For a standard definition of
density, all densities for A and B are the same although an intuitive consider-
ation might not suggest this.
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This shortcoming motivates the computation of an average involving sev-
eral points, e.g., the radius r can be computed using (1 − f) · minPts to
(1 + f) ·minPts closest points for constant f ∈ [0, 1], yielding a less sensitive
density estimate. We define the density of a point and the average distance
Davg(A) of a point A, which depends on the neighbors N (A).

Definition 1 The set of neighbors Nf (A) is a subset of neighbors N (A) given
by all points with distances between the (1− f)minPts-closest point C0 and
the (1 + f)minPts-closest point C1 in N (A) for constant f ∈ [0, 1].

Nf (A) := {B ∈ N (A)|D(A,C0) ≤ D(A,B) ≤ D(A,C1)}

Note, for f close to 1, we use A as C0, i.e., the 0th nearest neighbor of A is A
itself.

Definition 2 The average distance Davg(A) of a point A is the average of
the distances from A to each point P ∈ Nf (A):

Davg(A) :=
∑

B∈Nf (A)

D(A,B)/|Nf (A)|

Definition 3 The density at a point A is the inverse of the average distance,
i.e., 1/Davg(A).

This definition yields significantly better results for many cases, in which 1/r
is not appropriate, as shown in Figure 4. Algorithm 4 states the density and
neighborhood computation for f = 1.

Algorithm 4 DensityEstimateAndNeighbors(points P, distance in points
minPts) return for each point A its neighborhood N (A) and density esti-
mate D̃minPts(A) (or average distance Davg(A))

1: f := 1; minSize := cm ·minPts; {with constant cm for theoretical analysis; For imple-
mentation f := 0.2; minSize := minPts;}

2: S := MultiPartition(P,minSize)
3: N := Neighbors(S)
4: for all A ∈ P do
5: D̃minPts(A):= Distance to minPts-closest point in N (A) {OPTICS density}
6: Alternatively, a smoother density estimate Davg(A) instead of D̃minPts(A) can be

used:
7: —– C0 := (1− f)minPts-closest point in N (A)
8: —– C1 := (1 + f)minPts-closest point in N (A)
9: —– Nf (A) := {B ∈ N (A)|D(A,C0) ≤ D(A,B) ≤ D(A,C1)}

10: —– Davg(A) :=
∑

B∈Nf (A) D(A,B)/|Nf (A)|
11: end for

7 Density-Based Clustering using Reachability

We apply our ideas to speed up the computation of an ordering of points, i.e.,
OPTICS [3].
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7.1 OPTICS

Ordering points to identify the clustering structure (OPTICS) [3] defines a
sequence of all points and a distance for each point. This enables an easy visu-
alization to identify clusters. Similarity between two points A,B is measured
by computing a reachability distance. This distance is the maximum of the
Euclidean distance between A and B and the core distance (or density around
a point), i.e., the distance of A to the minPts-th points, where minPts corre-
sponds to the minimum size of a cluster. Thus, any point A is equally close (or
equally dense) to B if A is among the minPts-nearest neighbors of B. If this is
not the case then the distance between the two points matters. The algorithm
comes with a parameter ε that impacts performance. Parameter ε states the
maximum distance for which we look for the minPts-closest neighbors. Using
ε equal to the maximum distance of a point therefore requires the computa-
tion of all pair-wise distances without the use of sophisticated data structures.
Choosing ε very small may not cluster any points, as the neighborhood of any
point is empty, i.e., all points have zero density. A core point is a point that
contains at least minPts points within distance ε.

The algorithm maintains a list of point pairs sorted by their reachability
distance. It chooses a point A with minimum reachability distance (if the list
is non-empty, otherwise it chooses an arbitrary point and uses “undefined”
as reachability distance. It marks the point as processed and updates the
list of point-wise distances by computing the reachability distance from A to
each neighbor. It updates or inserts pairs of points (with their corresponding
distance) consisting of A and the neighbors of A if a pair of points has not
already been processed or if the newly computed distance is smaller.

7.2 S-OPTICS : Speedy OPTICS

Our algorithm for density-based clustering, SOPTICS, introduces a fast ver-
sion of OPTICS which exploits the pre-processing elaborated previously to
discover the neighborhood of each point.1 The processing of points is the same
as for OPTICS, aside from the neighborhood computation as shown in Al-
gorithm 5 (line 4). A key difference is that we do not need a parameter ε as
in OPTICS. Optionally, one might also use the smoothed density estimate
introduced in Section 6.1 as discussed in the next subsection.

Algorithm 5 provides a pseudocode for SOPTICS. Essentially, we maintain
an updatable heap, in which each entry consists of a reachability distance of a
point A and the point A itself. The heap is sorted by reachability distance. For
initialization an arbitrary point is put on the heap with undefined reachability
distance. Afterwards, repeatedly a point (with shortest reachability distance) is
polled from the heap and marked as processed before the reachability distance
of all its non-processed neighbors is computed and either inserted into the
heap or an existing entry for that point is updated.

1 SOPTICS presents small differences to the Fast OPTICS (FOPTICS) presented in [21].
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Algorithm 5 SOPTICS(points P, distance in points minPts) return
ordereminPts of points and reachability distance reachdist for points

1: ∀P ∈ P : processed(P ) := false, reachDist(P ) :=∞
2: Heap := (){Updatable heap of pairs (reachability distance, point) sorted by reach. dist.}
3: ordereminPts := ()
4: D̃minPts,N := DensityEstimateAndNeighbors(P,minPts) {or for smoother density

Davg}
5: while ∃P ∈ P : processed(P ) == false do
6: Heap.Add((undefined,P ))
7: while Heap not empty do
8: Pcurr := Heap.Poll
9: ordereminPts.Append(Pcurr)

10: processed(Pcurr) := true
11: for all A ∈ N (Pcurr) with processed(A) == false do
12: Dreach := max(D̃minPts(A), D(A,Pcurr)) {or for smoother density

max(Davg(A), D(A,Pcurr))}
13: reachdist(A) := min(reachdist(A), Dreach)
14: Heap.AddOrUpdate((reachdist(A),A))
15: end for
16: end while
17: end while

We have discussed the neighborhood computation in Section 5. Thus,
let us now discuss in more detail how we deal with parameter ε. OPTICS
requires to set a parameter ε that balances performance and accuracy. A
small parameter results in the core distance being undefined for many points.
Therefore, the clustering result would not be very meaningful. For OPTICS, a
realistic value for ε is the maximum distance to the minPts-nearest neighbor.
Such an approach represents a good compromise between performance and
accuracy. However, this can result in drastic performance penalties in the case
of uneven point densities. Let’s see it with an example: Assume that there is a
dense area of points of diameter 10, for which ε = 1 would suffice for optimal
accuracy and a significantly less dense area, which requires ε = 10. Choosing
ε = 10 means that OPTICS computes all pairwise distances of points within
the dense cluster, whereas for ε = 1 it might compute only a small fraction of
all pairwise distances. Therefore, it would be even better to define ε depending
on a point A, i.e., ε(A) is the distance to the minPts-nearest neighbor. Using
our random projection-based approach, we do not define ε directly, but we
set minPts, determining the size of a set of points that is used for the
computation of the core distance. Intuitively, for each point, we would like to
know its minPts-closest neighbor. Assuming a set computed by our random
projections indeed contains nearest neighbors, we have minSize ≈ minPts
(see discussion after definition 3). Specifying the number of points per set
presents a more intuitive approach than using a fixed distance for all points,
because it can be set to a fixed (i.e., optimal) value for all points to yield
maximal performance, while maintaining the best possible accuracy.
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Fig. 5: Reachability plots of SOPTICS and OPTICS for the Compound dataset.
Note that both exhibit the same hills and valleys and hence discover the same
clusters.

Theorem 5 Algorithm SOPTICS runs in O(dN log2N) time whp. It requires
O(N(d+ logN ·minSize)) memory.

Proof Computing all neighbors requires O(dN log2N) time whp according to
Theorem 2. The average number of neighbors is at most logN per point. The
size of the heap is at most N . For each point, we consider each of the most
logN neighbors at most once. Thus, we perform O(N logN) heap operations
and also compute the same number of distances. This takes time O(N logN ·
(d+logN)). Storing all d-dimensional points in memory requires N ·d. Storing
the neighborhoods of all points requires O(N logN ·minSize). �

In Figure, 5 we provide a visual illustration of the reachability plots com-
puted on one dataset for OPTICS and SOPTICS. It is apparent that both
techniques reveal the same cluster structure.

7.2.1 Smoother density estimate

When using the smoother density estimate from Section 6.1, we get different
notions for reachability and core distance.

Definition 4 The core distance of a point A equals the average distance
Davg(A).
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For the core distance in the original OPTICS algorithm only the distance to
a single point, i.e., the minPts-nearest point, matters. Using our probabilistic
approach, we compute a smoother estimate: points that are closer (or further)
than the minPts-nearest point also matter.

Two points are reachable if they are neighbors, i.e., one of the two points
must be in the neighborhood of the other.

The definition of the reachability distance for a point A and a reachable
point B from A is the same as for OPTICS. However, for a point A, we only
compute the reachability distance to all neighbors B ∈ N (A).

Definition 5 The reachability distance Dreach(A,B) is the maximum of
the core distance of A and the distance of A and B, i.e., Dreach(A,B) :=
max(Davg(A), D(A,B)).

Note that the reachability distance is non-symmetric, i.e., in general
Dreach(A,B) 6= Dreach(B,A).

7.3 Theoretical Analysis

Now we state our main theorems regarding the complexity of the techniques
presented. We also show that our suggested smoother density measure
(Section 6.1) approximates the core distance used in OPTICS. Our algo-
rithm strongly relies on the well-known Johnson–Lindenstrauss Lemma,
which states that, if two points are projected on a randomly chosen line,
the distance of the projected points on the line corresponds to the scaled
distance of the non-projected points, in expectation. Higher-dimensional
spaces can in general not be embedded in one dimension without distortion,
so the above only holds in expectation. The scaling factor is the same for all
points: 1/

√
d, i.e., one over the squared root of the original data dimensionality.

We state and prove theorems that show that we retrieve at least some close
neighbors for every point, but not necessarily all nearest neighbors. We state
a bound for the minPts-nearest neighbor distance. This allows us to relate
the core distances of OPTICS and SOPTICS. It also helps to get a bound
for our smoothened density estimate Davg(A) for a point in Rd, so we relate
Davg(A) and the average of the distance to the minPts-nearest neighbors of
a point A.

Specifically, in Theorem 7, we prove that only a small fraction of points
have a projected length that is much longer or shorter than its expectation.
This enables us to bound the probability that a projection and a splitting-up
of points will keep close points together and separate distant points as shown
in Theorem 8. Therefore, after a sequence of partitionings, we can pick a
point randomly for each set containing A to include in the neighborhood
N (A) such that at least some of the points N (A) are close to A (Theorem 9)
given that there are some more points near A than just minPts. The latter
condition stems from the fact that we split a set by the number of points in
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the set and not by distance. We discuss it in more detail before the theorem.
Theorem 10 explicitly gives a bound on the distance to the minPts-nearest
neighbor. Finally, in Theorem 11, we relate our computed density measure
and the one of OPTICS by showing that they differ at most by a constant
factor.

We require a “mild” upper bound on the neighborhood size of a point.
The reason being that for a given point, points distant from it are very likely
removed compared with very near points when splitting a set. But points that
are somewhat near are not removed much more likely than very close points.
Thus, if there are too many of them, we need many splits to remove them all
and the odds that we remove also a lot of nearby points becomes large.2

More mathematically, we require an upper bound on the number of points
that are within a certain distance of A. In fact, for point A the bound depends
on the distance to the nearest neighbor distances, i.e., r. Roughly speaking,
the number of points that are within some factor fg ·r of the distance r cannot
be more than exponential in fg. More precisely, with all details being clarified
during this section, consider the distance (fg)3/2+cs · (fd · r) for an arbitrary
integer fg, a value fd > 1 and a small constant cs > 0. The number of points

within that interval for fg ≥ 1 is allowed to be at most 2
√

fg · |N (A, fd · r)|
points. More formally, we require for point A

|{B ∈ S|D(A,B) ≤ (fg)3/2+cs · fd · r}| ≤ 2
√

fg · |N (A, fd · r)| (1)

Let SA be a set of points containing point A, i.e., A ∈ SA, being projected
onto a random line L. We distinguish between three point sets:

i) Points close to A, i.e., within radius r, i.e, SA ∩ N (A, r), where N (A, r)
are the points within radius r from point A.

ii) Points distant from A, i.e, SA \ N (A, cdr), for some constant cd > 1
(defined later).

iii) Points N (A, cdr) that consist of close and somewhat close points.

For these three sets, we prove in Theorems 6 and 7 that only for a few close
points will the distance of their projections onto a random line be much larger
than the expectation, quantified by random variable X long

A , and that for only
few distant points will their projections be much smaller than the expected
projection, quantified by Xshort

A .

Let event Elong
A (C) be the event that for a randomly chosen line L the

projected length (C − A) · L of a close point C ∈ N (A, r) is more than a

factor log(cd) of the expected projected length E[(C − A) · L]. Let X long
A be

the random variable giving the number of all occurred events Elong
A (C) for all

points C ∈ N (A, r).
Let event Eshort

A (C) be the event that for a randomly chosen line L the
projected length (C−A) ·L of a distant point C ∈ SA\N (A, cdr) is less than a

2 This condition could be removed for low-dimensional spaces, i.e., assuming d is constant.
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factor 2 log(cd)/cd of the expected projected length E[(C −A) ·L]. Let Xshort
A

be the random variable giving the number of all occurred events Eshort
A (C) for

all points C ∈ SA \ N (A, cdr).

Theorem 6 For every point C holds p(Eshort
A (C)) ≤ 3 log(cd)/cd and

p(Elong
A (C)) ≤ 2/ log(cd)e− log(cd)

2/2 for some value cd.

Proof The probability of event Eshort
A (C) can be bounded using Lemma 5 [7]:

p(Eshort
A (C)) ≤ 3 log(cd)/cd. Using again Lemma 5 from [7] for Elong

A (C) we

have p(Elong
A (C)) ≤ 2/ log(cd)e− log(cd)

2/2. �

Theorem 7 states that for most points there is not too much deviation
from the expectation. More precisely, for most close points (as well as for most
distant points) the distances of projected close (as well as distant) points is
not much longer (shorter) than the expectation.

Theorem 7 For points SA projected onto a random line L define event E′ :=
(Xshort

A < |SA \ N (A, cdr)|/ log(cd)) ∧ (X long
A < |SA ∩ N (A, r)|/(cd)log(cd)/3)

We have
p(E′) ≥ (1− 2 log(cd)2/cd)2.

Proof Can be found in the appendix. �

The proof works in the same fashion for Xshort
A and X long

A . We discuss the
main ideas using Xshort

A . The proof computes a bound on the expectation of
Xshort

A by using linearity of expectation to express the expectation of Xshort
A

in terms of the expectation of individual events that are upper-bounded using
Theorem 6. To bound the probability that Xshort

A does not exceed the upper
bound of the expectation, we use Markov’s inequality.

The next theorem shows that a set resulting from the partitioning is likely
to contain some nearby points. The proof starts by looking at a single random
projection and assumes that there are only relatively few non-distant points
left in the set containing A. It shows that it is likely that distant points from A
are removed whenever a set is split, whereas it is unlikely that points near A are
removed. Therefore, for a sequence of random projections, we can prove that
some nearby points will remain and many more distant points are removed.
On the technical side, the proof uses elementary probability theory.

Theorem 8 For each point A, for at least cp/16(logN) sets SA resulting from
a call to algorithm Partition

|SA ∩N (A, r)|/|N (A, r)| > 2/cd

Proof Can be found in the appendix. �

The next theorem shows that the computed neighborhood for a point A
contains at least some points “near” A. It contains a restriction on the pa-
rameter minPts that is mainly due to neighborhood construction but could
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be eliminated by using a larger parameter minSize. The proof bounds the
number of sets resulting from the partitioning that are at least of a certain
size using a Chernoff bound. Then we compute the probability that for a point
A a new nearby point is chosen as a neighbor.

Theorem 9 The neighborhood NA computed by Algorithm 3 for a point A
contains at least 2 · minPts points for minPts < cm logN that are within
distance Dcm·minPts(A) from A.

Proof Can be found in the appendix. �

Let us bound the approximation of the minPts-nearest-neighbor distance
when using the neighborhood computed by Algorithm 3.

Theorem 10 Let DminPts(A) be the distance to the minPts-nearest neigh-
bor. For the distance D̃minPts(A) to the minPts-nearest neighbor in the neigh-
borhood N (A) computed by Algorithm 3 holds DminPts(A) ≤ D̃minPts(A) ≤
DcmminPts(A) for suitable constant cm whp.

Proof The lower bound follows from bounding the minimum size of
N (A, r). Using Theorem 9, 2minPts points are contained within distance
DcmminPts(A). The smallest value of D̃minPts(A) is reached when N (A) con-
tains allminPts-closest points to A, which implies D̃minPts(A) = DminPts(A).
For the upper bound due to Theorem 9, NA contains at least 2minPts within
distance Dcm·minPts(A). Thus, the minPts-nearest point in NA is at most at
distance Dcm·minPts(A). �

Assume that the k-nearest-neighbor distance is not decreasing very
rapidly, when increasing the number of points considered, i.e., k. More
formally, assume that there exists a sufficiently large constant c > 1, such that
Dc·minPts(A) ≤ c ·DminPts(A). Then, we compute a constant approximation
of the nearest-neighbor distance.

Next, we relate the core distance of OPTICS (see Section 7.1), i.e., the
distance to the minPts-nearest neighbors of a point A, and of SOPTICS, i.e.,
Davg(A).

Theorem 11 For every point A ∈ Rd, DminPts(A) ≤ Davg(A) ≤
DcmminPts(A)) holds for constant cm and f = 1 whp.

Proof To compute Davg(A) with f = 1, we consider the (1 + f) ·minPts =
2minPts closest points to A from N (A). Using Theorem 9, 2minPts points
are contained in N (A) with distance at most DcmminPts(A). This yields
Davg(A) ≤ DcmminPts(A). Thus, the upper bound follows. To compute
Davg(A), we average the distance using the 2 · minPts-closest points to A.
The smallest value of Davg(A) is reached when N (A) contains all 2 ·minPts-
closest points to A, which implies Davg(A) ≥ D2·minPts(A) ≥ DminPts(A) for
any set of neighbors N (A). �



22 Johannes Schneider, Michail Vlachos

Assume that the average distance to the minPts-nearest neighbor is an
equivalently valid density measure compared with the distance of the minPts-
th neighbor used by OPTICS. Typically, the cluster size is significantly larger
than minPts and the density within clusters is not varying very rapidly when
looking at a point and some nearest neighbors. In this case, we compute an
O(1) approximation of the density, i.e., core distance, used by OPTICS. This
is fulfilled if the distances to the minPtsth up to the (cmminPts)

th point
do not increase by more than a constant factor compared with the minPts-
closest point. More technically, we require the existence of a (sufficiently large)
constant c such that ∀A ∈ P : DminPts·c(A) = c ·DminPts(A).

8 Empirical Evaluation

Here we evaluate the runtime and clustering quality of the proposed random-
projection-based technique. The SOPTICS algorithm has been implemented
in Java3. We compare its performance with that of OPTICS with and without
LSH index [8] and DeLi-Clu, from the Elki Java Framework [24] 4 using version
0.7.0 (2015, November 27). DeLi-Clu represents an improvement of OPTICS
that leverages indexing structures (e.g., R*-trees) to improve performance.
OPTICS with an LSH index it also a good baseline comparison, because it
allows one to support very fast nearest-neighbor queries. All experiments have
been conducted on a 2.5GHz Intel5 CPU with 8GB RAM.

8.1 Datasets

We use a variety of two-dimensional datasets typically used for evaluating
density-based algorithms as well as high-dimensional data sets to compare the
performance of the algorithms for increasing data dimensionality. A summary
of the datasets is given in Table 2. We did not apply any particular preprocess-
ing to the datasets; for all algorithms, we measured the time, once the data
set had been read into memory.

Implementation details: The source code of SOPTICS is available at the sec-
ond author’s website6, and can also be found in the ELKI Framework, as of
version 0.7.0 [24]7. Algorithm Multipartition chooses O(log2+1/cd N) ran-
dom projections lines and performs the same number of projections of the
entire point sets onto each of these lines. In practice, it suffices to choose a

3 Java is a registered trademark of Oracle and/or its affiliates.
4 elki.dbs.ifi.lmu.de/
5 Intel is a registered trademark of Intel Corporation or its subsidiaries in the United

States and other countries. Other product or service names may be trademarks or service
marks of other companies

6 http://alumni.cs.ucr.edu/~mvlachos/erc/projects/density-based/
7 The latest optimizations are not included in version 0.7.0
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Dataset Objects Dim Clusters Adjusted Rand Index Time (sec)
SOPTICS vs SOPTICS OPTICS DeLiClu OPTICS

OPTICS (no index) (with LSH)

Magic04[4] 19020 10 2 0.981 4.3 43.2 27 30.1
Gas Sens. Arr.[4] 13910 128 6 0.979 4.4 192.3 75.4 25.3
EEG Eye State[4] 14980 15 2 0.971 2.8 43.3 26.3 87.4
Musk [4] 6598 168 2 0.981 4.9 82.3 72.4 60
Svmguide1 [18] 3089 4 2 0.944 0.5 2.6 2.1 1.5
Aggregation[11] 788 2 7 1 0.3 0.3 0.3 0.3
Diabetes [18] 768 8 5 0.994 0.2 0.2 0.2 0.2
R15[26] 600 2 15 0.991 0.1 0.1 0.1 0.1
Jain[15] 373 2 2 0.935 0.0 0.0 0.1 0.1
Iris[4] 150 4 3 0.983 0.0 0.0 0.0 0.0

Table 2: Characteristics of the datasets used in the experiments (first four
columns). The Adjusted Rand Index shows how similar the OPTICS and
SOPTICS clustering are. Finally, the last four columns show the runtime for
SOPTICS, OPTICS without index, DeLi-Clu and OPTICS with LSH. SOP-
TICS closely preserves the clustering of OPTICS while exhibiting a very fast
runtime.

set L of O(logN) random lines, project all points onto this lines and per-
mute them for each call of algorithm Partition. Thus, the practical run-
time of algorithm Multipartition is O(dN logN) and that of SOPTICS

O(N logN · (d+ log1+1/cd N)).

Parameter setting: OPTICS requires the parameters ε and minPts. When
not using an index, ε is set to infinity, which provides the most accurate re-
sults; minPts depends on the dataset. When using an LSH index, setting the
parameters is non trivial. For parameter ε of OPTICS, we used the small-
est ε that is needed to get an accurate result, i.e., the maximum distance to
the minPts-nearest neighbor of a point of a dataset. The LSH index requires
three main parameters: number of projections per hash value (k), number of
hash tables (l) and the width of the projection (r). For parameters k and l,
we performed a grid search using values between 10 and 40. We kept both
parameters at a value of 20 because it returned the best results. The width r
should be related to the distance of the maximum minPts-nearest neighbor,
i.e., ideally a bin contains the minPts-nearest neighbor of a point and it should
also depend on the dimension, because distances are scaled by the square root
of the dimension. Thus, in principle, the maximal distance of any point to
the minPts-nearest neighbor should roughly suffice to get the same results
as for OPTICS with ε = ∞ (up to some constant factor, i.e., values below
8 did not yield good results; for the “Musk” benchmark we used 64). DeLi-
Clu requires only the minPts parameter. SOPTICS uses the same parameter
value minPts as OPTICS (and DeLi-Clu) and we set minSize = minPts. We
set f = 0.2. We performed 20 log(Nd) partitionings, i.e., calls to algorithm
Partition from MultiPartition of the entire dataset for SOPTICS.
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Fig. 6: Reachability plots for various datasets (note that clusters might be
permuted)

8.2 Cluster Quality

The original motivation of our work was to provide faster versions of existing
density-based techniques while not compromising their accuracy. To compare
the cluster results, we use the adjusted Rand index [14]. It returns a value
between 0 and 1, where 1 indicates identical clustering. The adjusted Rand
index corrects for the chance grouping of elements. The ordering of points
as computed by OPTICS does not yield a clustering. Therefore, we defined
a threshold that gives a horizontal line in the ordering plot. Whenever the
threshold is exceeded, a new cluster begins. We chose the threshold for OP-
TICS and SOPTICS to match the actual clusters as well as possible and com-
pared the clusters found by OPTICS and SOPTICS. The results are shown in
Table 2. Note that the metric consistently exceeds the 0.95 value, suggesting
that SOPTICS provides clustering results that are indeed very close to those
of OPTICS. More importantly, SOPTICS delivers these results significantly
faster than both OPTICS and DeLi-Clu, as also shown in Table 2.

Figure 6 provides visual examples of the high similarity of the reachability
plots for SOPTICS and OPTICS. The reachability plot of SOPTICS is less
smooth. At first sight, one might expect the opposite as by definition the
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average distance Davg is a smoother density estimate. The reason is that
the computation of the minPts-nearest neighbor is not perfectly accurate.
Thus, for some points, our approximation might be accurate, for others the
computed neighborhood might consist of points not being part of the minPts-
nearest neighborhood. In our computation of the Davg, we used all points in
the set resulting from the partitioning of points. Thus, for a point A, Davg is
not necessarily computed using its minPts-nearest neighbors, but potentially
might miss some nearest neighbors and incorporate some points further away.
The random partitioning induces a larger variance in Davg. In principle, one
could filter outliers to reduce the variance, e.g., for a set S resulting from a
partitioning, one could discard points that are far from the mean of all points
in S. However, as the reachability plot and the extracted clusters matched
very well for OPTICS and SOPTICS, we refrained from additionally filtering
any outliers.

8.3 Runtime

Table 2 already shows the clear performance advantages of SOPTICS. Not
surprisingly, OPTICS without an index is much slower. However, even using
the LSH index does generally not yield satisfactory results. Our splitting of the
entire point set is based on the number of points within a region. LSH splits
the entire point set according to a fixed bin width, i.e., in a distance-based
manner. This distance must inevitably be chosen rather large (e.g., close to
maximum) among all points to get accurate results. Therefore, bins are gener-
ally (much) too large and contain many points, resulting in slow performance.
DeLiClu is generally significantly faster than OPTICS, but still much slower
than SOPTICS.
In addition to the experiments discussed above, we conduct scalability experi-
ments using synthetically generated datasets according to a Gaussian distribu-
tion. Each Gaussian cluster consists of 1000 points. We use more than 120,000
objects and a dimensionality of 10 to evaluate scalability with respect to the
number of objects. In a similar manner we generate synthetic datasets hav-
ing up to 1200 dimensions to assess scalability with regard to dimensionality.
The performance comparison between the various density-based techniques is
shown in Figure 7. It suggests a drastic improvement of SOPTICS compared
with OPTICS and DeLi-Clu. SOPTICS is more than 500 times faster than
OPTICS and more than 20 times faster than DeLi-Clu. Note that DeLi-Clu
uses an R*-tree structure to speed up various operations. Our approach bases
its runtime improvements on random projections, thus is simpler to implement
and maintain.

Figure 8 highlights the runtime for increasing data dimensionalities. Note
that the performance gap between OPTICS and DeLi-Clu diminishes for
higher dimensions. In fact, for more than 500 dimensions, OPTICS is faster
than DeLi-Clu. This is due to the use of indexing techniques by DeLi-Clu. It
is well understood that the performance of space-partitioning indexing struc-
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tures, like R-trees, diminishes for increasing dimensionalities. The performance
improvements of SOPTICS compared with OPTICS range from 47 times (at
low dimensions) to 32 times (for high dimensions). A different trend is sug-
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gested in the runtime improvement against DeLi-Clu, which ranges from 17
times (at low dimensions) to 38 times (at high dimensions). Using OPTICS
with an LSH index improves performance at higher dimensionalities, but the
approach is still much slower than SOPTICS. Therefore, when dealing with
high-dimensional datasets, it is preferable to use techniques based on random
projections.

9 Conclusion

Density-based techniques can provide the building blocks for efficient cluster-
ing algorithms. Our work contributes to density-based clustering by presenting
SOPTICS, which is a random-projection-based version of the popular OPTICS
algorithm. Not only is it orders of magnitude faster than OPTICS, but it also
comes with analytical clustering preservation guarantees. In the spirit of re-
producibility, we have also made available the source code of our approach.

Acknowledgements: The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement no. 259569.
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24. E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, and A. Zimek. A framework
for clustering uncertain data. PVLDB, 8(12):1976–1987, 2015.

25. T. Urruty, C. Djeraba, and D. A. Simovici. Clustering by random projections. In
Industrial Conference on Data Mining, pages 107–119, 2007.

26. C. J. Veenman, M. J. T. Reinders, and E. Backer. A maximum variance cluster algo-
rithm. IEEE Trans. Pattern Anal. Mach. Intell., 24(9):1273–1280, 2002.

27. J. J. Whang, X. Sui, and I. S. Dhillon. Scalable and memory-efficient clustering of
large-scale social networks. In Proc. IEEE Conf. Data Mining (ICDM), pages 705–714,
2012.

28. Y. Yu, J. Zhao, X. Wang, Q. Wang, and Y. Zhang. Cludoop: An efficient distributed
density-based clustering for big data using hadoop. International Journal of Distributed
Sensor Networks, pages 2–2, Jan. 2015.

10 Appendix

Proof of Theorem 7: By definition and using linearity of expectation, the expectation
of Xshort

A is E[Xshort
A ] :=

∑
C∈SA\N (A,cdr)

p(Eshort
A (C)). Using Theorem 6 to bound

p(Eshort
A (C)),

E[Xshort
A ] ≤ 3 log(cd)/cd|SA \ N (A, cdr)|

The probability that the random variable Xshort
A exceeds the expectation E[Xshort

A ] by a
factor cd/ log(cd)2 or more is at most log(cd)2/cd using Markov’s inequality. Thus, for the
probability of event E0 as defined below we have

p(E0) := p(Xshort
A < E[Xshort

A ] · cd ≤ 3 log(cd)|SA \ N (A, cdr)|) ≥ 1− log(cd)2/cd.

Analogously, let us bound the probability of event Elong
A (C) that a projection of two
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points C,A results in a distance L · (C − A) much beyond the expectation. Next, we use

Theorem 6 to bound p(Elong
A (C)). By definition the expectation of Xlong

A is E[Xlong
A ] :=∑

C∈SA∩N (A,r) p(Elong
A (C)). Consider the upper bound of E[Xlong

A ] being E[Xlong
A ] · cd,

i.e., cd/(cd)log(cd)/2|SA∩N (A, r)| ≥ 1/(cd)log(cd)/3|SA∩N (A, r)| (for cd sufficiently large).
Thus, define the probability of event E1 and bound as before using Markov’s inequality as
follows:

p(E1) := p(Xlong
A ≤ |SA ∩N (A, r)|/(cd)log(cd)/3) ≥ 1− 1/cd.

Assume E0 occurs. This excludes at most a fraction log(cd)2/cd of all possible projections
for event E1, leaving

(1− 1/cd − log(cd)2/cd) > 1− 2 log(cd)2/cd.

Thus, the probability of E1 given E0 becomes p(E1|E0) = 1−2 log(cd)2/cd. The probability
of event E3 := E0 ∩ E1 is

p(E1|E0) · p(E0) ≥ (1− 2 log(cd)2/cd) · (1− log(cd)2/cd)

≥ (1− 2 log(cd)2/cd)2.

�

Proof of Theorem 8: The idea of the proof is to look at a point A and remove “very”
far away points until there are only relatively few of them left. Then, we consider somewhat
closer points (but still quite far away) and remove them until we are left with only some
very close points and some potentially further away points. Consider a partitioning of set SA
into two sets S0 and S1,A, i.e., A ∈ S1,A using algorithm Partition and random projection
line L. Assume that the following condition holds for set SA: There are many more points
“very far away” from A than not so distant points using some factor fd ≥ cd:

cr|SA ∩N (A, fd · r)| ≤ |SA \ N (A, fd · r)| (2)

The value cr is defined later; we require cr ≥ fd ≥ 1. We prove that even in this case after
a sequence of splittings of the point set only few very far away points end up in set S1,A.
(If there are fewer faraway points than somewhat close points, the probability that many of
them end up in the same set is even smaller.) Define event E1 as follows: A splitting point
is picked such that for the subset S1,A most very close points from N (A, r) ∩ SA remain,
i.e.,

|S1,A ∩N (A, r)| ≥ |SA ∩N (A, r)| · (1− 1/cr).

The probability of event E1 can be bounded as follows. Assume that E′ as defined in
Theorem 7 occurs (using fd > cd instead of cd), i.e., most distances are scaled roughly by
the same factor from a point A to other points. To minimize the probability of p(E1|E′) we
assume that all projected distances from faraway points to A are minimized and those of
close points are maximized. This means that at most a fraction 1/ log fd of all very far away
points SA \N (A, fd ·r) are below a factor 3 log(fd)/fd of their expected length and that the
distances to all other points in SA \ N (A, fd · r) are shortened exactly by that factor. We
assume the worst possible scenario, i.e., those far away points are split such that they end
up in the same set as A, i.e., they become part of S1,A. At most a fraction 1/(fd)log(fd)/3 of
all very close points SA ∩N (A, r) are above a factor log(fd) of the expectation. We assume
that those points behave in the worst possible manner, i.e., the close points exceeding the
expectation are split such that they end up in a different set than A, i.e., S0 not S1,A. Next,
we bound the probability that no other points from SA ∩ N (A, r) are split. If we pick a
splitting point among the fraction of 1− 1/ log fd points from SA \ N (A, fdr) that are not
shortened by more than a factor 3 log(fd)/fd, then p(E1|E′) occurs. By initial assumption

we have (1− 1/f
log(fd)/3
d )|SA ∩N (A, fd · r)| ≤ (1− 1/ log fd) · cr|SA \N (A, fdr)| and thus,

|SA \ N (A, fdr)|/|SA| ≤ 2/cr for 1− 1/ log fd > 1/2, i.e., fd sufficiently large, and because
|SA| ≥ |SA \ N (A, fdr)|. Put differently, the probability to pick a bad splitting point is at
most 2/cr. The occurrence of event E′ reduces the probability of E1 at most by 1− p(E′),
i.e., p(E1|E′) ≥ p(E1)− (1− p(E′)).
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Therefore,

p(E1) = p(E′)p(E1|E′)
= p(E′) · (1− |SA \ N (A, fd · r)|/|SA| − (1− p(E′)))

≥ p(E′) · (1− 2/cr − 2 log(fd)2/fd))

≥ (1− 2 log(fd)2/fd) · (1− 4 log(fd)2/min(fd, cr))3

= (1− 4 log(fd)2/fd)3 since by definition cr ≥ fd

Define event E2 as follows: At least 1/3 − 1/cr of all far away points |SA \ N (A, fdr)| are
not contained in S1,A, i.e.,

|SA \ N (A, fdr)| ≥ 2/3|S1,A \ N (A, fdr)|.

The probability that the size of the set resulting from the split S1,A is at most 2/3 of
the original set SA is 1/3, because a splitting point is chosen uniformly at random. When
restricting our choice to far away points SA \N (A, fdr), we can use that owing to Condition
(2) at most a fraction 1/cr of all points are not far away. The probability of E2 given
E1 can be bounded by assuming that all events, i.e., choices of random lines and splitting
points, that are excluded owing to the occurrence of E1 actually would have caused E2.
More precisely, we can subtract the probability of the complementary event of E1, i.e.,
p(E2|E1) = 2/3 − 1/cr − (1 − p(E1)) ≥ 2/3 − 1/cr − (1 − 2 log(cd)2/fd)3 ≥ 1/4 for a
sufficiently large constant fd. The initial set S := P has to be split at most cL logN times
until the final set SA containing A (which is not split any further) is computed (see proof
of Theorem 3). We denote a trial T as up to log fd splits of a set S into two sets. A trial T
is successful if after at most log fd splits of a set SA the final set S′A ⊂ SA is of size at most
|SA|/2 and E1 occurred for every split. The probability for a successful trial p(T ) is equal
to the probability that E1 always occurs and E2 at least once. This gives:

p(T ) = p(E1)log fd · (1− p(E2|E1)log fd )

≥ (1− 2 log(fd)2/fd)3 log fd · (1− 1/4log fd )

≥ (1− 2 log(fd)2/fd)4 log fd (3)

Starting from the entire point set we need log(N/minSize) + 1 (consecutive) successful
trials until a point A is in a set of size less than minSize and the splitting stops. Next
we prove that the probability to have that many successful trials is constant given that
the required upper bound on the neighborhood holds, i.e., (1). Assume there are ni points
within distance [i3/2+cs ·cd ·r, (i+1)3/2+cs ·cd ·r] for a positive integer i. In particular, note
that the statement holds for arbitrarily positioned points. We do not even require them to
be fixed across several trials.

The upper bound on the neighborhood growth (1) yields that ni ≤ 2i
1/2 · |N (A, cdr)|.

Furthermore, we have that
∑∞

i=1 ni ≤ N . Next, we analyze how many trials we need to
remove points ni until only the close points N (A, cdr) remain. We are going from large i to
small i, i.e., remove distant points first. For each ni we need at most logni−log |N (A, cdr)| ≤
i1/2 successes. Let Eni be the event that this happens, i.e., that we have that many consec-
utive successes.
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p(Eni ) :=

logni−log |N (A,cdr)|∏
j=1

p(T )

=

logni−log |N (A,cdr)|∏
j=1

(1− 4 log(x)2/(x))2 log x (Defining x := i3/2+cs · cd)

=

√
i∏

j=1

(1− 1/2log(x)−4 log log x)4 log(x)

= 24
√
i log(x) log(1−1/2log(x)−4 log log(x))

≥ 2−4
√
i·log(x)·log(x)4/2log(x

= 2−
√
i log(i3/2+cs ·cd)5/(i3/2+cs ·cd)

≥ 2−1/(i·cd) (for cs and cd sufficiently large) (4)

As the number of points N is finite, the number of ni > 0 is also finite. Let mA be the
largest value such that nmA > 0. Let pA := p(∧i∈[1,mA]Eni ) be the probability that all
trials for all ni in i ∈ [1,mA] and ni > 0 are successful. Note that the events Eni are
not independent for a fixed point set P. However, the bound (4) on p(Eni ) holds as long as
condition 2 is fulfilled, i.e., for an arbitrary point set. Put differently, the bound (4) holds even
for the “worst” distribution of points. Therefore, we have that pA := p(∧i∈[1,mA]Eni ) ≥∏

i∈[1,mA] 2−1/(i·cd) using stochastic domination. Note that our choice of maximizing ni,

i.e., the number of required successful trials for Eni minimizes the probability of a p(Eni ).
This is quite intuitive, since it says that we should maximize the number of points closest
to A that should not be placed in the same set as A (i.e., they are just a bit too far to
yield the claimed approximation guarantee). We also need to be aware of the fact that the
distribution for the ni under the constraint that

∑mA
i=1 ni ≤ N should minimize the bound

for pA. It is also apparent from the derivation of (4) that this happens when we maximize
ni; the probability for pA decreases more if we maximize small i. Essentially, this follows
from line 2 in (4) because the number of trials nT is less than

√
i and each trial is successful

with probability of (1− 1/i3/2) (focusing on dominating terms), yielding an overall success

probability of (1− 1/i3/2)nT for a trial. Thus, (1− 1/i3/2)
√
i > (1− 1/l3/2)

√
l for 1 < i < l.

Put differently, choosing ni large for a large i is not a problem for our algorithm, because it
is unlikely that these points will be projected in between the nearest points to A.

Therefore, when maximizing the number of points close to A, we have that mA =

(logN)2, i.e., all ni for i > (logN)2 are 0 because 2
√

(logN)2 = n(logN)2 = N . Additionally,
note that we need at most c8 logN trials in total. As each trial slices the number of points
by 1/2, we only need to take into the account the subset X ∈ [1,mA] for which the number

of points doubles, i.e., nj = 2 · ni, for ni = 2i
1/2

. This happens whenever i1/2 is an integer,
i.e., for i = 1, 4, 9, 16, ..., we get ni = 1, 2, 3, 4, .... Thus, we only need to look at i2 ∈ [1,mA]

pA ≥
∏

i2∈[1,mA]

2−1/(cd·i)

≥
∏

i2∈[1,log2 N ]

2−1/(cd·i)

≥ 2
−1/cd

∑
i2∈[1,log2 N]

1/i

= 2
−1/cd

∑
i∈[1,log N] 1/i

2

≥ 2−2/cd

≥ 1/22/cd

Thus, when doing cp(logN) partitionings, we have at least cp/16 logN successes for point
A whp using Theorem 1 and cd ≥ 1. This also holds for all points whp using Theorem 2.
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Finally, let us bound the number of nearby points that remain. We need at most cL logN
(see Theorem 3) projections until a point set will not be split further. Each projection
reduces the points |N (A, r)| at most by factor 1− 1/cr. We give a bound in two steps, i.e.,
for cr ≥ log3 N and cr ∈ [cd, log3 N ].

cL logN∏
i=1

(1− 1/cr) ≥ (1− 1/ log3 N)cL logN (Assuming cr ≥ log3 N)

≥ 1− 1/ logN

To reduce the number of points by a factor of log3 N requires 3·log logN trials, each reducing
the set by a factor 1/2. Thus, trial i is conducted using a factor cr = log3 N/2i of the original
points or, equivalently, trial 3 · log logN − i is conducted with cr = 2i. Thus, in total the
fraction of remaining points in N (A, r) is

(1− 1/ logN)

3 log logN∏
i=1

(1− 1/2i)log cd = (1− 1/ logN) · (
3 log logN∏

i=1

(1− 1/2i))log cd

= (1− 1/ logN) · (2
∑3 log log N

i=log cd
log(1−1/2i)

)log cd

≥ (21−2/cd )log cd ≥ 1/(2cd)

�

Proof of Theorem 9: First we bound the number of neighbors. Using Theorem 8 we obtain
cp/16(logN) sets SA containing A. Define SA to be the union of all sets SA ∈ S containing
A. Before the last split of a set SA resulting in the sets S1,A and S2, the set SA must be of
size at least cm ·minPts; the probability that splitting it at a random point results in a set
S1,A with |SA| < cm/2 ·minPts is at most 1/2. Thus, using a Chernoff bound (Theorem
1), at least cp/128 logN sets SA ∈ SA are of size at least cm/2 ·minPts whp.

Let SA be a set SA with size at least cm/2 · minPts. Consider the process when
the neighborhood N (A) is built by inspecting one set SA after the other. Assume that
the number of neighbors |N (A)| < cm/2minPts/(2cd). Thus, the probability of event
p(Choose new close neighbor B) = p(B 6∈ N (A) ∧ B ∈ N (A, r)) that a point B ∈ SA
but not already in N (A) is chosen from N (A, r) ∩ SA is at least cm/(4cd).

p(Choose new close neighbor B||N (A)| < cm/2 ·minPts/(2cd)) :=

p(B 6∈ N (A) ∧B ∈ N (A, r))) = cm/(4cd)

As by assumption minPts < cm logN and there are at least cp/128 logN sets SA with
|SA| ≥ cm/2 ·minPts and cp ≥ cm ·128, using the Chernoff bound in Theorem 1 we get that
there are at least cm/(4cd)minPts points within distance DcmminPts(A) in N (A) whp for
every point A. Setting cm ≥ 8cd completes the proof. �


