CS181, Programming Languages

Assignment 6
(due: 11-27-2000)

Problem one:
Create a multi-threaded server that listens on a pre-defined port for
client requests.

e Server specification

The server should run as a separate thread, receiving client packets
and storing them in a queue for further processing. Use a Datagram-
Socket for receiving packets sent by the clients (UDP protocol.) The
server should use the ThreadPool class (from the previous assignment)
for storing and executing client requests. Create the Parser inner class
that implements the Runnable interface, parses the packets and exe-
cutes the appropriate task. Notice that by using the ThreadPool class
you don’t have to worry about creating, starting and stopping threads.
You only have to create a parse function that parses packets accord-
ing to the specification (a simple byte would suffice in this case), call it
from the run method of Parser inner class and complete the request!
For every new packet that arrives, just create a new Parser instance
associated with the packet and add it for execution in the ThreadPool.
The server should run on hill.cs.ucr.edu. The server port should be
defined by you and should be an integer greater than 2000 (if some-
body else is using the same port at the same time, the DatagramSocket
creation will fail.)

e Client specification

Create a simple GUI that will act as the client application. Use a
combobox for selecting the type of service and a label that will print
the answer. Use a button for sending the request to the server. The
client should create a datagram packet containing the appropriate data
and use a DatagramSocket to send the packet to the server (running
on hill), using the pre-defined port. Than it should wait for a reply
containing the answer. Notice that if any packet gets lost, the client
will wait forever! Don’t worry about reliable communication (at the
time!) Assume that no packets will get lost.

e Client requests

The server should be able to handle the following requests:



1. Send the local time as a string.

2. Send the name of the thread that is handling this request (Use
the Thread.current Thread() method to get a reference to the cur-
rently executing thread.)

3. Send the number of active threads on the server

You might have to modify your ThreadPool code or you could use the
solution that will be posted pretty soon!



