CS181, Programmmg Languages
Assignment 5
(due: 11-20-2000)

For both problems submit only the source files (.java) using the WWW-
Turnin. Remember to include your name in the files!

Problem one (Blocking Queue)

A blocking queue implementation is supposed to block a worker trying
to dequeue something from the head of the queue, whenever the queue is
empty. Imagine having a queue for storing user GUI requests, like button
presses or menu actions. A GUI thread usually dequeues such requests from
the queue and processes them sequentially. If no such requests are present,
the GUI thread would have to check the queue for new events after some
predefined timeout, consuming system resources. A better approach would
be to suspend the thread and notify it when a new event arrives. A blocking
queue works as follows. It implements the enqueue method that adds a
new request at the end of the queue and notifies any waiting threads using
the Object.notify() method. It also implements the dequeue method, that
returns the action at the head of the queue, or blocks the calling thread
using the Object.wait() method, until a new request is enqueued and notify
is called.

Define the Blocking Queue class that implements the following meth-
ods:

¢ public synchronized void enqueue(Object 0): Adds an object at
the end of the queue and notifies any waiting thread that the queue is
not empty anymore.

e public synchronized Object dequeue(): Returns the object at
the head of the queue or blocks the calling thread. (Hint: special care
must be taken when multiple competing threads request objects from
the queue. Some thread might be notified and in the mean time some
other thread might have dequeued the last entry from the queue, thus
leaving the queue empty and a worker thread without real work!)

e public synchronized void close(): Closes the blocking queue. Fur-
ther enqueue or dequeue requests throw a closed queue exception. Also
notifies all waiting threads that the queue has closed.

Use an ArrayList to implement the queue that holds request objects.



Problem two (Thread Pool)

In some applications it is appropriate to create a new thread each time
a new request arrives into the system. There might be a case though when
some actions are really demanding and consume a lot of CPU time. A lot
of threads will be created and stay active for a long time, thus exhausting
system resources. A better approach is to restrict the number of threads
active at one time and also reuse each thread in order to avoid the creation
and initialization overhead that is induced.

A thread pool (also known as work queue), uses a predefined number of
threads (workers) for processing requests. The pool is initialized with only
one thread awaiting at the head of a blocking queue. When a new request
arrives, if a thread is not available to process it, a new worker must be
created for that purpose. If the maximum number of threads is reached,
the request must remain in the queue, until some worker becomes available.
When no requests are available, workers should remain blocked at the head
of the queue.

Implement the ThreadPool class using a BlockingQueue for queueing
request objects. Implement the following methods:

e public void execute(Runnable action): Checks if the queue is
empty and if not, creates a new worker thread for processing a request,
if the maximum number of allowable threads is not reached. Also,
places the new action at the end of the queue. Notice that in the
beginning one thread will be waiting at an empty queue, so no new
threads need to be created. The new action will be enqueued and the
original thread will begin executing it. If a new action is enqueued
before the original thread finishes processing the old action, a new
thread should be created, assuming that the maximum number of
allowable threads is not yet reached.

e public synchronized void close(): Closes the thread pool, shutting
down all workers and the blocking queue.

Implement a constructor for the ThreadPool class that accepts two ar-
guments. The number of initially blocked threads (default is one) and the
number of maximum threads allowed.

Hint: You should define a PooledThread class as shown below. When
execute() creates a new thread, it should create a thread of this kind.

// this is an inner class of ThreadPool.
private class PooledThread extends Thread {



public void run() {
try {
while (!closed) {
// dequeue a runnable object from the queue and begin executing it.
// this thread will block here, if the queue is empty.
((Runnable) queue.dequeue()).run();
}
} catch (ClosedQueueException e) {
}
}



