
CS181, Programming Languages
Assignment 4
(due: 11-13-2000)

For both problems submit only the source files (.java) using the WWW-
Turnin. Remember to include your name in the files!

Problem one (Compression)
Make a command line Java application that takes a file name as a com-

mand line argument, reads the file line by line and converts it into binary
format. The input file has the following format:

Name Id x1 x2 y1 y2 z1 z2
string int double double double double double double

Example line:
object_one 1 0.1 0.2 1.4 1.8 0.8 1.2

Newlines, tabs and spaces should be truncated in the output file. (Hint: Use
the DataOutputStream class for producing the output file.)

Problem two (Caching)
Built an LRU cache mechanism for storing objects in memory. An LRU

cache replaces the entry that was least recently used, whenever the cache
is full. A general solution would be to associate every entry with a unique
key using an associative array and keep a queue with the keys sorted in de-
scending order according to when they were last accessed (the least recently
accessed key is first in the queue.) When a request is made for fetching an
object, first the cache is checked to see if it contains that object. If that is
true, the queue is updated and the particular key associated with the object
is moved to the tail. If the object was not already in the cache, it has to
be loaded (for example from a file on the disk) and added in the cache. If
the cache is not full, the object is stored in memory and the key associated
with it is added at the tail of the queue. If the cache was full, some entry
has to be removed. The LRU policy states that the entry associated with
the key that lies in the head of the queue, has to be removed. So the object
gets removed from the cache and its key from the queue. Now, there is a
free slot in the cache for the new entry.

Create an abstract class named LRUCache that should use a HashMap
as the associative array and a LinkedList as the queue. The HashMap should

1



have a fixed number of entries. Use a counter to hold the number of entries
cached. The size of the cache should be configurable through a command
line argument. The LRUCache class should implement two methods.

• public Object get(Object key): This function request the object
associated with key from the cache.

• public abstract Object read(Object key): This function is ab-
stract and no implementation should be given. A class that subclasses
LRUCache should provide the specifics of how an object is read. In
such a way you may have various subclasses of LRUCache that might
read from files, over a TCP socket, or anything you might think of!

To test your generic LRU cache implementation create a class named
MyCache and implement the read method to parse the binary file of prob-
lem one. The key for indexing the objects should be the object id, thus ids
should be unique. Create a class named Box to represent the objects (notice
that each line of the file represents a 3D Box.) MyCache should override
method get with the following definition: public Box get(Integer id).
So, the return type should be a Box, and the key should be an Integer.

Hints:

In class MyCache:
public Object read(Object key) {

// key is an Integer, so cast it.
Integer id = (Integer) key;

// read object with that id from the file.
...

}

public Box get(Integer id) {
Box b = (Box) super.get((Object) id);
return b;

}

In your main method of MyCache randomly generate some object ids and
try to get them from the cache. Use information messages to see when you
have a cache hit or miss. You may also request the user to give the object
ids.

2


